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VARIATIONAL PROBLEMS INVOLVING
FUNCTIONAL DIFFERENTIAL EQUATIONS*

H. T. BANKSf

Introduction. In recent years an interest in variational problems or optimal
control problems involving delayed systems has arisen. In particular, a number
of papers have been written on problems involving systems with a time lag in the
state variable. More general cases where the system has some type of functional
dependency have also been investigated. Existence of optimal solutions for such
problems has been discussed in several works [2], [6], [16]. The purpose of this
paper is to obtain necessary conditions (in the form of an integrated maximum
principle) for problems with quite general nonlinear functional differential systems.
These systems will include as special cases many integro-differential systems and
time lag (variable or constant) systems.

In this paper integrals will be understood to be Lebesgue or Lebesgue-
Stieltjes integrals. Similarly, when speaking of a measurable function, we shall
mean a Lebesgue measurable function unless it is specifically stated otherwise.
By a solution of a (functional) differential equation will be meant an absolutely
continuous (A.C.) function which satisfies the equation almost everywhere with
respect to Lebesgue measure. Vector matrix notation will be employed throughout
and we shall not distinguish between a vector and its transpose when it is clear
what is meant. The notation IAI will denote the Euclidean norm of A in whatever
space A lies.

In 1, we shall formulate a control problem for functional differential
equation systems and state a maximum principle. In 2, results needed in the proof
of this principle will be given. The proofofthe maximum principle will be presented
in 3. The proof involves a consideration of general extremal problems and uses a
generalization of the idea of quasi-convex families due to Gamkrelidze [7]. (See
also 15] .) Finally, in 4 we shall discuss several examples of systems to which our
results are applicable.

1. Notation, formulation of problem, and a maximum principle. Throughout
this paper, we shall assume that to and o are fixed in R with - < o < to.
Let I [o, a) be a bounded interval containing [ao, to] and put I’ (to, a). If a3
is an open convex region in R (possibly all of R), we shall denote by C(I, f#) the
space of bounded continuous /-vector functions on 1 into a3 with the uniform
topology. That is, C(I, ) will be considered as a (topological) subspace of C(1, R).
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For any set X contained in if, define AC(I, X) to be the subset of C(I, c5) consisting
of all bounded absolutely continuous/-vector functions on I into X.

In the discussion below, we shall be considering n-vector functionals F(x(. ), t),
where F: C(I, a3) I’ - R", with c fixed. By the notation F(x(. ), t), we shall mean
that for each fixed in I’,

F(., t): C([ao, t], ) R",

so that F(x(. ), t) may depend on any or all of the values x(z), So <= r. <= t. If, for
each e I’, F has a Fr6chet differential dF (see [5, p. 92]) with respect to x, then
dF[x(. ), t;. is a bounded linear map from C([eo, t], R) into R". We shall then
write IIdF[x(.),t;.] <= m(t) to mean IdF[x(.),t;O]] =< m(t)]],ll, for each
e C([eo, t], Rz) and e 1’, where

1011, sup{10(s)l "s o, t]}.
Note. In the discussions below, we shall not always distinguish between

C(I, a___5) and C([a0, t], ). For example, instead of saying that for each t, F(x(. ), t)
is C w.r.t, x in C([o, t], a3), we shall say simply that F is C in x on C(I, ). It
will be clear what is meant. In fact, given any continuous x defined on [So,
(contained in I) into , then x may be considered as an element of C(1, c) by the
convention x(t) x(z) for >__ z. Conversely, any x in C(I, c) is also in C([o, t],
for each I’.

Having introduced the notation discussed above, we shall consider the
following optimal control problem"

Minimize J[, u, , t] fo((. ), u(t), t) dt over U x f x C(I, R"- ) x I’
subject to

(i) (t) f(ff(.), u(t), t), e [to, a],

if(t) ;(t), 6 [Oo, to],

(ii) (X(to),ff(ta),tl)e .
The following assumptions and definitions are made" ff is a fixed open convex

region in R"-, X is an (n 1)-vector function, f= (fo, f) (f0, f, ..., f,-)
is an n-vector function defined on C(I, ) x 1’, where c Rr. Each fi is
assumed C in ff and Borel measurable in u, t. U and f are defined by AC([a0,
to], c) and fl {u "u is measurable on I’ and u(t) U(t) for 1’}, where U is a
given mapping of 1’ into subsets of ’. - is a given C manifold in R2"- of
dimension less than 2n 1 satisfying Y c c x x I’.

We also assume that given . compact, X c ,, and u f, there exists an m
in L a(I’) such that

If(-(. ), u(t), t)l =< m(t),

IldfEx(. ), u(t), t;. ]11 =< re(t)

for each e I’, and ff e AC(I, "X), where dfis the Fr6chet differential offw.r.t. .
Under the above assumptions, we have the following necessary conditions

for (*, u*, *, t) to be optimal (i.e., a solution of the above problem).
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THEOREM 1. Let (*, u*, i*, t) be optimalfor the control problem with general
functional system equations. Suppose that t’ is a regular point off(if*(. ), u*(t), t).
Then there exists a nontrivial n-vector function 2(0 (2(t),,(t)) of bounded
variation on [to, tT], continuous at t, satisfying"

(i) 20(0 const. __< 0, 2(t’) - 0,

i(0 + ()*(, t) a (t)

for [to, t), where *(t, s) is an n x (n 1) matrix such that

df[*(. 1, u*(t), t; ] dO*(t, s)(s)

for all C([o, t], R"- ) and each

(ii) 2(t)f(*( ), u*(t), t) dt X(t)f(*(- ), u(t),

(iii) the (2n 1)-vector

(-/(to) + 2(fl) {0*(fl, o) 0*(fl, to)} dfl, I(t), -2(t)’f*(t))

is orthogonal to at (2*(to), *(t), t), where f*(t) f(*(. ), u*(t), t).
The inequality in (ii) above is a maximum principle in integral form. In general,

it is very dicult to use this condition to completely determine the optimal con-
trol u*. However, an example where an integral maximum principle may be used
to determine the optimal control for certain delayed systems is given in [1].
Applications of the results given in Theorem 1 above to a biological model will
be discussed in a future paper.

Under additional hypotheses, one can obtain a pointwise maximum principle
from (ii) above. For example, in the case that f((.), u, t) is continuous in all
arguments and the mapping U(t) is such that U(t) U for I’, where U is a fixed
subset of R, then one can show that (ii) implies a Pontryagin-type maximum
principle. That is,

(0" f(*(" ), u*(t), t) sup {(t). f(*(. ), u, t).u

holds almost everywhere on [to, t].
In the next section, we give some preliminary results which will be needed to

prove Theorem 1.

2. Preminary results. The first result in this section is concerned with the
existence of solutions to an integral equation. The multiplier (or adjoint) system
for our control problem will be an equation of the type considered in this theorem.

THEOREM 2. Let ’ be a bounded open interval in R. Let the n x n matrix

N(a, t) be measurable in a on ’ satisfying [N(a, t)[ r(a)for every in [0, T],
where (0, T]c f and r LI). Let N(a, t) be ofbounded variation on [0, T] as a
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function of t, satisfying V f= o N(a, t) <- r(a) for each a in ’. Let F(z, t) be defined
on R" x [0, T] into R, continuous in z for each t, of bounded variation in with
V T= o F(z, t) <= h(z), where h is a bounded measurablefunction on R. Furthermore,
suppose there exists a bounded measurable y(t) on [0, T] such that [F(z, t)[ __< IzJy(t).
Let be a constant n-vector. Then the system

z(O) ,
z(t) + F(z(a), t)N(a, t) da , t(O, T],

has a solution that is ofbounded variation on [0, T].
Proof Since this is a somewhat standard result, we give only a brief outline

of the proof. For k 1, 2, ..., we define the sequence of functions

Zk(t) ,- T/k

F(Zk(a), ON(a, t) da,

e [0, T/k],

(T/k, T].

Then using the hypotheses on F and N, it is not difficult to show that {Zk) is
uniformly bounded on [0, T] and, in fact, V T= 0 Zk(t) is uniformly bounded. It
follows from a well-known theorem of Helly that {Zk} has a convergent sub-
sequence, which we again call {Zk}, such that Zk(t) z(t) for every in [0, T] and the
limit function z is in BV[0, T]. Use of the hypotheses of the theorem and dominated
convergence shows that z satisfies the above system.

If, in addition to the assumptions in Theorem 2, we assume that there exists
a bounded measurable function p(t) on [0, T] such that IF(z l, t)- F(z2, t)[
-<- [zl zz]p(t) for all Z1,Z2 in R", then it is not hard to show that the system in
Theorem 2 has a unique solution on [0, T].

In the proof of Theorem 1, we shall be concerned with an n n matrix
function r/(t, s) which is measurable in (t, s), of bounded variation in s on [ao, t]
for each I’, and satisfies ]r/(t, s)] < rfi(t) for each s [o t] V s-, r/(t, s) < rfi(t)S=O

for each I’, where r L(I’). Furthermore, rt will be such that r/(t, s) 0 for
s >= and q(t, s) r/(t, o) for s < o. With these hypotheses on q, one can show
without difficulty that from Theorem 2 it follows that the system (for I’, E the

n identity matrix)
r(t, t) E,

F(, t) + F(fl, t)q(fl, ) dfl E, a e [to, t),

has a unique solution F(a, t) which is of bounded variation in a on [to, t]. It is
easy to see that F(a, t) is continuous in a at a t.

Our next result is a type of variation of constants formula for functional
differential equations. Special cases of this representation theorem have appeared
in other works, although not always in a correct form. We thus give a complete
statement and proof of this more general representation result.
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THEOREM 3. Let rl be as described above and let I’. Let the n-vectorfunctions
dp and C be given with dp AC([o, to], R") and C Ll(to, t). For each in (to, t],
let F(a, t) be the matrix solution to

r(t, t) E,

r(,r, t) + r(/, t)(/, )d/ , to < t.

Then the n-vector solution z to

(2.2)

is givenfor > to by

(a) dsrl(a, s)z(s) + C(a), to < a <

z(t) r(to, t)dp(to) + F(fl, t) dfl dsq(fl, s)ck(s)
tO

(2.3)
+ r(A t)c() d.

Proof It is not difficult to see that the existence of a solution to (2.2) is guaran-
teed by Theorems 1 and 2 in [1]. For > to we have

z(0 F(to, t)z(to) + d{F(fl, t)z()}
O

F(to, t)(to) + dF(B, t)z() + F(, t)() d
to to

0

r(to, t)(to) + r(fl, t) dfl d(fl, s)(s)

+ r(, 0 B (, sIz(sI.
O o

Consider

r(IA t) d d(, s)z(s).
tO

z(a) (), o < < to
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Since r/(fl, s) 0 for s >__ fl, this integral may be written

r(, t) d (, s)(s).
to

Under the conditions which F, r/, z satisfy, it is possible to use a slight modification
ofan unsymmetric Fubini-type theorem of Cameron and Martin [3] to interchange
the order of integration in this integral. We obtain

f’o {d fto F(fl, t)ti(fl, s)dfl} z(s)-;o {d f F(fl, t)(fl, s)dfl}z(s)
since q(fl, s) 0 for fl s. We then have

z(t) r(to, t)(to) + F(B, t) d d(B, s)O(s)
tO

But the last integral vanishes since F satisfies (2.1). This gives the desired represen-
tation.

Before presenting the final preliminary result, we must define a special subset
of C(I, R). Recalling the definition of AC(I, X) given in 1, we define

for any nonnegative L(I) function K(t). We then have the following lemma.
LEMMA 2.1. Let X be any compact convex subset ofRk Let K be a nonnegative

L(I)function, where I is afinite interval. Then AC(I, X) is a compact convex subset

Proo The convexity follows directly from the convexity of X. Using the fact
that

(2.4) Ix(z) x(z2)] 5 K(t) dt

for every x e AC(I, X)r and z 1, ’2 I, it is not difficult to show that AC(I, X) is a
closed subset of C(1, Rz). That it is bounded follows from (2.4) and the fact that X
is compact. Although we cannot use the Arzela-Ascoli theorem here (I is not com-
pact), the hypotheses of a similar theorem (see [5, Theorem IV.6.5]) are satisfied.
It thus follows that AC(1, X)r is conditionally compact (and hence compact since
it is closed) in C(1, Rt).

3. Extremal theory. In this section we shall present the proof of Theorem 1.
In order to do this, we shall first formulate and give results for an abstract extremal
problem. Application of this extremal theory to our control problem will yield
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the results given in Theorem 1. The abstract extremal problem is of interest itself
since it will yield results for many control problems other than the one discussed
in this paper.

Let Zo, to, ! and I’ be as defined in 1. Let c be a given fixed open convex
region in R" (possibly all of R"). Let us denote by c the subset C(!, c) of C(I, R").
Denote by a family of n-vector functionals F(x(. ), t), where F: x I’ R".
We are using here the notation and conventions explained in 1. If k is any positive
integer, we define

pk__ O Rk’oi>= 0 for 1,..., k and ti-- 1

We then make the following lengthy but essential definition.
DEFINITION 1. A family - is absolutely quasi-convex (A.Q.) if the following

conditions are satisfied:
(a) Each F(x(. ), t) in is C in x for fixed I’ and measurable on I’ for

fixed x .
(b) Given any F ,- and any compact convex X contained in c, there exists

an m L(I’) (m depending on X, F) such that
IF(x(-), t)l <- m(t),

IIdF[x(. ), t;. Ill re(t)
for all I’ and x AC(!, X), where dF is the Fr6chet differential of F w.r.t.x.

(c) For every compact convex X contained in if, nonnegative K in LI(I),
finite collection F1,..., Fk in , and e > 0, there exists for each pk an F in

(depending on X, K, the Fi, and e) satisfying
k

IF,(x(" ), t)[ <= mi(t),

k

IIdF,[x( ), ][I <= , mi(t)

for each pk, I’ and x AC(I, X) (where the mi are the L(I’) functions de-
scribed in (b) above depending on X and Fi), so that

k

G(x( ), t, ) , iFi(x( ), t) F(x( ), t)

satisfies"

G(x(" ), t, e)l =< 2 mi(t),

k

IIdG[x(" ), t, ;. 311 2 mi(t)

for all x e AC(I, X), o pk and e 1’. Also

G(x( ), t, o) dt

for all e e pk, [z, r] I’ and x AC(I, X):.
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(c’) If {ei}--, is a sequence in P such that , e P, then {G(x(. ), t, e)}
converges in measure on I’ to G(x( ), t, ) for each x e AC(I, X)K.

Next let be the class of A.C. n-vector functions on [%, to] into c,j. That is,
r} {dp’dpe AC([o,to], N)}. For Fe and 4e, we shall consider solutions
to

2(t) F(x(. ), t), > to,
(3.1)

x(t) (t), e [o, to].

If z(t), % =< <= z l, is a solution to (3. I) for (F, ) e o x (I), we define the (2n + 1)-
vector q (Z(to), Z(Zl), Zl). Let Q be the set of all such q for solutions to (3.1)
for (F, 4) e x

Let be a given C manifold in R2" + with boundary ///- 4/. For q
let Vr(q) be the tangent half-plane to at q and let //r(q) be the tangent plane
to at q.

DEFINITION 2. A solution z(t), % =< =< z, to (3.1) corresponding to
(F, ) e - x is called an , yt/’, @ extremal if

(i)
(ii) there is a neighborhood V of q,. such that V c Q c f c ///.
Let M be an arbitrary but fixed positive function in Ll(e0, to). Define 3q(M)

to be the set of A.C. n-vector functions 6 on leo, to] into R" satisfying Igig;(t)[
<__ M(t)a.e. on [o, to].

Given an o, Y, extremal 2(0, o <= <= l, corresponding to (/e, ) in
x , we shall denote by 6F the elements in [] -/, where [] is the convex

hull of o. That is, 6F ] eF e, where c e pk, k arbitrary. For 6F in []
and 6 e 6@(M), let 6x denote the solution to

62(t) alP[2(-), t;6x] + 6F(2(.), t) on [to, l],
(3.2)

6x(t) 64(t) on leo, to].

The existence of a unique solution of (3.2) is guaranteed by previous results of the
author (see [1, Theorems 1 and 2]).

With the above definitions in mind, we then define the set . contained in
R2n+1 by f= {(gigS(t0), (Sx(tl) + 6t(2(. ), tl), 6t)’r3rke 3dp(M), fit e R 1, 6x is the
solution to (3.2) for bF in [] -/e and 6 e

THEOREM 4. Suppose is absolutely quasi-convex. Let 2(t), o <= <= l, be
an , yV, extremal corresponding to (P, q) e x . Suppose is a regular point
for .P(2(. ), t). Then there exists a nonzero (2n + 1)-dimensional vector such that"

(i) is orthogonal to gT(q);
(ii) . W >= Ofor all (2n + 1)-vectors w such that w + q e r(q);

(iii) . p <= Ofor all p e

Proof. Let M and gi(M) be as defined previously. Let 2(0, o <= <__
be the , Y, q extremal corresponding to (P, ) e o x . That is,

(3.3)
:(t) P(2(. ), t), [to,

(t) (t), I-o, to].
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Let X be a fixed compact convex subset of ff chosen so that each (t), o =< =< t,
is an interior point of X. Let 6F o(F- 1 represent an arbitrary element
of [] -/?. Let ,m,i 1,..., k, be the La(I’) functions in Definition l(b)
corresponding to , F, 1, ..., k, respectively and X. Define an La(1) function
K by

f 3((t) + ] mi(t)), e I’,
K(t) I(t)l + U(t), e [o, to].

Since is A.Q., one can use the definition to show that given any e, 0 e l,
there exists a function G(x(. ), t) defined on I’ into R" such that"

(3.4) ( + e6F + G,)
k

IG(x(. ), t)l 2((t) + mi(t)),
(3.5)

k

ll6[x(-), t;. ]1 2((t) + E m,(t))

for all x e AC(I, X) and e I’,

0.6) a(x( ),

for every , r in f and x e AC(I, X).
If z(t) is any solution to

(t) (z(. ), t)+ eF(z(. ), t)+ G,(z(. ), t), > to,

z(t) (t) + e4(t) on

where 4 e (M), then from the definition of K we get (t) N K(t) so that the
inequality in (3.6) holds for such solutions z over intervals on which they exist.
Note that if F is not fixed, but is allowed to range over [F, ..-, F], then K
can be chosen independent of the particular 8F in this set. For then there exist
F,..., F such that F aF ,j 1,..., v, so that K will depend on
F, F, .-., F, but not on a particular F

We next consider perturbations" of the system (3.3). For arbitrary t
e8(M), F e [] P, and 0 N e N 1, we consider the system

(t, e) (z(., e), t) + ef(z(., e), t) + G (z(., e), t), > to,

z(t, e) 6(t) + e6O(t on [o, to].

Lemmas similar to Lemmas 4.2 and 4.3 in [1] can be proved for this system (the
proofs of Lemmas 4.2 and 4.3 are changed only slightly). One then has that for
e > 0 sufficiently small the solution z(t, e) to (3.7) exists on [to, t + e6t[], where
it has the form

(3.8) z(t, ) (t) + eSx(t) + o(e)
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with fix satisfying the linear variational system

65c(t) d[2(. ), t; fix] + 6F(( ), t), [to, + el 6tl],
(3.9)

ax(t) a4(t), [o, to].

Let Ar ,/Wr(q),///r r(q), and
where w* ATr}. Then proceeding next exactly as in the proof of Theorem 5 in [1
(the proofs of Lemmas 4.4 and 4.5 in [1] are carried out with only slight modifica-
tions) one gets that the convex sets and r q can be separated by a hyper-
plane Yg through the origin in R2n+ 1. Choosing
such that

(3.10) .p __< 0 <_ . w

for all p ( and w Ur q, we have that (ii)and (iii)of Theorem 4 hold. It is
easy to show that_(i) also holds since /r q is a plane through the origin which
is contained in .Ar q.

Before applying these results to our control problem, we state a lemma that
will be needed. The proof of this lemma will not be given here since it is essentially
the same as the proof due to Gamkrelidze of Lemma 4.1 in [7].

LEMMA 3.1. Let X be a compact convex subset of if, K a nonnegative LI(I)
function, and e > O. Let Fj(x(. ), t), j 1,..., k, be mappings from AC(I, X) I’
into R" that are measurable in forfixed x and C in xforfixed t. Assume there exists
an m(t) in Ll(I’) such that ]Fj(x(-), t)l <-_ m(t), IIdFjUx(. ), t;-11 _-< re(t) for all
x AC(I, X) and I’, j 1, ..., k. Let , a subset of AC(I, X), be the compact
convex set defined by 1 AC(I, X)K. Let p(t), j 1, ..., k, be given nonnegative
real-valued measurable functions on I’ satisfying pj(t) 1 a.e. on I’. Then it is

possible to subdivide I’ into sufficiently small disjoint subintervals El, i= +_1,
+__ 2,..., and to assign to each Ei one of the functions FI, Fk, which we shall
denote by Fe,, so that the function F(x(. ), t) defined by

F(x( ), t) F,(x(. ), t)

for Ei, +__ 1, 2, ..., and x AC(I, X) satisfies

pj(t)Fj(x(. ), t) F(x(. ), dt <
j=l

for every , z2 in I’ and x .
Now consider the optimal control problem of 1 under the assumptions made

there. Suppose that (b*, u*, *, tT) is a solution to this problem. Put

x*(t)
x*(t)

*(t) l’ o <= <__ t,

where

x*(t) fo(ff,(. ), u*(a), a) da, [to,

e [o, to].
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Now definef(x(. ), u, t) f((. ), u, t), where x (x,)eC(I, ()with _-- R
(That is, hereafter we shall writefas a function of x even though it does not really
depend on x.) Put " {F(x(. ), t)’F(x(. ), t) f(x(. ), u(t), t) for u e } and
(I) {q (qo, (). ( e U and 4 e AC([0o, to], R )}.

Let o, {o, r represent scalars and ),, represent (n 1)-vectors. Then define
,3 c Re" + to be all (7, 7, {o, , :) with (, {, :) near (*(to), *(t), t’) satisfying

(, , ) ,, o 0, o <__ xO,(t).
Define /to be the above set with the last inequality replaced by equality. Then
../g is a C manifold with boundary /.

With the above definitions in mind one can prove (the proof is exactly the
same as the proof ofLemma 5.1 in 1]) that x* is an ,, (I) extremal. Furthermore,
the class , defined above is absolutely quasi-convex. The proof that , is A.Q.
uses Lemma 3.1 and the arguments are similar to those for the proof of a similar
result in 2].

Thus, we can apply Theorem 4 to the control problem in the above formula-
tion. Let di(I)= 8(M) be as defined above. For (qS*,u*,*,t’) optimal, and
8b e 8(I), cz in P, {ug} in f, we denote by fix the solution to

k

62(t) df[x*( ), u*(t), t; (Sx] + o{f(x*( ), ui(t), t) f(x*( ), u*(t), t)

(3.11) on [to, t’],

8x(t) 8(b(t) on [o, to],

where x* (x*, *). Define8 to be the set oran such solutions for 84 in 8(I),
any finite collection in f,, and 0 e P, k an arbitrary positive integer. Then we have
the following theorem.

THEOREM 5. Let (el)*, u*,*, t) be optimal. Suppose t is a regular point for
f(ff*(.),u*(t),t). Then there exists a nonzero (2n + 1)-vector (bo,bx,a)

(b, b,..., b"o-’, b bl b]- ’, a) (b, o, b ,, a) such that"
(i) the (2n 1)-vector (bo,b, a) is orthogonal to - at (ff*(to), ff*(t’), t’);
(ii) b =< O;

(iii) b .f(ff*(. ), u*(t), t’) + a 0;
(iv) bo’&(to) + b .(x(t) < 0 for arbitrary 6q5 in 6, 6x in 635 (bx cor-

responding to 64)).
Proof Theorem 5 follows almost immediately from Theorem 4. Statements

(iii) and (iv) are a direct consequence of (iii) in Theorem 4. Statement (ii) follows
from (ii) of Theorem 4 since the (2n + 1)-vector w (0,, 1, 0,_ , 0) is such that
q + w VT(q) for the above defined A//. Finally, if (7T, T, rT) is any tangent
vector to - at (ff*(to), X*(t), t’), then the vector (0, /T, 0, T, ZT) is tangent to
(as defined above) at q, (0, ff*(to), x*(t), Y*(t), t). Hence condition (i) of
Theorem 5 follows from (i) of Theorem 4.

Remarks. First let us note that the results of Theorem 5 imply that b va 0.
For if b were zero, using (iii) and (iv) would give a 0 and bo 0 and hence

(bo, b, a) 0, a contradiction
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We also point out that if were some given convex class of A.C. initial
functions for the control problem, one could still prove a result similar to Theorem
5. In the statement and proof ofTheorem 4 then, would be some specified convex
class. The set 6(M) would be replaced by and for
K(t) would be chosen so that K(t) >= Iq(t)l / 14,(t)l, where 6qj = xJ’qSi q,
j 1,..., I. In the application of Theorem 4 to the control problem, would be
defined as above in terms of the given class for the control problem. Then we
would have fi - 05", where b* (0, q*), in the statement of Theorem 5.
It should be noted however that the result about b - 0 mentioned above does
not in general hold for this problem.

To complete the proof of Theorem 1, it remains only to use Theorem 3 of 2
to obtain a representation for solutions 6x of system (3.1 1). The results of Theorem
1 will then follow easily from Theorem 5 above.

Consider df[2*(. ), u*(t), t;. ]. Since for each s 1’, df[2*(. ), u*(t), t;. is a
bounded linear operator on C([o, t], R"- ) into R", we have by the Riesz theorem
that there exists an n (n 1) matrix function /*(t, s) such that

df[*( ), u*(t), t; ] dO*(t, s)(s)

for all C([ao, t], R"- x) and 6 I’.
Defining NBV[ao, t! as all g satisfying" (i) g is of bounded variation on [ao, t],

(ii) g(t) 0, (iii) g is continuous from the right; we may then assert the existence
of a unique /*(t, in NBV[ao, t] such that the above equation holds.

Let V t=,o/*(t, s) denote the variation of O*(t,.) on [ao, t]. Then a further
consequence of the Riesz theorem is that there exists a constant D > 0 such that

Thus we have

O*(t, s) < DIIdf[X*(. ), u*(t) t’.

V t=og/*(t, s) <= Dm*(t)= rfi(t),

where m* L(I’).
If we adopt the notation explained above, then we may write

(3.12) df[x*( ), u*(t), t; k] dtl*(t, s)k(s)
o0

for ff e C(I, R"), where r/*(t, s) is the n n matrix function

0

O*(t,s)

0

The integral in (3.12) is the Lebesgue-Stieltjes integral. We shall assume that
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r/*(t, s) has been extended as follows"

r/*(t,t)=O for s>t,
*(t, S)

r/*(t, So) for s <

This may be done without affecting (3.12).
Using (3.12) and the fact that dfx*(.),u*(t),t; ] is measurable on I’ for

each C(I, R"), we find it is not hard to show that q*(t, s) is measurable in (t, s).
Furthermore, for each a in o, t],

[tl*(t, o)l Iq*(t, t) q*(t,

I*(t, t) q*(t, )[ + [l*(t, ) O*(t, o)1
< v =o*(t, s) ,(t).

We thus find that * satisfies the hypotheses of Theorem 3. We then have that
the elements of 6f have the form, for > to,

6x(t) F(to, t)6@(to)

+ r(, )d 4*(, s)
O

(3.13)

+ F(fl, t) (x*(. ), ui(fl) fl) f(x*(. ), u*(fl), fl) dfl,

where 6 , a P*, ui and F satisfies (2.1) with q q*.
We next define multipliers 2 by

(3.14) 2(a) bF(a,t), to a t,
where bx 0 is as described in Theorem 5. Then, since F satisfies (2.1) with
q q*, we have that 2 satisfies

2(t) b,

(a) + 2(fl)q*(fl, a)dfl b, to a < t.

Furthermore, 2 is continuous at t (see the remarks following Theorem 2). Hence,
there is an interval (fl, t] on which 2 does not vanish. We also have that

2(a) 2(t)= b 0

since the first column in q* is zero.
Using (3.13), (3.14)and (iv)of Theorem 5 gives

[0

+ ( g(x*(. , u(I, f(x*(. , u*(, o
o



14 H.T..BANKS

for arbitrary 6b 6, s e pk, {ui} in FL k arbitrary. Since 6 and s, {ui} are in-
dependent, this may be written

(3.15) 2(fl){ f(x*(. ), u(fl), fl) f(x*(. ), u*(fl), fl)} dfl 0
to

for arbitrary u e , and

(3.16) {bo + 2(to)}. 6(to) + 2(fl)dfl dsq*(lLs)3(s) 0
tO

for arbitrary 6 6.
Since -6 is in 6 whenever 6 is, (3.16) may be written

(3.17) {bo + 2(to)}. 4(to) + 2(fl) dfl d*(fl, s)34(s) 0
tO

for arbitrary 6 e 6.
Interchanging the order of integration (which again is possible by an un-

symmetric Fubini theorem), we can write (3.17) as

(3.8) {bo + 2(to)}. 4(to) + d (),*(, s)e 4(s) 0
O tO

for arbitrary 4 e b.
Defining the n-vector function H by

(3.9) (s) (),*(, s)dB, o s to,
to

and taking 34 with jth component equal to 1, all other components zero in (3.18),
yields

b + 2(to) + H(to)- H(o)= O.

Hence

(3.20)

or

bo + 2(to)+ H(to)- H(so)= 0

(3.21) bo 2(to) + ft
tO

2(fl) {r/*(fl, So) r/*(fl, to)} dfl.

Combining the results of the above discussions with Theorem 5 completes
the proof of Theorem 1.

Let us make a few observations about this theorem. Return now to (3..17)
and (3.18). We consider two cases.

Case 1. Suppose the matrix function r/*(t, s) is such that dsq*(t, s) v*(t, s) ds
on [So, to]. That is, r/*(t, s) is A.C. in s. Then one can use (3.17) to show (using
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Lemma 2 of [1] and arguments similar to those in [1])

and

bo + ;(to)= 0

(3.22) 2(fl)v*(fl, s) dfl 0 for almost every s in[o, to].
Cto

Then (iii) of Theorem would become" (-(to), (t), -2(t)- f*(t’)) is orthogonal
to -.

Case 2. Suppose the function H defined by (3.19) is such that dH(s) h(s)ds
on leo, to]. That is, H is A.C. Then (3.18)may be written

{bo + 2(to)}. 8(to)+ Jo h(s)6(s)ds 0

for arbitrary 64 e. One can then show that this implies h(s) 0 a.e. on leo, to]
and, hence,

bo + 2(to)= H(ao)- H(to)= O.

Again (iii) of Theorem 1 would take the form stated in Case 1 above.
Case 2 includes the case where the functional is a functional involving only

lags (see the discussion below).
Let us point out that it is not difficult to show Case 1 implies Case 2. However,

the converse is not true as will be seen in the case of lag problems.

4. Examples of functional systems. In this section we shall discuss briefly
several examples of systems to which our results are applicable. For our first
example, let us consider systems where the functional dependence is in terms of
lags. This type of system has been considered in detail in [1]. We just remark here
that the results in Theorem 1 agree with those previous results found in [1]. For
simplicity, let f contain a single constant lag. That is, consider f(ff(.),u(t),t)

g((t), (t 0), u(t), t), where g g(l, 2, u, t) is a mapping of R"- x R"-
x ’ x I’ into R". Then O*(t, s) of Theorem has the form

O, s>=t,

O*(t,s) -g,(t), O <= s < t,

g,(t) s < O,g2(t),

where g*(t) g(*(t), *(t 0), u*(t), t) and gi, is the Jacobian matrix. Note that
in this case rt*(t, s) is not A.C. in s. However (see 3.19),
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where

0

gi gi

0

so that Case 2 above holds while Case 1 does not.
For this type of problem, the multipliers are usually given as A.C. functions

satisfying a set of advanced differential-difference equations. These advanced
equations are just the differentiated form of the equations for 2 given in (i) of
Theorem 1. In the case of lags, one can show that the multipliers 2 of Theorem
are actually AoC. and satisfy the equations in (i) in differentiated form. Thus the
results of Theorem agree with the known results whenever we deal with a system
with lags.

A second type of functional to which our results can be applied is of the form

f(x( ), u(t), t) a(, s)g(x(s), u(t), t) as,

where a is a scalar function on R R and g g(, u, t) is a mapping from
R"- q/ I’ into R". Such systems arise in the study of reactor dynamics [13].
In this example we find

fl*(t, s) a(t, r)g(*(), u*(t), t) d

so that Case 1 of the previous section holds. As in the example for simple lags
discussed above, one can also for this example show that the multipliers are actually
A.C. and satisfy the equations in (i) ofTheorem 1 in differentiated form. In addition
to the results stated in Theorem 1, for this example we also obtain (see 3.22) the
necessary condition

’ 2(/)a(fl, s)g(.*(s), u*(fl), ) dfl 0

for almost every s in leo, to].
Finally, the systems studied by Hale [10] and Halanay [9],

2(t) g(x,, u(t), t),

where x denotes the values x(t + r), -z <__ a <= O, are included in our general
systems. In this example the function q* would have the additional property that
r/*(t, s) r/*(t, r)for s <= r.

Acknowledgment. The author wishes to express his appreciation to the referees
for several remarks which aided the clarity of exposition of this paper.
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B. M. BUDAK, E. M. BERKOVICH AND E. N. SOLOV’EVAf

Abstract. The convergence of solutions of discrete extremum problems to the solution of the
continuous optimal control problem is considered, both in the sense of the optimal value of the
functional and of the optimal control. In the latter case "nonwell-posed" extremum problems are
discussed.

In the majority of cases the solution of optimal control problems, in which a
functional defined on the solutions of differential equations is to be minimized,
requires the application of numerical methods.

In such cases, as usual, the original "differential" problem is actually replaced
by a difference problem, and there arises the question of the convergence of the
solution of the difference problem to the solution of the differential problem.

In the present note this question is studied for one class of the problems
mentioned.

Suppose that we are required to solve the problem ofminimizing the functional

(1) J(x, u) g(x(z), u(z), z) dz + (I)(x(T))

defined on the solutions of the Cauchy problem

(2)
dx

f(x, u(t), t), to =< __< T, X(to) Xodt

corresponding to all possible admissible controls u in a certain class U. Here,
x (xl, xN), u (ul, ur), f (f, fN) are vectors’, g(x, u, t) and
(x) are scalar-valued functions.

Having divided the interval to =< -< T by the partition points Xt,’to t,o
< t, < < t,i < t,i+ < < t,,_ < t,, Tinto partial intervals of length
r,i t,+ t,, 0, 1, ..., n 1, we replace problem (1), (2) by the approxi-
mate difference problem of minimizing the discretized functional"

n-1

(1’) J.(x., Un) g(Xni Uni tni)Tfni -- (I)(Xnn)
i=O

on the solutions of the Cauchy difference problem

(2’) Xni+l Xni 2t- f(Xni Uni tni)Zni i--0, 1,..., n- 1, Xno Xo
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corresponding to all possible admissible controls u, in a certain class U,. Here
u, is a vector-valued function of the integral argument i, where we take the values
U,o,U,1,’", u.,_, respectively, when 0, 1,..., n 1.

We say that the discrete control u, is piecewise-constantly extended on [to, T]
if it is interpreted as u,(t)= u,i when t,i =< < t,i+l, i= 0, 1,..., n- 1. By
assuming that z, maxo_<iz,_ z,i --* 0 as n + o, we study the question of the
convergence of the solution of problem (1’), (2’) to the solution of problem (1), (2);
we assume here that the functions f(x, u, t), g(x, u, t), (x) have been defined for
all x, u and for all [to, T], that the control u(t) has been defined for all [to, T]
and that the following requirements are fulfilled:

(a) There exist constants A, 1, 2, ..., 11, such that

(3) If(x,u, t)l <- Alxl + A2Iul 2 + A3,

(4) If(x*, u*, t) f(x**, u**, t)l

:< A[x* x**[ + A(lu*I + [u**l)(lu* -u**l) + A6lu* u**l 2,

(5) Ig(x, u,t)l <- ATIxl + Aslul 2 + A9.

(b) f(x, u, t) and g(x, u, t) are piecewise uniformly continuous in on [to, T]
with points of discontinuity which in number are bounded uniformly relative to
the piecewise-constant x and u furthermore, (x) and g(x, u, t) are continuous in
x, uniformly in u and t, [to, T], and g(x, u, t) satisfies the condition

(6) Ig(x, u*, t) g(x, u**, t)l <- Ao(lu*l + lu**l)(lu* u**l) + Aalu* u**l 2

(c) The control u(t) is either square summable on [to, T] and satisfies the
constraint

(7) Ilullvo,a =< K const. < + o

or is bounded and measurable and satisfies the estimate2

(8) [Ullc[to,T =< K2 const. < + oz.

In the first case u(t) belongs to a closed ball BK1 in L2[to, T]; in the second, to the
set BK2 of bounded measurable functions satisfying inequality (8); BKI and B2 are
closed and convex in Lz[to, T].

Remark. In inequalities (3) and (5), instead oflxl we can take Ixl or eI’1", where
rn is an arbitrary positive integer; in this case a constraint arises on the length of
the interval [to, T].

However, if the control is bounded and measurable and satisfies (8), then in
(3) and (5) instead of [u[ 2 we can take [u[ or elul’, where m is an arbitrary positive

IX[ ZkN=I [xk] ["[ 2=1
IlUllc[,o,r] sup,o_<t_<rlu(t)l.
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integer. All the subsequent theorems remain valid under the changes indicated.
In our investigation of the convergence of difference approximations in optimal
control problems, we need the following rather obvious theorem.

THEOREM 1. If conditions (a), (b), (c) are fulfilled, then (i) the solution of the
Cauchy problem (2)exists and is absolutely continuous and uniquefor anyu Bx,(Bx);
moreover, jbr every > 0 we can find 6 6() > 0 such that when the condition

is fulfilled, we have

(10) Ilx* x**llCtto.T < ;
(ii) the functional (1) has been defined on all u B, (B) and is continuous

in the metric of L2[to, T] i.e.,for every ’ > 0 we canfind 6’(’) > 0 such that when
the condition

(11) Ilu* u**llt.,o,rl < 6’(g’), u*, u** 6 nc
is fulfilled we have

(12) IS(u*)- S(u**)l < e’.

Proof The validity of assertion (i) can be established as, for example, in [1].
The validity of assertion (ii) results easily from the validity of assertion (i) and from
the properties of functions g(x, u, t) and (x). The theorem is proved.

THEOREM 2. Let the conditions of Theorem be satisfied and let u*(t) be the
optimal controljbrfunctional (1) in Br (or in Br), while x*(t) x(u*) is the optimal
trajectory corresponding to it by means of (2), i.e.,

J* J(x(*), *) g(x*(z), *(z), z) dz + (x*(r))
o

(13)
inf g(x(z), u(z), z) dz + q)(x(r))

to

Further, let u*n be the optimal control in Blc (or in B/c2) (/f it is piecewise-constantly
extended on [to, T])for thefunctional (1’), while xn* xn(u,*) is the optimal trajectory
corresponding to it by virtue of(2’), i.e.,

n--1

J*n Jn(xn(U*n), U’n)

_
g(X.*i, U.*i, t,i)v,, + (x.*.)

(14)
i=o

inf g(,i, ., ti)zi + q(x, t.i 0

where the infimum in (13) and (14) is taken over B, (or B). Then, if
: maxo_i__ :i O(n- ) as n + , then

(15) lim J* J*.
"t"

The proof of this theorem is based on the following three lemmas.
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LEMMA 1. If Y,* infu. J(x(u.), u.), where x(u,) is the solution of problem (2)
corresponding to the piecewise-constantly extended discrete control u,, and if the
infimum is taken over all those admissible controls belonging to BK1 (BK2) and cor-
responding to an arbitraryfixed partition Zi,, then, under the hypothesis ofTheorem 1,

(16) lim .*, =J* if z.--.O as n +.

Proof of Lemma 1. By using the set of continuous functions in Br (in Br),
which is everywhere dense in the metric of Lz[to, T], we choose a continu-
ous function u**(t) Br (Br) such that from the smallness of the norm
[[u* u**[[,o, it follows by (11) and (12) that

(17) lJ(u*)- J(u**)l < ,
where e > 0 is a preassigned arbitrary number. We shall then take z, so small that
the oscillation of u**(t) on all the partial intervals It,i, t,i+ ], O, 1, ..., n 1,
is less than a sufficiently small 6’ > 0. Then, the piecewise-constant function u’(t),
coinciding on each of the partial intervals [t,, t,i+ ], i= 0, 1, .--, n- 1, with
that value of u**(t) on It,i, t,+ 1] which is closest to zero, will approximate u**(t)
uniformly on [to, T] with accuracy within 6’. If 6’ is sufficiently small, then by
assertion (ii) of Theorem 1 we have

(8) IJ(u**) J(u.’)l <
2

Adding (17) and (18) we get

(19) IJ(u*)- J(u,’)[ < e.

Obviously,

(20) J(u*) =< J(u,’) =< S(u*) + e.

Let the functional J(u,) J(x(u,), u,), where x(u.) is the solution of the Cauchy
problem (2) corresponding to the piecewise-constantly extended u,, have as its
greatest lower bound over such u, the number

),* infJ(x(u,), u.).

Then from (20) it follows that

J* J(u*) _< )* __< J(u,’) J(x(u,’), u,’) __< J(u*) + J* +
for all sufficiently large n (and, consequently, for sufficiently small

T max Tni).
O_<_i <n-1

Lemma is proved.
Let (t) x(u,) and x, x,(u,) denote the solutions of problems (2) and (2’)

corresponding to the same control u,, piecewise-constantly extended to obtain
x(u.) (t).
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(21)

(22)

(23)

(24)

LEMMA 2. Under the hypotheses ofLemma 1,

Zni I)(tni) x,il 0 as n --. + oo

r. max Tni O(n-1) as n + .
O<i<<_n-1

ProofofLemma 2. We have

fttni,(t., + 1) (t.,) + f((z), u.i, r)

Xni+ Xni + f(xni Uni tni

Subtracting (24) from (23) and going over to inequalities, we get

z,i +, <= z,i / ]f((r), Uni, Z) f((tni), Ilni, r)l dr

+ If((t.i), Uni, r) f(Xni Uni "C)I
tni

ftfni(25) + If(x./, u.i, T) f(x.i, u.i, t.i)l dr

fttni fttni<= z,i + A4 [if(r)- 2(t,i)[ dr + A4 IX(t,i)- ,i[ dr
tni tni

ftni/ If(x,i, Ilni r) f(xni Uni tni)l dr

(1 + Agrn)Zni + rni’Cn,

where r,i o(1) for all i= 0, 1,..., n- except, possibly, for certain values
il, i., is, where s ._<_ mo const, for all n 1,2, for such 1, iz, "", is
we have ri O(1) because f(x, u, t) is piecewise continuous in with a uniformly
bounded number of points of discontinuity. Taking into account that z, _= C/n
and z,0 0, from (25) we obtain the estimate

(26) 0 Zni 0(1) [eaaC 1] + z,O(1)mo ea4C,

whence it follows that z,i 0 as n- +oo (and z, O(n-)). Lemma 2 is

proved,

LEMMA 3. Under the hypotheses of Lemmas 1 and 2 and under conditions
(a), (b), (c),

(27) IJ(x(u.), u.) J.(x.(u.), u.)l -<_ a. -* 0 as n + .
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ProofofLemma 3. We have

IJ(x(u,), u,) J.(x.(u.), u.)]

(28) =<

T n-1

g(ff(z), u,, z) dr g(x,i, u,i, t,i)z,i
to i=0

+ I((Y))

+ Ig(Xni, Ilni ") g(Xni Ilni lfni)l d27 + I(I)((T)) (I)(Xnn)l

By virtue of the properties of g(x, u, t) and (x) and of relation (21) in Lemma 2,
we get (27) from (28). Here we use the points of discontinuity of g(x, u, t) in just
as we used the points of discontinuity of f(x, u, t) in when proving the preceding
lemma.

We now go on to the proof of Theorem 2. In (27) we first substitute ft,* for u,,
for which

J(x(u*), un*) inf J(x(u.), u.) .*,

and next we substitute u.*, for which

J.(x.(u.*), u.*) inf J.(x.(u.), u.) J.*.

Then, by (27) we get

(29)

(30)

From (29) and (30) we find

(31) IY*-J*l .0 as n +.

Adding (16) and (31) we get (15). Theorem 2 is proved.
THEOREM 3. The sequence {u,*}, where the u*, are determinedfrom the condition

(32) inf J.(x.(u.), u.) J.(x(u.*), u.*),

is a minimizing sequencefor thefunctional J(x(u), u) in BI, (BK2).
Proof From (15) and (27) we get that

(33) IJ(x(u*), u*) J*l 0 as n + v
and 0 < , < Cn-1. The theorem is proved.

COROLLARY TO THEOREM 3. If the functional J(x(u), u) is sufficiently well-
behaved (see [2]), then from the convergence in (33) there follows the convergence of
the minimizing sequence of u*, to u*.
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This will hold automatically, for example, if:
(i) g(x, u, t) is convex in x and uniformly convex in u, i.e., if

(Xl+X2 Ulff-u2
g

2 2 g(Xl, Ul, t) + g(x2, U2, t) 6([[U u2ll)

for any xl, x2, ul, u2 and 6 [to, TI; () is continuous, (0) 0, 6(z) > 0 when
z>0;

(ii) (x)is convex in x, i.e.,

and, further,
(iii) f(x, u, t) (t)x +
Then the functional 7(x(u), u) will b uniformly convex, i.e.,

j(u,, +u2) <

for all u and uz. It is well known that if the set U of controls u is closed and convex,
while the functional J(x(u), u) is uniformly convex, then every minimizing sequence
{u.} converges to a unique minimum point u* of the functional J(x(u), u) on this
set and, moreover,

(llu, u*ll) J(u,) J(u*) for all u, U.

In particular, if (z) z2, const. > O, then the functional is said to be strongly
convex and we get

(33’) Ilu, u* 2 [J(u,)

Remark 2. The results obtained in Theorems 1-3 can be easily extended to
the case when there are no minimizing elements in the functionals but there are
greatest lower bounds and, consequently, minimizing sequences, and also to the
case of other boundary conditions at to and T.

Remark 3. If the optimal control is piecewise continuous, if u*(t), f(x, u, t) and
g(x, u, t) satisfy all the formulated conditions, if H61der conditions with index, 0 < < 1, are satisfied in on all the intervals of continuity in t, and if, further-
more, g(x, u, t) and (x) satisfy a Lipschitz condition in x, then we get

(34) IJ J*] Cry.

Thus in the case of strong convexity of the functional, from (33’) and (34) we find

(35) Ilu u*ll <
c

Remark 4. It is ofinterest o investigate the speed ofconvergence ofthe solution
of the approximating difference optimization problem to the solution of the
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original differential optimization problem as a function of the smoothness of the
differential problem and of the approximation order of the difference scheme.
In the case of analytic u*, f, g, , it can be shown that when the approximation
of the difference scheme is of order O(r,"), the speed of convergence of the solution
of the difference optimization problem to the solution of the differential optimiza-
tion problem also equals O(r,P).

Remark 5. If the functional J(u) is not uniformly convex and reaches an
absolute minimum on B:2 at several different elements of BK2, then in general
there is no basis for expecting that every minimizing sequence for J(u) will converge
strongly to one of these elements. Following A. N. Tikhonov we shall say that the
optimal control problem is not well-posed if there exists a minimizing sequence
which does not converge strongly to any of the elements at which the functional
achieves an absolute minimum. Using an idea analogous to the ideas in [3]-[7], [9]
we consider one variant of the regularization ofdifference optimal control problems
(1’), (2’) approximating an original nonwell-posed optimal control problem
(1), (2), assuming that the functional (1) is convex. This version of regularization
ensures the strong convergence in Lz[to, T] of the minimizing sequence for (1), (2),
obtained on the basis of difference approximations (1’), (2’), to the element of
smallest norm at which the functional (1) reaches an absolute minimum in BK2,
if the regularization parameter is compatible with the errors admissible in the
solution of problem (1’), (2’).

We note first that the set U* BK of elements at each of which J(u) reaches
an absolute minimum in B2 is convex because of the assumption of convexity of
./(u). By assuming that the hypothesis of Theorem is satisfied we conclude that
the set U* will be (strongly) closed by virtue of the continuity of J(u). Since a
closed, convex set in Lz[to, T] is strongly closed, while a convex, continuous
functional is lower semicontinuous, there exists an element U’rain e U* which is
smallest in norm; moreover, this element is unique.

DEFINITION 1. The function u(t) will be called generalized uniformly continuous
on the interval [to, T] if the set of its points of discontinuity on [to, T] can be
covered by a finite system of intervals whose total length is arbitrarily
small.

DEFIYITIOr< 2. The set of functions {u(t)} will be called generalized equi-
continuous on [to, T] if for every r/ > 0 and for each function u(t) from {u(t)} we
can find a finite system of intervals of total length less than q, covering the points
of discontinuity of the function, such that for any . > 0 we can find a 6 6(e) > 0
which possesses the following property" whatever t’ and t" we choose from [to, T],
lying outside the system of intervals indicated for the function u(t)e {u(t)} and
satisfying the condition It’-t"l < 6(e), there is satisfied the inequality
lu(t’)- u(t")] < e. Everywhere in what follows we shall assume that the set U*
is generalized equicontinuous.

Let u,(t) be a piecewise-constantly extended discrete control u,, in accordance
with the definition given above. Then

Jn(un) J(Un(t)) +
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and it is not difficult to prove that under the conditions stated above,

If the difference problem (2’) is solved with round(R)if, if the functional J.(u.) is
computed with roundoffand if, moreover, the roundofferror is of order 6. o(n- 1)
as n + m, then, analogous to what was done in [8], we get

(36) a.a.(u.) a(u.(t))+ (R)..(u.(t)).
Here J.On(U.) is the value of the discretized functional J.(u.) computed with round-
off, on the rounded-off solution of problem (2’), while

[(R)..(u.)[ _<_ y.. 0 as n + , . O(n- 1), 6, o(n- 1).

We now consider the regularized discrete functional

J.o(u.) J.o(u.) + llu.ll ,
where the norm is taken in Lz[to, T]. By virtue of (36) we have

(37) J.a..(u.) J(u,,(t)) + (R).n(U.) + llu.II 2.

Let u*(t) U*; we denote the piecewise-constantly extended discrete control
defined by the relations

tl*ni ii*(tni), O, 1,’’’, n 1,

by (u*). (u*(t)).. Then by virtue of the generalized equicontinuity of the family
U*,

A.J= {J((u*).)-J(u*)}0 as n +, . O(n--),

and uniformly relative to u*(t)e U*.
Given some sequence e. $ 0 as n + m, we choose some sequence of values

of the regularizing parameter

.0 as n- +,

For each n we choose some difference net E,., satisfying the condition z. O(n- 1)
asn +,andn B for which

(38) Jnn inf J.6 < ..t.,6.,.) .
on the chosen net
Tno 4. Under the conditions.formulated above, {"’"’")} is a minimizing

sequence for the functional J(u) on B, i.e., J(u"’a"’")) J*= infnJ(u) as

]zX,,jl,=sup..v, lA,ji as n- +.
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Proof We take some u*(t)e U*; then

J(u*) J*

and

(39) lim J(u(an’5"’t:")) J(ll*).
+

Theorem 4 is proved.
Remark 6. By virtue of (39) and (32) we also have

J(u*)

(40) lim t ""’"’") J(u*)nnn,Ctn

THEOREM 5. The sequence {u"’"’:"} converges strongly to ui under the con-
ditions )brmulated aboe.

Pro@ By virtue o (37) and (38), for any u*(t) U* we have

Jn..(u"’"’")) < J*n.a., + . =< Jn.a.((U*).) + e"

(4.)
J(<u*).)- On.((U*).)+ .[[(U*).II 2 + .
J(u*) + .. + 13.Jl’ + e. + .[l(u*).ll 2,

....." "’"’"’", J(u"’"’"(t)) + . u-’"’-(t)ll +
(42)

J(u"-,-,-) + . u’-,-,-ll
From (41) and (42) we find

.lu<)-’-’-)ll J(u*)- J(u"-,-,-)) + 27.0. + e. + I.Jl’+ =.t](u*). =
(43)

27.. + e. + [A.J[’ + ,, (u*). 2,

whence



28 B.M. BUDAK, E. M. BERKOVICH AND E. N. SOLOV’EVA

The sequence {u.’’’6"’’I} is bounded in norm in L2[to, TI and so we can select a
weakly convergent subsequence {U.,n"6n"’:"’)} we denote its weak limit by
Taking into account the strong convergence of (u*),, to u* and passing to the
limit as n n’ + in (44), we get

(45) lim sup 1,,("""""’) < *
On the other hand, because of the weak lower semicntinuity of the norm we have

(46) u < lim inf ,("""""’

Comparing (45) and (46) we find

(47) fi u*
By virtue of the weak closedness of B we have B. But by the weak lower
semicontinuity of J(u) and because of (39) we have

(48) J() lim inf J(u"’’a"’’’’) lim J(u’’’’"’’’’)) J(u*).

Consequently,

(49) J(h) J(u*), e U*.

The u*e U* occurring in the right-hand side of (47) is arbitrary and, therefore,
fi is the element in U* which is smallest in norm, i.e., fi Uin. Setting u*
and fi Uin in (45) and (46) we get

-(""a"""’) < lira sup u""z"""’)[ < IlUin(50) IlUn[ lim inf I-,,
fl’ + ’ +

Consequently,

(51) lim u""a-"-’) ][Un[
,’+

On the other hand we have proved that

(52) u"""""’u$, as n’ +.

From (51) and (52), we have

(3) Iu"’’"’’"’ U$n 0 as n’ + ,
i.e., _,,n’"’’a"’’"’) converges strongly to Uin. If it should happen that the whole
sequence {u"’a"’"’}, unlike the subsequence {u"""""’)}, does not converge
strongly to Uin, then we would find qo > 0 and a subsequence {u’’’’"’’’"’’)} such
that the relation

, +(54) IluL/’ n",.") Umnll > 0 as n"

would be satisfied. Because the subsequence {ue’’’"’’’"’’)} is bounded in norm,
from it we can select a weakly convergent subsequence {u,("’a""""’")}, as in the
case of the subsequence {un’’"’’’’)} we could establish the strong convergence of
{u,’’’’an’’’’"’’’)} to ui,, and we would arrive at a contradiction. Theorem 5 is proved.
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Remark 7. The results obtained in Theorems 1 and 2 allow us to prove the
convergence of the difference approximations in optimal control problems when
the difference net is introduced not only on the t-axis but also in the phase space
of the coordinates x and in the space of the controls u; in particular, this leads
to the proof of the convergence of the discrete version of dynamic programming
for solving problem (1), (2)

On each axis xs, s 1, 2, ..., N, we introduce the net Ex, of nodes {X,k},
k 0, _+l, +2, _+_N,, where x,k,s <x,k,,s when -N.=<k’ <k"=<
s 1, 2, ..., N, n 0, 1,.... In the space EN EN(xl, xu) we define the
net Ex, as the metric product4 of the nets Ex,,, .s 1, 2, N; i.e., its nodes are
the endpoints of the vectors (1, ..., u) in which s coincides with some of
the nodes {x,}, Ikl =< N,,, s 1,--., n. Thus, the whole net Ex, contains
2N l-[N 1Nx, N-dimensional nodes, represented by the endpoints of the vectors
: (, 2x ,..., N).

The net Z, in EN will be called compatible with the net Et, on the t-axis,
to t,0 < < t,, T, if the following requirement is fulfilled. Let
T maxo_< --< Tni where

Tni tni+ tni, O, 1, ..., n 1,

while
Ax, max AXnk

1,...,N

then we require thatwhere Ax, x, + x,k,

(55) /Xx, o(,) ,o,(1),

where o,(1) 0 as n + .
We introduce, further, the operation of the "projection" of the vector

x (x 1, ..., xu) onto the net Zx,, whereby we associate with the vector
x (xl, xu) the vector (x) ((xl), (xU)), where (x) denotes
the node of the net Exs, closest to xs. If it happens that two nodes
are closest to x (i.e., they are equidistant from x, x x, x,+ x), then
we shall choose the "upper" one of them, i.e., x,k + 1. In the space E U(u1, ..., u)
we introduce, further, the difference net E,, (E,,,, ..., E,,,) such that

(56) Au, max (U,k+ U) O,(1)
1,o..,v

(here, for each of the nets E,, it is assumed that the inequality u,, < uk,, is fulfilled
for its nodes if k’ < k"). By , (ill, fi2, ..., fi) we denote vectors whose end-
points coincide with the nodes of the net

Let us replace problem (1’), (2’) by the problem of minimizing the functional
n-1

(57) J.((.), ln) Z g(ni, lni, tni)rni I- ((nn)
i=1

4 We shall assume that the net E. has been previously extended in such a way that the discrete
version of the dynamic programming process is satisfied.



30 B.M. BUDAK, E. M. BERKOVICH AND E. N. SOLOV’EVA

on the solutions of the modified Cauchy difference problem

(58) ni+ ni -- f(ni, ini, tni)Zni, O, 1, ..., n 1,

(59) ,,+ (ni+ 1, nO
corresponding to all possible admissible controls"

If we introduce the operation of the projection of the vector u. (u, u)
onto the net Eun, whereby we associate with the vector Un the vector

({u), -.., {u)), where {u) is the node of net Eun closest to u (or the "upper"
one of two equidistant closest ones), then by virtue of (56) we have

(60) lu.- (u.)[ =o.(1)0 as n + .
As u. ranges over B, (Br), then (u.) automatically ranges over E.. Br,
(Eu. Br). Therefore, in problem (58), (59) we can set fi (u.), interpreting it
as the problem of minimizing the functional

n-1

(61) Jn(, (Un)) g(ni, (Uni), tni)ni + (nn)
i=0

on the solutions of the modified Cauchy difference problem

(62) .i+ ki + f(.i, (u.,), t.,)z., 0, 1, ..-, n 1,

corresponding to all possible admissible controls

UnBK, (BK2).

Using the difference form of Gronwall’s lemma and conditions (55) and (60), we
find that when z. O(n-1), n + , we have

(64) I.i+a Xni+ II, I.i+X x.i+ t[ <- A. o.(1)[ea4tt"’+ 1-to) 1],

(65) lim J J*,

where x. is the solution of problem (1’), (2’), . is the solution of problem (58), (59),
k is the solution of problem (62), (63), while

(66) J inf J.(., (u.)) inf J.(., .).
u.B (Br2) ueZ.Br (EBK2)

If

(67) J J.(, *), where *

then, as above, it turns out that {u.* is the minimizing sequence for the functional
J(x(u), u).
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DISCRETE APPROXIMATIONS TO CONTINUOUS
OPTIMAL CONTROL PROBLEMS*

JANE CULLUM-

Abstract. It is demonstrated that if P is a continuous optimal control problem whose system of
differential equations is linear in the control and the state variables, and whose control and state
variable constraint sets are convex, a direct method of determining an optimal solution of P exists.
It is demonstrated that such a "continuous" problem can be replaced by a sequence offinite-dimensional,
"discrete" optimization problems in which the control and state variable constraints are treated
directly. The approximation obtained relates the respective optimal solutions.

1. Introduction. An optimal control problem P is continuous if it is represent-
able by a system of ordinary differential equations, an integral cost, and control
and state variable constraints. The standard method of solution 1], [2], 10], [11
consists of three steps. First, P is replaced by a sequence {Pk} of continuous
optimal control problems partially or completely unconstrained in the state.
These problems are obtained from P by introducing penalty functions [17]
corresponding to the intermediate and/or the terminal state constraints of P.
Second, heuristic reasoning is used to determine an integer K such that optimal
solutions ofPK are "close to optimal solutions ofP. Third, the two-pointboundary
value problem resulting from the application of the maximum principle to PK is
solved. (The control constraints are eliminated during the application of the
maximum principle.) A theoretical justification of this procedure for certain
continuous problems is given by Russell [17]. The consequences of the application
of this procedure to more general continuous optimal control problems are
discussed in [20].

The object of this paper is to demonstrate theoretically that if the differential
system of P is linear in the control and the state, P can be solved directly. It is not
necessary to introduce penalty functions or the maximum principle. The control
and state variable constraints in P can be treated directly; and the determination
of the solution of a two-point boundary value problem that involves discontinuous
functions and an unstable system of equations can be eliminated. In particular,
it is demonstrated that such a continuous problem can be "approximated" by a
sequence {Pm} of finite-dimensional, discrete, optimization problems. The
approximation obtained relates respective optimal solutions. The discrete opti-
mization problems can be solved by mathematical programming. The numerical
solution of the discrete approximations is considered in [19].

Received by the editors July 5, 1967, and in final revised form November 1, 1968.
? IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598. This work

was jointly sponsored by the Air Force Office of Scientific Research under Contract AF 49(638-1474)
and by IBM.

32



DISCRETE APPROXIMATIONS TO CONTINUOUS OPTIMAL CONTROL PROBLEMS 33

The idea of replacing an infinite-dimensional optimization problem by a
sequence of finite-dimensional optimization problems is very old [3]. Approxima-
tions of the type discussed in this paper have been successfully implemented by
Rosen [14], [15]. However, literature relating solutions of the associated finite-
dimensional problems to solutions of the original problem is limited. Generally,
it is merely assumed that a desirable relationship exists.

Before proceeding, it is necessary to state precisely the meaning of the phrase
"the sequence ofproblems {P,,} is an approximation to the problem P." Consider
the following properties:

(a) For large m, trajectories admissible for P,, exist.
(b) As m ---, , the optimal cost of P,, converges to the optimal cost of P,
(c) Any sequence of trajectories {Xm}, with x,, admissible for a corresponding

Pk(m), k(m)- as m- , and with costs convergent to the optimal
cost of P, "converges" to an optimal trajectory of P.

DEFINITION 1.1. If a sequence of problems {P,,} satisfies (a), (b) and (c) for
some problem P, then this sequence is said to be an approximation to P.

Two types of approximations are considered. The first is obtained by dis-
cretizing the solution formula for the system of differential equations associated
with P. The second is obtained by directly replacing the differential equations by
difference equations. In both cases, the cost is replaced by a simple summation.

It is proved that if the original system of linear differential equations is
completely controllable, and the cost function is convex, then the family of finite-
dimensional optimization problems generated by the introduction of either type
of discretization contains a sequence that approximates P.

2. Problem statement and notation. Throughout this paper, P will denote a
continuous optimal control problem of the following type.

System equations.

(2.1) =f(,u,t) a.e. on [0, tF];

System constraints:

u(t)eU(t) E a.e. on [0, tv]

(t) A(t) E", [0, tF],

(2.2) e [0, tF] [0, T] i0,

(0) Go - E",

2(tv)e G1 - E";

(2.3)

Objective: Minimize

C(u) f(5, u, t)dr.
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The control and the state variable constraint sets may vary with time, and the time
duration is not specified other than that it must be less than T. The corresponding
problem obtained by augmenting the differential system will also be denoted by
P, i.e., :t f(g, u, t), where f (fo, f). In most of the paper the unaugmented
problem will be under consideration, but the hats will be dropped to simplify the
notation. It is always assumed that the problem P being considered has an optimal
solution.

The following notation is used throughout the paper. E denotes m-dimen-
sional Euclidean space. Io denotes an open interval in E and io its closure. For
any set B

_
E and 6 > 0, U(B, 6) denotes the set {xld(x, B) <= 6}, where d(x, B)

denotes the Euclidean distance of x to B. Int B denotes the interior of B. A and U
denote the mappings A(t) and U(t) for [0, T]. (A, ,) and (U, 7) denote
the mappings t--. U(A(t),7) and t--. U(U(t),y) for t[0, T]. The set
{YIY f(2, u, t), u U(t)} is denoted by f(, U(t), t). l" l, II" IlL2 and II" Ilc denote,
respectively, the Euclidean norm, the Lebesgue norm and the norm of uniform
convergence on the appropriate spaces [6]. Finally, convergence in the strong and
weak L2-topologies is denoted by - and , respectively.

3. Approximations.
DEFINITION 3.1. For m 1, 2,... let t,, be a (k(m) + 1)-dimensional vector

with ,, (0, t, ..., tm)), and tJm _<-- t, j 1, "", k(m). For each m, let ft,, and
ft,,, respectively, be single-valued mappings of the sequences {0, t, ..., tm)} and

..., tm ]. For each m, define x,, to be{0, tm k")- } into E" and Er. Let lm [0, k(m)

the piecewise linear extension of ffm to im and Um to be the piecewise constant
extension of tim (taken to be right-continuous) to ira.

The sequence of triplets (ft,,, fi,,, tin), m 1, 2, ..-, is an approximation of
type (a) ((b) or (c)) to a pair of functions (Xo, Uo) defined on an interval io [0, T] if
as m o, I Io and Xm(t) Xo(t) for almost every Io (it is of type (a) and
u,, - Uo or it is of type (a) and /’/m - b/0)"

Example 3.1. Before proceeding, consider the following example [9]. The
discrete problems generated by discretizing, as indicated earlier, do not yield the
desired approximations. Define P as follows.

Equations"

sin 2rcu

(3.1) :t cos 2rtu x E3, u E

-1

Constraints"

(3.2) lul a, x(0) (0, 0, ), x(tf) (0, 0, 0);

Objective" Minimize the final time s.
Define Pro, m 1, 2, ..., as follows.
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Equations:

(3.3) x,,

(sin 2:Ukm)--lm1
2rm)

1
X COS

m

1

m

k =0,1,..., rn= 1,2,...;

(3.4)

Constraints:

k =0,1,..., m-- 1,2, .-.,

o (o, o, ), x (0, 0, 0);

Objective" For each m, minimize the final time k/m.
Clearly, the optimal cost for each m is 1. Set t,, (0, 1/m, ..., 1). Define tim

rn--1to be the natural mapping of {0, 1/m,..., (m 1)/m} onto {u,,, u,, }, where
kU,,=(--1)k1/4, k=0,1,...,m- 1, m=2,4,-...

Then the corresponding trajectory 2,, of P,, is the natural mapping of {0, 1/m, ...,
onto {x, x,}, where

(0, O, k/m) if k is even,
x,, {[.(1/m, O, k/m) if k is odd.

It is clear that each (2,,, ft,,) is an optimal pair for P,, m 2, 4, --., and the cor-
responding sequence {(.,,, fi,,, t,,)}]o is an approximation of type (a) to the function
Xo(t) (0, O, t) on [0, 1]. But, Xo is not even admissible for P. Observe that
the sequence {Pzm}] satisfies (a) and (b) in Definition 1.1.

Remarks. Intuitively, one would expect a discretization procedure to be
permissible if the original problem is well-posed. (Recall that a problem is well-
posed if small changes in the data yield problems that have optimal solutions that
are "close" to optimal solutions of the original problem.) Essentially, it is demon-
strated that any problem that was proved in [4] to be well-posed can be approxi-
mated by finite-dimensional optimization problems obtained by discretizing. The
results and proofs parallel the results and proofs in [4].

Theorem 3.1 states that if a problem P is "convex," any sequence of pairs,
composed of trajectories and controls admissible for discrete problems obtained
by directly replacing the differential equations of P by difference equations,
contains limit points;and any limit point is a pair admissible for P. In 4, for
linear problems it is proved that there exist subsequences of the discrete problems
for which admissible pairs exist and for which the corresponding sequence of
optimal costs converges to the optimal cost of P. These results obviously imply
that approximations in the sense of Definition 1.1, of the type desired, exist.
Recall that it is always assumed that P has an optimal solution.
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In Theorem 3.1, P is a fixed-time, continuous optimal control problem
defined by (2.1)-(2.3). The sequence {P,,}] is defined as follows"

Let ,, and a,,, m 1, 2, -.., be sequences of real numbers such that
and a,,+0. Define A,,(t)= U(A(t),m) and U,.(t)= U(O(t),a,,). Then P,,,
m 1, 2, ..., denotes the following problem.

Equations:

k + k f(x, t)
T

(3.5) x,. x,, u,,, --, k O, 1,..-, m;
m

Constraints:

(3.6)

Objective" Minimize the first component of x.
A trajectory of Pm and a control that generates this trajectory are denoted by

the pair (2m, ,,), where 2m (m) denotes the mapping of the sequence {0, tm, ..., T}
0 m-1({0, t, ..., tm-1}) onto the sequence {x,.--,x} ({u,--.,u }).

Allowances for relaxations in the control and state space constraints are
included in (3.6) because such enlargements may be necessary to insure reach-
ability.

Observe that the hypotheses in Theorem 3.1 coincide with the hypotheses of
the existence theorem given in [16]; in fact, the proof of Theorem 3.1 parallels
the proof in [16], and therefore is not given.

THeOreM 3.1. Let P satisfy thefollowing hypotheses:
(a) Given any compact sets U E and T E, there exists a function g

bounded on bounded sets and O(s) as s such that for all (, u, t)
(E" x U x T), f(2, u, t)l g(ll).

(b) f (fo, f) is continuous.
(c) For each t, the sets A(t) and U(t) are compact, and the set A(t) is convex.

The ppings U and A are continuous in the respective Hausdorff metric
topologies.

(d) Go and G are compact.
(e) For each (, t), the set f(2, U(t), t) is convex. (f(2, u, t) is linear in u and for

each t, U(t) is convex.)
Then any sequence {(fire, fi)} of pairs admissible for the corresponding problems
{Pm} contains a subsequence that is an approximation of type (a)(type (b)) to a
pair (Xo, Uo) admissiblefir P. Ifthe cost of(, fi) converges to the optimal cost ofP
as m , then (Xo, Uo) is an optil solution of P; moreover, if P has a unique
optil solution, then the original sequence is itself an approxition of the type
indicated.
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Remarks. Several comments that apply to the entire paper should be made.
First, the difference equation approximation chosen in Theorem 3.1 and used
throughout the paper is the simple explicit Cauchy-Euler formula [8]. Obviously,
more sophisticated schemes with better truncation errors and stability properties
could be used. The results obtained will be valid for most of these schemes. A
Cauchy-Euler scheme was chosen to simplify the notation and hence to simplify
the proofs.

Second, again to simplify notation, the sets A(t) were each assumed to be
compact. It is clear, since the function f is required to satisfy growth,and con-
tinuity conditions, that "compact" can be replaced by "closed" and the arguments
restricted to an appropriate compact sphere. Third, the subintervals used in the
discretizing are chosen to be of length T/m. It is clear that many other choices are
equally suitable.

Fourth, since Warga [18] has proved that there is a one-to-one correspon-
dence between free-time and fixed-time problems, and since this correspondence
preserves properties (a) and (e) in Theorem 3.1, no loss of generality results in
considering only fixed-time problems.

Fifth, since the time is fixed, and the length of the subintervals is T/m, the
triplet notation (fire, t,,, tin) has been shortened to (m, tim)"

The two lemmas needed to extend the proof in [16] to a proof of Theorem 3.1
are presented. The first lemma demonstrates that the points reachable by P and
P,,, m 1, 2,.-., in time T are uniformly bounded, jk,, denotes either the open,
closed, right-open and left-closed, or vice versa, interval with endpoints (k 1)T/m
and kT/m. If the type of interval being considered is significant, the type will be
stated explicitly.

LEMMA 3.1. Let S,, denote the set ofpoints reachable by Pro; then

(3.7) S,,, xx

IfGo is bounded and ifthere exists a function g bounded on bounded sets and O(s) as
s c such that

f(2, u, t)l _-< g(I)2[) for (, u, t)e A(t) t,Q Urn(t) [0, r
m=l

then the set Q)2= S,, is bounded.

Proof The argument is analogous to the argument in the continuous case
and is given in [5].

LEMMA 3.2. Let the sets U,,(t) and A,,(t), e io, m 1, 2,..., be convex and
satisfy the hypotheses in Theorem 3.1. Let there exist measurable functions {u,,}]
and continuous functions {x,,} such that for eJ, u,,(t)e U,,(t-x) and Xm(t)
e (convex hull {A,(t) w A,,(t)}), j 1,..., m and m 1, 2,.... If Um UO
(X,, - XO) on io, then (a) Uo(t) e g(t) (b) (Xo(t) e A(t)) a.e. on io.

Proof
(a) Given > 0 there exists a > 0 such that U(t’)c_ U(U(t), ,) whenever

It t’[ < a and t, t’eio. There exists M such that a,, < 7 and 1/m < a for all
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rn > M. Hence for m > M,j m, and almost every JJ+

u,,(t) 6 Urn(Pro) U(U(t), 2y).

But S {ulu measurable, u(t)6 U(U(t), ) a.e. on lo} is weakly closed. Hence,
Uo S for all y > 0. But [r’). o S S.

(b) It is clear that (b) follows from (a).

4. Convergence of costs. The discussion of the convergence of the costs is
restricted to problems with unaugmented systems that are linear in the state and
control variables.

4.1. Time-optimal control problems. First, consider a linear, time-optimal
control problem P. Since the proof of the convergence of the costs uses families
of solutions of the differential equations, it is not advantageous to convert P
into a nonlinear fixed-time problem. In this section the unaugmented formulation
is always used (the hats are omitted).

P is defined by (2.1)--(2.3) with

f(x, u, t) C(t)x + D(t)u,

(4.1) Go {Xo}, Ga {xv},
.fo(x, u, t) 1.

(4.2)

It is assumed that (if for each [0, T], U(t) and A(t) are convex, compact sets;
(ii) the mappings U and A are continuous in the respective Hausdorff metric
topologies; (iii) the matrix functions C and D belong to L(io).

Discrete problems generated by discretizing the solution formula are con-
sidered first. Let {y,,}] be a sequence of positive real numbers monotonically
decreasing to zero. For rn 1, 2, define Am(t) U(A(t), y,,) and Urn(t) U(t).
(An allowance for relaxation of the state space constraint sets is included to
insure reachability.)

Let X denote the matrix solution of ," C(t)X a.e. on [0, T] with X(0) 1.
Define/m, m 1, 2, ..., as follows.

Equations:
k+l k k k k kx,, x,, Emx,, + Fmu k O, 1,...

Constraints:
0 kF k k k k(4.3) Xm XO, X XF, U U,,,, x,,, A,,,, k O, 1,

Objective" Minimize the final time t’.
In (4.2)and (4.3),

Em (X*+ a(X*)-a I), Fm X +’ f X-
+

(4.4) Um U(t), A,. U(A(t), 7),

kTJ [t a, t], X X(t), t
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Remarks. First, it is clear that (in the sense that a maximum amount ofproblem
structure has been preserved) the sequence {P,,} represents an optimal dis-
cretization of the problem P. However, such a discretization requires complete
knowledge of the fundamental solution of the differential system associated with
P, knowledge which is not readily available if the system is nonautonomous.
Observe that if the sets U(t) do not depend on time, then {P,,} is essentially the
restriction of P to controls that are piecewise constant on successive subintervals
of equal length T/m. That is, if a control is admissible for Pro, then the piecewise
constant extension of it is admissible for P, the trajectory x,, of P generated by

k k 0, 1,-. and, in fact, thethis extension has the property that X,,(tk,.) X,,,
cost for this control is the same for both problems. Finally, observe that Theorem
3.1 is not directly applicable to the {Pm}]. It is applicable directly to the equivalent
fixed-time problem and its "direct" discretizations. However, the proof of the
extension is not difficult (see [5]).

THEOREM 4.1. The conclusions of Theorem 3.1 are validfor P and the sequence

Theorem 4.2 demonstrates the "continuity" of the optimal cost under
discrete perturbations. It demonstrates the existence of a sequence of finite-
dimensional optimization problems, each of which has admissible pairs and for
which the corresponding sequence of optimal costs converges to the optimal cost
of P as m --* o. Recall that it is always assumed that an optimal solution of P
exists.

THEOREM 4.2. Let P satisfy (2.1)-(2.3)and (4.1)and let P,,((A, Tm), U),
m l, 2, ..., denote the discrete optimal control problems defined in (4.2), (4.3)and
(4.4). Let t* denote the minimum time to reach XF. If

(a) the equations (4.1)are completely controllable [9],
(b) there exist and > 0 such that on It*, t* + e] there exists an admissible

control with

(4.5) inf d((t), 8U(t)) >__ 6 > 0
[t*,t* + ]

and

(4.6) A(t)xv + B(t)(t) 0 a.e.,

then there exists a sequence l(m)- as m such that the optimal cost of
t,,)((A, Ym), U) converges to the optimal cost ofP as rn .

Remark. The fundamental ideas in the proof have been used by Neustadt
[13] to derive this result for U(t) =_ (lul <-_ 1), A E" and XF 0. Observe that
if xv is an equilibrium point of the system A(t)x and 0 Int U(t) for all T,
as in [13], (4.6)is satisfied. Statement (4.6) guarantees that if XF is reachable in time
t*, then it is reachable in time t* 4- c for all small e. Inequality (4.5) and the con-
trollability are used to prove that xv is an interior point of the set of attainability
in time t* 4- e for small e. The fact that Xf is such an interior point permits the
desired discretization. Example 4.1 shows that if (4.6) is not satisfied, then the
required membership may not occur.
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Example 4.1. Let P be defined as follows"

1 =x2, ]ul <- 1, IXll =< 10, ]x21-< 10;

:t2 =u, Xo =(2,2) xv=(1, x//-) to =0;
Minimize the final time

Clearly, xv is reachable from Xo since both points are on the curve
--1/2(Y2)2 + 4 generated by u =- 1. Hence, an optimal time t* and pair (x*, u*)

exist [19]. Suppose there existed an admissible pair (, ) mapping Xo onto xv in
time t* + e. Clearly, i(t*) > x.*,(t*), 1, 2, and (t) cannot decrease to xv until
ff2(t) decreases to zero. Hence, e >= 2. Hence, xF is not reachable in time t* + e for
any e between 0 and 1.

Lemma 4.1 demonstrates the plausibility of replacing the family of functions
satisfying the control constraints by a subfamily of step functions of a particular
type. In Lemma 4.1, for k 1, ..., m the interval jk,, is right-open and left-
closed. J is closed. Recall that if U(t) =_ U, the discretization of the solution for-
mula corresponds to restricting the admissible controls to a certain family of
step functions.

LEMMA 4.1. Let 1o [0, 1]. Let U be a mappingfrom [0, 1] into the compact and
convex subsets of E that is continuous in the Hausdorff metric topology. For any

function Uo L2(/o) with Uo(t) U(t), -o, there exists a sequence of right-con-
tinuous step functions {Um}7 such that (i) um is constant on jk, k 1,..., m, (ii)
Um(tk,,) u(tk,,), k 0,"’, m 1, and (iii) u,, - Uo.

Proof Since U is continuous on [0, 1], for any e > 0 there exists y(e) > 0
such that It- t’l < ,(e) implies that U(t)_ U(U(t’), e). Furthermore, the sets

U(t), [0, 1], are uniformly bounded by some number K. First, prove that Uo
is approximable by a continuous function that approximately satisfies the control
constraints. By Luzin’s theorem, given e > 0 [12, p. 106] there exists a closed set

T(:)
_

[0, 1] such that Uo restricted to T(), denoted by uol T(e), is continuous and
/(T’()) < min (7(e), e/4K2), where T’(e) [-0, 1] T(e), and # denotes Lebesgue
measure. But T’(e) is open and hence is the countable union of pairwise disjoint
intervals 12, p. 48]. Therefore, the function Uol T(e) can be extended to a continuous
function q on [0, 1] by polygonal extension over each interval (at, b), j 1, 2, ...,
in T’(e). But, #(at, b)< (e); therefore, q(t) U(U(t), ) for all in lo. Clearly,
[{Uo q[{ -< 4KZ/(T’(:)) <

Next define u,(t) to be the unique point [6] in U(t) closest to qg(t). Then,
lug(t) qg(t)[ _<_ e for all t [0, 1].

By the continuity of tp, there exists an re(e) such that for m >= m() the oscil-
lation ofqg on Jkm k= 1,." m, is less than e. For tJ k= 1,.-. re(e),m(),

tk-Xdefine u,,t)(t) , ,,t) ). Then u,,t) Uo]] < 3.. This completes the proof.
The following lemma was used by Neustadt [13] without proof. A proof is

given because all of the ensuing arguments are based on this lemma.
LEMMA 4.2. IfS,’ {XlX Z] +

aixi, Z] +
ai 1, ai >= 0} is an n-dimensional

simplex and Yo is an interior point of 5, then there exist circles Ix xil < r such
that any set of vectors y, <__ <= n + 1, such that lY x] < ai generates an

n-simplex that contains Yo.
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Proof The simplex generated by the xi is nondegenerate. Therefore, the system
of n + equations in n + unknowns

n+l

Z ixJi O, j 1,..’, n,
(4.7) i=1

n+l

Z 2i 0
i=1

has the unique solution 2i 0, =< _< n + [7, p. 14]. Therefore, the matrix

X1 Xn+

is invertible. Since Yo is in the interior of the simplex, the i such that Yo ’_-+1 ixi
satisfy 0 < (X < 1.

Let S denote the unit sphere in E". Consider the matrix equation

Xn+l + 8Pn+

(4.8) A(e,p)

for any set of vectors p S, 1, ..., n + 1. Since A exists, there exists So > 0
such that [A(e,p)]-I exists for all s <:o and all p =(p,p:,...,p,+a)S"+1

(S S --. x S). The corresponding solution of (4.8)is

fl(s, P) [A(s, P)] Yl)
But, 0 < fli(0, p) < for all i. Hence, by the continuity of [A(e, p)]- at e 0,
which is uniform in p for p -: S"+, there exists go < :o such that 0 =< if(c, p) =<
for all e < go and all p S", =< =< n + 1. This completes the proof.

In the following discussion, f(a, K, L) (fm(a, K, L)) will denote the points ira
E" reachable in time a by trajectories and controls of P (Pro) with values at time
in K(t) and L(t), respectively (at time t in K(t) and L(tm)). Moreover, ff, will

denote a trajectory of P,,, and tim will denote a control that generates such a
trajectory, x,, will denote the piecewise linear extension of m and Um will denote
the piecewise constant (right-continuous) extension of m. X will denote the trajec-
tory of the original problem P generated by a control u.

ProofofTheorem 4.2. By hypothesis, there exist positive real numbers 6 and Co
and a measurable function 7 satisfying (4.5) and (4.6). Let y be given and let M
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be a bound for the sets U(t), e [0, T]. Then there exists :(7) < eo such that for
e It*, t* + ;(),)] and lul -< M + 1,

(4.9) X(t) X-1Du

It is proved that for : < :(), there exists a sphere containing xv such that every
point in this sphere is reachable from Xo in time t* + ; by a trajectory of P that at
time t, for [0, t* + :], is in the set U(A(t), ).

Let u(xv) denote a control that generates xv in time t*. Clearly, {u[ [u t(t)[
< 3}

_
U(t) for all It*, t* + :o]. Let S denote the unit sphere in E". From the

controllability hypothesis [4], there exists a scalar a such that for every p S there
exists a measurable function u, with [u,l <= 3/2 and

t* +
(4.10) X- Duv X- (t* + :)ap.

Using the fact that

f
t* +

(4.11) x.= X(t* + :)X-l(t*)[xe + X(t*)X-1Dft],

one easily obtains that

(4.12) XF + ap X(t* + :) Xo + X-1

where

3) u u(xv) on [0, t*),
(4.1

t+u, on [t*,t* +].

(Observe that a is a function of e and 3.) Fix m; then there exists : ;(7/2) < eo
such that xv Int f(t* + e, (A, y,,/2), U). There exists a simplex in this set with
vertices Qa, ..-, Q,+, containing xv in its interior. By Lemma 4.2, there exist
scalars r/ > 0, i= 1,..., n + 1, such that if IR- QI < r/, i= 1,-.., n + 1,
then xv is in the convex hull of the R.

Each point Q is generated by a control function u(i), admissible for P and
defined on the interval [0, t* + el. In Pt, t kT/l. Let tt R(l)T/1 denote the
largest multiple of T/l that is less than or equal to t* + ;. By Lemma 4.1 (if t* + e

is not an integral multiple of T/l, then slight modifications in the argument are
required), there exist sequences of step functions u(i,l), i= 1, ..., n + 1,

1, 2,... such that for each fixed and l, u(i, l) is right-continuous, constant
on the intervals J, k 1, ..., R(l) + 1, and satisfies the control constraints in P
at each time t’, k 1, ..., R(l) + 1, and for each i, the sequence of restrictions of
the u(i, l) to the interval [0, t* + e] converges in the strong L2-topology to u(i).

It is clear that there exists an H such that

IX(T)I z IX-’D[ 2 =< H.
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Furthermore, there exists l(m) such that for > l(m) and 1, ..., n + 1,

(4.14) Ix(i, t* + e) x(i, tt)l < 1/2r/i
and

(4.15) Hllu(i, l) u(i)ll 2L: < min (1/27,,, 1/2r/i).

(Recall that x(i) and x(i, l) denote, respectively, the trajectories of P generated by
u(i) and u(i, 1).) Therefore, from (4.14) and (4.15), for el0, t* + el, _< =< n +
and > l(m),

Ix(i, I, t) x(i, t)l =< 1/2])m,
(4.16)

Ix(i, l, tl) 0il < F/i.

Let fi(i, l) (fi(i)) denote the natural projection of u(i, 1) (u(i)) onto the sequence
{0, t,..., tlml)-}, and (i, 1) ((i)) denote the trajectory of Pt generated by (i, 1)
((i)) with the initial value x0.

Let RI, 1, ..., n + 1, denote the value of the trajectory .(i, 1) at R(1)T/I.
But, by construction, for 1, ..., n + 1, x(i, 1, t) RI. Therefore, for >_ l(m),
the points x(i, 1, re), <_ <= n + 1, are in the set of attainability of/31((A, m), U)
in time But this set is convex so from Lemma 4.2, x is also in this set. Therefore,
the optimal cost of the problem/31((A, ’m), U) is less than or equal to t* + 2 for
l_> l(m).

Hence, there exists a sequence of integers l(m) -+ as m -+ such that the
limit superior of the sequence of optimal costs of the corresponding problems
Pl<m)((A, /m), U) is less than or equal to t*.

Observe that if A E, l(m) m.
Suppose there exists a sequence of integers l(m) --+ as m such that the

limit inferior of the sequenoe of optimal costs of the corresponding problems
Plm)((A, /m), U) is less than t*. Then there exists a subsequence of triplets
(lm),Olm),[lm)), admissible for /5,0((A, ,,), U), m 1,2, ..., such that the
terminal times m)’l<m)) -- < t*. <m) is a mapping of the sequence

[l(m) {0, tam
onto a sequence {xo, X(m a’l(m)"k(l(m))’" (Without loss of generality the subsequence
has been denoted by l(m).) Recall that for each m. X,m) and Ulm) denote, respectively.
the piecewise linear and piecewise constant (right-continuous)extensions of

2m) and fil..) to the interval [0. ,k,m))q By construction, the trajectory oftl(m)

generated by ll(m), is such that for k 0, 1, k(l(m)), Xl(m)(tlk(m))-- Xl(m).k Con-
sider the restrictions of the functions U,m) to the interval [0, ]. (It may be necessary
for some m to extend u,,,) to this interval.) The sequence of restrictions and ex-

tensions is sequentially compact in the weak L2-topology. Therefore, there exists
a Uo s Lz and a subsequence (without loss of generality denoted by l(m)) such
that {b//(m)} converges weakly to Uo. It is clear from the linearity that the corres-
ponding sequence of trajectories of P, {x,,,}, converges pointwise on [0, ] to
the trajectory Xo of P generated by Uo. By Lemma 3.2, Xo and Uo are admissible
for P. Hence, xv is reachable in time [.
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THEOREM 4.3. Theorem 4.2 is valid with m replaced by the direct discretization
P" defined in (3.5) and (3.6),/f the following uniform condition is satisfied"

Let io [0, T] be given. Let {u’} ] be any sequence offunctions piecewise con-
stant on successive intervals of equal length Tim and satisfying Ur(tk,,) U,,(t) jbr
k O, 1,..., m 1. Let fi" denote the natural projection of u" onto the sequence
{0, tl, t- 1}. Then ifx" denotes the piecewise linear extension ofthe trajectory

" ofP" generated by ’, and x" denotes the trajectory ofP generated by u" and all
the trajectories have the same initial value, IIx"

Proof of Theorem 4.3. The proof parallels the proof of Theorem 4.2. As in
the proof of Theorem 4.2, given /" there exists an e < eo and an open sphere
containing XF such that every point in this sphere is reachable from Xo in time
t* + e by a trajectory of P that at time for 6 [0, t* + e] is in the set U(A(t), 7,,/4).

Hence, xF Int fl(t* + , (A, 7"/4), U) and there exists a simplex in this set
with vertices Q1, "", Q,+I, containing XF in its interior. By Lemma 4.2, there
exist scalars rli > 0, 1,-.-, n + 1, such that [Ri- Qi[ < r/i, =< __< n + 1,
implies that XF is in the convex hull of the

As in the proof of Theorem 4.2, there exists an l(m) such that for [0, t* + el,
1, .--, n + and/> l(m),

[x(i, 1, t) x(i, t)l
(4.17)

Ix(i, l, tl) Qil < 1/2rli,

where tt denotes the largest multiple of T/I smaller than or equal to t* + e, and
x(i) and x(i, l), i= 1,..., n + and l= 1, 2,..., denote the trajectories of P
corresponding to the controls u(i) that generate the vertices Qi of the simplex
and the controls u(i, l) that approximate u(i) that were obtained in Lemma 4.1.

By hypothesis, there exists an integer l*(m) >= l(m) such that for all > l*(m),
i-- 1,...,n+ 1,

(4.18) IIx(i, l)- x(i, l) c < min(1/4r/i, 1/47m).

Hence, for i= 1,..., n + and 1> l*(m), Ix(i,l, tl)- Qil < rli. Therefore, by
Lemma 4.2, XF fl(tl, (A, 7m), U) for >_ l*(m) and therefore, the optimal cost of
PI((A, 7m), U) is less than or equal to t which is less than or equal to t* + 2e.

Hence, there exists a sequence of integers l(m) as rn - such that the
limit superior of the sequence of optimal costs of the corresponding problems
PI<’)((A, 7m), U) is less than or equal to t*. (Observe that if A E", l(m) m.)

Conversely, suppose there exists a sequence of integers l(m)
such that the limit inferior of the sequence of optimal costs of the corresponding
problems Pltm)((A, 7m), U) is less than t*. Therefore, as in the proof of Theorem 4.2,
there exists a sequence of triplets (tm), ltm), ttm)), rn 1, 2, -.., admissible for
the corresponding problems Pltm)((A, 7m), U) and with costs convergent to < t*.
As before, a control Uo, admissible for P, is obtained such that if Xo denotes the
trajectory of P generated by Uo, then {xtl’)} ] converges pointwise on the interval
[0,] to Xo. But by hypothesis, IIXm- Xmllc O. Hence {x’)}] converges
pointwise to Xo on [0, ], and by Lemma 3.2, Xo is admissible.
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Remarks. The hypothesis of uniformity required in Theorem 4.3 is satisfied
if P is autonomous. The proof is straightforward and given in [6].

Theorems 3.1 through 4.3 demonstrate that any "continuous" linear time-
optimal control problem whose system of differential equations is completely
controllable, whose terminal state trajectory value is an equilibrium point of the
differential equations (in the sense described earlier) and that has an optimal
solution, can be approximated, in the sense of Definition 1.1, by sequences of
finite-dimensional optimization problems obtained by discretizing the solution
formula of the system of differential equations or by replacing the differential
equations directly by a system of difference equations.

4.2. Linear problems with convex costs. In this section linear fixed-time
problems with weakly sequentially lower semicontinuous costs are considered. The
results parallel the results in 4.1.

In the following discussion (C L2)(/0) denotes the space of all pairs of
functions (x, u) defined on io with x belonging to the n-fold product of the space
of all real-valued continuous functions defined on Io with itself, and u belonging to
the r-fold product of the space of all real-valued L2-functions defined on lo with
itself. (C )(1o) denotes that subset of (C L2)(io) with u . In the following
discussion, U denotes the subset of L2 consisting of those functions u with u(t) U(t)
for a.e. e I0, T], and those step functions with range in .)tto,T U(t).

Let Pro(Am, Urn), m 1, 2, ..., denote the family of discrete optimal control
problems defined in (4.2) and (4.3) with the cost function of time replaced by the
simple summation

m-1

k, t,,)T/m(4.19) Cm(m) f(x, um
k=O

and with A (A, 7m) and Um (U, am) for some sequences Ym $ 0 and a,, + 0
asm T

TUEORE 4.4. Let P be a fixed-time continuous optil control problem defined
by (2.1), (2.2)and (4.1) with C(u)= f(x,u,t)dt. If the system of differential
equations is completely controllable, and the cost is convex and continuous on
(C x )(o), then there exist sequences l(m), k(m) as m such that the
optimal cost of the problem (A,,, U() converges to the optimal cost of P as

Rerks. The hypotheses on the cost imply that the cost is weakly sequentially
lower semicontinuous on the subset (C x U)(o) (see [4]). Simple examples of
admissible costs are the expenditures of fuel and energy.

Let S(, K, L) (S(, K, L)) denote the set of points reachable in time T by
trajectories and controls of P () with values at time e [0, T] in K(t) and L(t),
respectively (at time t in K(t)and L(t,)), and costs less than or equal to .

The notation , ,,, x, Xm, Um has the same meaning as in 4.1.
Proof of Theorem 4.4. It is clear that for a given time interval [0, T] and an

initial point x, trajectories of 2 C(t)x + D(t)u are Lipschitz continuous on
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any set of uniformly bounded measurable functions. Therefore, there exists a K
such that for any two functions u and u2 in and the corresponding trajectories
xl and x2 of P that they generate, Ix1 x21lc =< Kllu u211L2. Therefore, given
: > 0 there exists 6(e) > 0 such that Ilul u211.2 < 6() with u and u2 in U implies
that

(4.20) IC(u)- C(u2)l < ;.

Let/* denote the optimal cost of P and (x0, Uo) denote an optimal pair. Since
the cost is convex, and each of the sets A(t) and U(t) is convex, for each 7,/, a the
set S(/, (A,),), (U, a))is convex.

The proof is very similar to the proof of Theorem 4.2. Fix m; then there exists
6,, > 0 such that for every e [0, T] and 6 < fro,

(4.21) IX(t) X-1D6I < 1/2)m"

By the controllability hypothesis, for each 6, there exists an a(6) > 0 such that for
every p in the unit sphere S of E", there exists a function up with lup(t)l =< 6 for every
e [0, T] and

(4.22) a()p X(T) X- Dup

Since o-, 0 there exists a l(m) such that (, < min (6m, 6(C)). Hence, there exists
an open sphere that is contained in S(* + e, (A, 7m/2), (U, (,)) and contains xe.
That is, if p S and y (x + a((,)p), then there exists a control up with
lup(t)l <-_ , for e [0, T] such that if u(y) Uo + up,

y X(T) X -Du(y)

and IC(uo)- C(u(y))l < ,.
Therefore, there exists a simplex containing x in its interior and contained

in S(* + :, (A, ?,,/2), (U, O’,m)) with vertices Q, ..., Q+ 1. By Lemma 4.2, there
exist scalars r/ > 0, 1, ..., n + 1, such that IRi Qil < i for all implies that
x is in the convex hull of the R. Each Q is generated by a control u(i) such that

(4.23) u(i, t)e g(u(t), ,) a.e. in [0, T].

By Lemma 4.1, for each 1, ..., n + there exist sequences of piecewise
constant (right-continuous) functions u(i, l), l= 1, 2,..., such that for each i,
the sequence {u(i,/)} - u(i), and for each and and a.e. e [0, r], u(i, l, t)
e U(U(t), ,,). Therefore, there exists kl(m) such that for all > k(m) and
l<_i__<n+l,

(4.24) Ilu(i, l) u(i)llL < min (Tm/2K, tli/2K, al(m)).

Recall that x(i, l) and x(i), respectively, denote the trajectory of P generated by
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u(i, 1)and u(i). Then for 1,.-., n + and > kl(m),

x(i, 1)- x(i)llc < 1/2’m,

(4.25) Ix(i, l, T)- Q,I <

C(u(i, 1))- C(u(i))l <

Let (i, l)((i)) denote the natural projection of u(i, l) (u(i)) onto the sequence
{0, tt, ..., tff(/)-l}, and i(i,l)(i(i)) denote the trajectory of P generated by
fi(i, l)(fi(i))with the initial value x0.

Let 2(i, l) denote the piecewise constant (right-continuous) extension of
if(i, l) to [0, T]. Since trajectories of P and Pl, 1, 2, ..., are uniformly bounded,
for i<_n+ 1, 2(i, 1)-x(i,l) c0 as l. Therefore, since the cost is
continuous, there exists k(m) >_ k(m)such that for > k(m),

(4.26) fl(t(i, 1)) C(u(i, 1))1 <

Let RI, 1, ..., n + 1, denote the terminal value of the trajectory if(i, l)
of P generated by fi(i, l). But, for 1, ..., n + and >_ k(m), x(i, l, T)
Therefore, for >= k(m),

and

RI e S(fl* + 3:, (A, Ym), (U,

(4.27)

Hence, by Lemma 4.2, xe is in the convex hull of the points l’k(m) < < n +
But, the set Sk(m)(fi* + 3e,, (A, ,,,), (U, a(m))) is convex, so xe is also in this set.

Hence, there exist sequences of integers l(m) and k(m) --. oe as m oe such
that the limit superior of the sequence of optimal costs of the corresponding prob-
lems k(m)((A, m), (U, rl(m))) is less than or equal to fl*.

Conversely, suppose there exists a sequence of integers l(m) as m
and sequences of scalars ])m , 0 and am $ 0, such that the limit inferior of the
sequence of optimal costs of the corresponding problems PI(m)((A, }m), (U, am))
is less than fl*. Denote l(m) and all subsequences of l(m) by m for simplicity of
notation. As in the proof of Theorem 4.2, there exists a sequence of pairs (-m, fi,,)
(pairs can be used since the time is fixed), m 1, 2, ..., admissible for the corres-
ponding problems Pm((A, m), (U, a,,,)) and with costs convergent to fl < fl*, that
is an approximation of type (b) to a pair (Xo, Uo) admissible for P. All that is neces-
sary is to prove that the cost of Uo is ft.

Since the cost is weakly sequentially lower semicontinuous on (C x U)([0, T]),
{Um} Uo, and {X,m} 7 converges uniformly to Xo (see [6, pp. 268-269]),

(4.28) (Xo, Uo, t) <_ lim inf f(xm, u, t).

But, Xm mllC O, and fo is uniformly continuous on any compact subset of
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E" E [0, T], so

tm)T/m fO(Xm Urn, t) O.(4.29) lim f(Xm, Urn,

Therefore,

(4.30) C(uo) <-lim inf C,,(fi,,)=/ </*,

which is a contradiction.
THEOREM 4.5. Theorem 4.4 is valid with ,, replaced by the direct discretization

Pm used in Theorem 3.1, if the hypothesis of Theorem 4.3 is satisfied.
Proof of Theorem 4.5. The proof parallels the proof of Theorem 4.4, with

additions analogous to those made in obtaining the proof of Theorem 4.3 from the
proof of Theorem 4.2.

5. Summary. It has been proved theoretically that certain "continuous"
linear optimal control problems can be replaced by sequences of finite-dimen-
sional "discrete" optimal control problems. These "discrete" problems can be
solved by mathematical programming techniques, and the solutions obtained
approximate optimal solutions of the original problem. The implementation of
these results is discussed in [19].

Acknowledgments. The author wishes to express her appreciation to C. D.
Cullum for instigating this investigation and to the reviewers who made many
helpful suggestions.
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THE DECOUPLING OF MULTIVARIABLE SYSTEMS
BY STATE FEEDBACK*

ELMER G. GILBERT,"

1. Introduction. The objective of this paper is to develop a comprehensive
theory for the decoupling of multivariable systems by state feedback. We begin
by giving a preliminary formulation of the decoupling problem, discussing certain
aspects of its solution, reviewing previous research, and indicating the contribu-
tions of this paper.

Consider the linear dynamical system with input u, output y, and state x"

dx
Ax + Bu(t),

dt
(1.1)

y(t) Cx.

Here is time, u(t) and y(t) are real m-vectors, x is a real n-vector, and A, B and C
are real, constant matrices of appropriate size. Often one is interested in applying
feedback control in order to implement certain control objectives. For example,
one might use the control law u ;’FY + CV, where v(t), a real m-vector, is the
input to the closed-loop system and ’F and 5t are linear operators. With suitable
assumptions on initial conditions this leads to y #cV, where c is a linear
operator which represents the closed-loop system. A common control objective
is to "decouple" the closed-loop system by making c be diagonal, i.e., causing
y %v, 1, ..., m, where Yi and v are respectively the ith components of y
and v. Early efforts in this direction relied on transfer-function descriptions for
F and 5 and were characterized by a lack of rigor and of solid results. In this
paper we consider control laws of the form originally proposed by Morgan [1]"

(1.2) u(t) Fx + Gv(t),

where F and G are real, constant matrices of appropriate size. This control law
(state feedback) admits a precise problem formulation and is of real interest in
applications.

The desire to decouple raises four questions" (a) Is decoupling possible?
(b) What is the class of control laws which decouple? (c) What is the class of de-
coupled closed-loop systems? (d) What is the correspondence between elements
of the classes mentioned in (b) and (c)? These four questions constitute the de-
coupling problem as it is treated in this paper.

Partial answers to the decoupling problem have been obtained. Morgan [1]
gave a sufficient condition for decoupling (CB nonsingular) and under this con-
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dition defined a rather restrictive class of control laws which decouple. These
results were extended somewhat by Rekasius [2]. More recently Falb and Wolovich
[3] gave necessary and sufficient conditions for decoupling, thus answering
question (a). They also described a (restricted) class ofcontrol laws which decouple,
which subsumes the classes introduced in [1] and [2]. Still more recently they
obtained necessary and sufficient conditions on F and G for decoupling [4].
While this answers question (b), their conditions are in a cumbersome algebraic
form which makes them difficult to apply when n is large. For several simple
examples they have also characterized the class of decoupled closed-loop systems.

This paper extends the results outlined above to obtain more or less complete
answers to questions (a), (b), (c) and (d). In addition the method of attack makes
clearer the general nature of the decoupling problem and should lead to the
solution of other interesting problems in nonlinear control and optimal control.

The paper is organized as follows. In 2 we introduce notation, give a precise
problem formulation, and state some important formulas. In 3 it is shown that
certain closed-loop-system properties are invariant with respect to F. These
invariants lead naturally to necessary conditions for decoupling and an important
matrix discovered by Falb and Wolovich [3]. The general approach to the de-
coupling problem is to treat an equivalent problem of simple structure. The re-
quired equivalence is introduced in 4, along with the notion of an integrator
decoupled system. The material in 3 and 4 yields an alternate proofofa theorem
of Falb and Wolovich, which appears in 5. Section 6 establishes a canonical form
for integrator-decoupled systems which is the key to the main results, which are
summarized in the theorems of 7. In 8 we discuss briefly the significance of the
main results.

2. Problem formulation and basic formulas. Matrices, which we generally
denote by capital letters, have real elements unless explicit dependence on the
complex variable s is indicated. The notation A will denote a partitioning
of the matrix A into matrices or elements. We use In for the n n identity matrix,
Ei for the ith row of In, and 0 for the number zero or any null matrix.

An m-input, m-output, n-th order system S is the triple {A, B, C}, where A, B, C
are respectively matrices of size n n, n m, m n. Although it is not really
essential, we shall assume as is usual in the literature that m _< n. The transfer
function of S is

(2.1) n(s) C(l,s- A)-’B.
Clearly H(s) is an m x tn rational matrix in the complex variable s. If s is interpreted
as the Laplace transform variable, the relation of H(s) to the Laplace transform
solution of (1.1) is obvious.

In a similar way we introduce notation appropriate to the description of the
closed-loop system arising from (1.2). A control law is the pair {F, G}, where the
matrices F, G are respectively m x n, m x m. We say S(F, G)= {A + BF, BG, C}
is the system S with the control law {F, G}. The transfer function of S(F, G) is

(2.2) U(s, F, G)= C(l,s- A BF)-’BG.
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DEFINITION 1. The system S(F, G) is decoupled if H(-, F, G) is diagonal and
nonsingular.

This definition of decoupling is equivalent to the one given by Falb and
Wolovich. By using it we give precise meaning to the questions raised in 1.

The following formulas and notation are basic to our subsequent develop-
ments. By extending the well-known expansion for (I,s A)- x, cf. [5, pp. 82-85],
to (l.s A BF)-, we have

(2.3) H(s, F, G) q(s, F)- ’(CBs"- + CR,(F)Bs"-2 + + CRn- (F)B)G,

where

(2.4)

(2.5)

q(s, F) s q l(F)s"-’ q,(F) det (I,,s A BF),

Ro(F) I,,, Ri(F) (a + BF)Ri_,(F) qi(F)ln, 1,’", n 1.

Alternatively (2.5) may be replaced by

Ro(F) I,,,

Rx(F) (A + BF) q(F)I,,,

(2.6) R2(F) (A + BF)2- ql(F)(A + BF)- q2(F)l,,,

R,_ (V) (A + BF)"-1 q(F)(a + BF)"-2 q,_ (F)I,.

We adapt the above formulas to S by writing H(s)= H(s, O, Ira) and using the
notations q(s) q(s, 0), qi qi(O), R Ri(O).

Occasionally it will be necessary to work with several systems concurrently,
say S and S. In these cases the notation developed above is extended in the obvious
way, e.g., g/(s, F) det (l,s A BF).

3. F-invariants. In this section we study properties of S(F, G) which are not
affected by changes in F.

DEFINITION 2. An F-invariant of S is any property of S(F, G) which for any
fixed G does not depend on F.

Denote the ith row of H(., F, G) by Hi(., F, G) and define the integer di(F, G)
and the 1 m row matrix Oi(F, G) as follows" if Hi(., F, G) O, di(F, G) n 1
and Di(F, G)- 0; if H (.,F, G)4: O, di(F, G) is the integer j such that
lims_ s+ Hi(s, F, G) is nonzero and finite and Oi(F, G) lims_ s+ Hi(s, F, G).
From (2.3) it is clear that 0 _< di(F, G) <_ n 1.

PROPOSITION 1. For 1, ..., m, di(F, G) and Di(F, G) are F-invariants of S.
In particular" Di(F, G)- DiG and, for G nonsingular, di(F, G)- di, where
di di(O, Ira) and Di Di(O, Ira).

Proof Let Ci be the ith row of C. From (2.3) and (2.6) with F 0, G Ira,
it follows that

(3.1) D CiAd’B
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and

;0, CiB O,
(3.2) di

j, CiB O,

where j is the largest integer from {1,-.., n- 1} such that CiAB 0 for
k =0,1,...,j- 1. Then by (2.6), CR(F)B 0, k =0,1,-..,di- and
CR,(F)B Di. From this the proposition is true by (2.3).

In engineering terms Proposition says that certain "high frequency" gain
properties ofthe closed-loop system are F-invariants. Falb and Wolovich introduce

d and D (which they call B’) via (3.1) and (3.2). However, they do not bring up
the notion of invariance or attach physical meaning to these quantities. For future
use we form the m m matrix

D
(3.3) D= .’-

D

The general question of F-invariants will not be developed here, although
additional invariants are known. For instance, it is possible to prove the following.

PROPOSITION 2. Let h(s) q(s) det H(s). Then h(s) is a polynomial in s ofdegree
not greater than n rn and

h(s, F, G) q(s, F) det H(s, F, G) h(s) det G.

4. Integrator decoupled systems and control law equivalence. The key to
the solution of the decoupling problem is a canonical representation of integrator
decoupled systems. In this section integrator decoupled systems are defined and
it is shown how they are related to the decoupling problem.

DEFINITION 3. S {A, B, C} is integrator decoupled (ID) if D F, where 1-" is
diagonal and nonsingular, and CiAa‘ + O, 1,..., m.

Denote the diagonal elements of F by ]: 1, "’", ]:,,. Then we have the following
result.

PROPOSITION 3. If S is ID, then H(. is diagonal and has diagonal elements

hi(s ]:iS-a,-1, 1,’’’, m.

Proof Write

(4.1) Hi(s q(s)- l(CiBsn- ft. CiR1Bs.- 2 + at CIR,_ 1B).

Application of CiAa’B Di 7iEi, CiAkB 0 for k # di and (2.6) with F 0
then gives

(4.2) Hi(s) q(s)- l(sn- 1-di qls"-2-a, q,,_ l_di)]:iEi"

Now from the Cayley-Hamilton theorem CiA"+JB qlCiA"+J-IB
-q,CiAJB 0, where j is any nonnegative integer. Taking j 0 and using
CiAkB 0, we see that k # d and CiAa’B # 0 imply q.-a, 0. Similarly, by
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Stakingj 1,-..,di, we have q,-a,+l, q, 0. Thus q(s) s" ql

q,-a,- sa’ + and by (4.2) the proof is complete.
By Proposition 3 the transfer properties of an ID system are such that the ith

output is the (di + 1)-fold integral of the ith input. This justifies the terminology,
integrator decoupled. The example

i:
0 01 I1 01 I: 1A= 0 0 B= 0 0 C= 0

0
0 0 0

shows that the converse of Proposition 3 is not true.
To establish the connection between ID systems and the decoupling problem

we introduce the following definition.
DEHNITION 4. S-= {A, B, C} and , {/, , C} are control law equivalent

(CLE) if a one-to-one correspondence between F, G} and {iv, C,} can be established
such that, for this correspondence, H(., F, G) H(., F, G).

Remark 1. If the decoupling problem has been solved for S, it has been solved
for S.

Remark 2. Control law equivalence is transitive, i.e., if S and S are CLE and
S and S are CLE, then S and S are CLE.

PROPOSITION 4. Consider the system S {A, B, C}, where D is nonsingular.
Let A* denote the m n matrix

C1Aa’+ 11(4.3) A*

CmAd,,, + lJ
Then the systems S and S(-D-1A*, D-1) are CLE. Furthermore is ID and
ai di, Di El for 1, -.-, m.

Proof The one-to-one correspondence between {F, G} and {F, },
DF + A*= F and DG G, proves the CLE property since then A + BF
A + BF, BG BG and C C. The last part of the proposition follows by

direct calculation of ai, Ci3a’+l and Oi.

5. Necessary and sufficient conditions for decoupling. From the results of
3 and 4 we obtain by different means the theorem of Falb and Wolovich [3].

THEOREM 1. S can be decoupled if and only if D is nonsingular. If {F, G} de-
couples S(F, G), G D- 1A, where the m x m matrix A is diagonal and nonsingular.

Proof If H(., F, G) is decoupled, then Hi(., F, G) hi(., F, G)Ei, where
hi(., F, G) - 0. This together with Proposition 1 implies DiG 2iEi, 1, ..., m.
The numbers 21, ..., 2m are all nonzero. Suppose to the contrary. Then for some i,

DiG 0. But if H(., F, G) is to be nonsingular, G must be nonsingular. This
implies D 0 and di n- 1, and from (3.1), (3.2), (2.6) and (2.3) we obtain
Hi(.,F, G)= 0, which contradicts the nonsingularity of H(.,F,G). From
DiG 2iEi, )i :/: O, 1,..., m, we have DG A diag(21, ..., 2m), A non-
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singular, which proves the necessary conditions. Sufficiency follows from Pro-
positions 3 and 4 and the control law {-D-1A*,D-}.

Falb and Wolovich [3] prove Theorem by manipulating some rather
involved algebraic expressions. Besides being simpler, our proof has the advantage
that it makes clear that the necessary conditions have their origin in the F-invariants
of Proposition 1. The matrix A* was used also by Falb and Wolovich in their
sufficiency proof.

Since the nonsingularity of D plays such an important role in the decoupling
problem, it deserves some special comment. It is easy to see that det H(. ---0
implies det D 0. In this case we say S has strong inherent coupling and it is
obvious that no control law can effect decoupling. If det D # 0, we say S has no
inherent coupling. If det D 0 and det H(.) 4: 0, we say S has weak inherent
coupling. Systems which have weak inherent coupling cannot be decoupled by
state feedback, but other control laws can achieve decoupling. We shall not pursue
this issue in depth here, but the following indicates one path which can be taken.

The system S {A, B, C},
0 0 0 0 0

1 0 0 0 0 0 [1 011A= B= C-- D=
0 0 0 0 0 0 0 0

0 0 ,0 0

has weak inherent coupling because det H(. :/: 0. We now form a new system
{,/, (} which is related to S in the following way"

A= U= C=[C 0],

where A, B, K, K2 are respectively n, n m, m m, m matrices. may

be interpreted as the dynamical system (state I], input (t)) arising from

the interconnection of (1.1) and
dff

A + B(t),
dt

(5.1)
u(t) Ka(t) + K2"Y.

Thus (5.1) acts as a precompensator for (1.1). If we choose h and

[0], =[0 1], gt _1 -1 K

it is easily verified that has no inherent coupling /= Ilo-1 .Ingeneral

it is always possible to precompensate a system S which has weak inherent coupling
so as to obtain a system with no inherent coupling. The development which
shows this is tedious but straightforward.
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6. Canonically decoupled systems. If in (1.1) we change the coordinate
system by writing Tx, where T is a nonsingular matrix, we obtain a new
system $ {, B, C} {TAT-1, TB, CT-1}. This motivates what follows.

DEFINITION 5. S and are similar if there exists a nonsingular n n matrix
T such that TA AT, TB B and C CT.

Remark 3. If S and S are similar, q(-) ?/(. and H(. H(. ). Thus D D
and di di, 1,..., m. Furthermore if S is ID, S is ID.

Remark 4. Similar systems are CLE. This is a consequence of the correspond-
enceF=FTandG G.

When S and S satisfy the conditions in Definition 5 we shall use the termino-
logy that Tcarries S into S.

For a canonically decoupled system (to be defined shortly) the decoupling
problem has a particularly simple form. The main result of this section (Theorem 2)
is to show that every ID system is similar to a canonically decoupled system. By
Remarks 2 and 4 and Proposition 4, this means that if S can be decoupled
(det D : 0) it is possible to find a canonically decoupled system which is CLE to S.
Thus by Remark the treatment of the decoupling problem for S is simplified.

DEFINITION 6. S {A,B, C} is canonically decoupled (CD)if the following
conditions are satisfied"

(i) The matrices A, B and C have the partitioned form"

o o oA1 0

0 A2 0

0 0 0

A A A
_0 0 0

bi
0

B

0

_0

Cl 0

0 c2C=

0 0

where Pi => di + 1, i-- 1,-..

0

b2

,m.

0

0

0

0

0

A A is Pi X Pi,

A is Pm+l Pi,

A7 is Pi Pro+ 2,

bi is Pi 1,

b is Pm+l 1,

ci is p,

"islCi Pm + 2,
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(ii) For/= 1,... m the matrices Ai, bi and c have the partitioned form"

0 Yi is ri x (di + 1),

i is r ri,
Yi ()i

0

bi i

;i[
i2

iri
_l

c,=[ 0 0],
where r Pi di.

(iii) For i= 1,..-,m the Pi column matrices bi, Ab,...,AV’-bi are
linearly independent.

(iv) Let p =p. If p,,+ :/= 0 and the n-row
is such that rlv+,’", rlv+v are not all zero, then the row matrix function
rl(1,s A)- B has at least two nonzero elements.

To proceed we need some additional notation and terminology. Let
denote the n-dimensional space of n element row matrices. For i= 1,.-., m
define

(6.1) i {rllri;rlAJBk =0 for k 1,...,m, k 4 and j=0,-..,n- 1},
where Bi is the ith column of B. According to accepted practice we say S A,B, C}
is controllable if the nm columns AJBk,j 0,..., n 1, k 1,..., m, span the
n-dimensional linear space of n columns.

LEMMA 1. Assume S {A, B, C} is ID and controllable. Thenfor 1, ., m
the following conditions are satisfied"

(i) .i is a row invariant subspace ofA, i.e., rl fffi implies rlA
(ii) 2i 2j {0} forj 1,..., m,j 4: i;
(iii) Ci, CiA, CAd’ are linearly independent elements of2i.
Proof To prove (i) we need only to show that r/ 2i implies rlA"B 0 for

k 1, ..., m, k- i. But this follows from the Cayley-Hamilton theorem
A(A"= q +... + q,1,) and the definition of 2. Assume r/ 2j for

4: j. Then from the definition of 2i and j it is apparent that rlAJBk 0 for
j 0,..., n- 1, k 1,..., m. By the controllability of S this implies q--0
and (ii) is true. From (3.1) and Definition 3, CiAn’=/: 0 and CiAa’+k= 0 for
k 1, 2, Now assume DoCi nt- p 1CiA + + Dd,CiAd’ 0, where Po, ,
are scalars. Postmultiply this equation by An‘ and obtain poCiAd’= 0 which
implies Po--0. By multiplying by successively lower powers of A we obtain
Po,t)x,’", tn =0, which implies Ci, ..., CiAd’ are linearly independent.
From (3.1) and Definition 3 it follows that CiAJB 0 for j >__ O, j =/: di and
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CiACI’B TiEi These conditions show that CiA .i, where j is any nonnegative
integer Thus (iii) is proved.

Because of Lemma 1 there exists a linear space 22,, / 22 such that the direct
sum 221 222 22,,/ 22. We adopt the notation

(6.2) Pi =dim22i, 1,.-.,m+ 1, P Pi.
i=1

Clearly Pro+x--n--p is uniquely defined by S although 22m+1 is not (unless
Pm+l 0). Moreover from part (iii) of Lemma it is clear that Pi >_- di + I,

1, ..., m. Now we can state the following lemma.
LEMMA 2. Assume S {A, B, C} is ID, controllable, and Pm+l

and write rl _n_+ll i, where ie 22ifor 1,..., m + 1. lf m+ O, then there
exist at least two integersfrom the set 1, ..., m}, say q and r, such that qAgBq 0
for at least onej {0,..., n 1} and qAJBr 4: O for at least onej {0,..., n 1).

Proof If qAJBk 0 for all j 0,..-, n and k 1, ..., m, the control-
lability of S would imply r/ 0. Thus there is at least one integer from 1, ..., m},
say q, such that rlAJBq :/: 0 for all j 0, ..., n 1. If q were the only such integer
then r/e 22q. But this would imply ,,+ 0 and thus the lemma is proved.

PROPOSITION 5. Assume S is ID and controllable. Then S is similar to a CD
system S, where )i Pi, 1,’’", m + 1 and ,,+ 2 O.

Proof We use the results of Lemmas and 2 and in Definition 6 replace S
by S. First we form the matrix

(6.3) Q =:

LQ+,j
where the rows of the Pi n matrix Qi are a basis for 22i" Because of the definition
of Q1, "’", Q,, + 1, the rows of Q, which we denote by q’, -.-, q,*, are a basis for 22.
If we define A by AQ QA, the elements of the ith row of are the components
of q’{A with respect to the basis q], ..., q,*. Using this and part (i) of Lemma 1,
we see that A has the structure of Definition 6, part (i). To be more specific define

Ci

(6.4) Qi

CiA

CiAcl

where q*,,..., q, are any rows which extend Ci, CiA,... CiAct’ to form a basis
for 22. This, together with CgAd’+l --0, gives 2g the structure of Definition 6,
part (ii). Moreover, d and/i Pi.
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Now define B QB. Using (6.3), (6.4), and the definition of i gives B the
structure of Definition 6, part (i). The further structure indicated in part (ii)
follows from (6.4) and the fact that CiAa’Bi 7i. Define C-" by C ’Q. Then
(6.3) and (6.4) give C the structure of Definition 6, parts (i) and (ii).

From the foregoing it is obvious that Q carries S into S. It remains to show that
parts (iii) and (iv) of Definition 6 are true for S. Suppose that (iii) is not true. Then
from the form of 2 and B indicated in (i), the columns JBk,j 0,’’’, n 1,
k 1, m, do not span the n-dimensional column space. Because 2JBk QAJBk
this implies S is not controllable. This contradiction proves that (iii) holds for S.
To prove that satisfies part (iv) of Definition 6 we note that

7(l,,s A)- B gl(lns )- 1B,

where r/ F/Q. By the definition of Q, r/satisfies the condition ,,
+ 0 (see Lemma

2 for notation) if and only if Flp+ 1, "’", fl, are not all zero. Thus we need only to
show that rl(I,s A)- 1B has at least two nonzero elements if ,,+ :# 0. Using

rl(l,,s A)- 1B q(s)(s"- ltlB + sn-2rlR1Bk + + fiR,,_ 1Bk),

we easily see that if rlAJBk =/: 0 for at least one j e {0,-.-, n- 1}, then
rl(l,,s- A)-1B s O. Since the kth element of rl(l,s- A)-iB is rl(l,s- A)-IB,,
Lemma 2 gives the desired result.

Proposition 5 requires S to be controllable. To remove this restriction we
need the following lemma.

LEMMA 3. For the n-th order system S {A, B, C} let nc dina cg, where
is the subspace spanned by the mn columns AJBk,j 0,..., n 1, k 1,..-, m.
Then S is similar to rS , , }, where

(i)

A
A

B B is nc x m,

C=[C C"], Cism x n,

(ii) S= {A, B, C} is controllable,

(iii) if S is ID, S is ID and F F.

A is nc x nc,
A" is nc x (n- n),
AUis(n- n) x (n- nc),

C" is rn x (n n),

Proof Parts (i) and (ii) are well known [6], [7] and may be established by
taking the first nc columns of a nonsingular matrix L to be a basis for oK. Then
T1 L-1 carries S into ,. Part (iii) follows from Remark 3 and direct calculation
of (ia’/ and I-’iTai+ in terms ofAc, B and C.

The steps required to construct a CD representation of an ID system can now
be summarized. Let S be an nth order ID system. Apply Lemma 3 obtaining c
and thence a matrix T1 which carries S into . Since S is ID and controllable,
Proposition 5 is applicable with S taking the role of S in Proposition 5. The matrix
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Q which appears in the proof of Proposition 5 will in this case be nc no. Define
/m + 2 1’/ nc and

Z2

Then direct calculation shows that T2 carries S into the CD system S, where
/3i dim, 1,..-, m + 1. Thus TT carries S into and we have a con-
structive proof of the promised result.

THEOREM 2. Every ID system is similar to a CD system.

7. Principal results. In this section we characterize the solution of the de-
coupling problem for CD systems and then by means of Theorem 2 extend these
results to general systems.

THEOREM 3. If S is CD, the control law {F, G} decouples S ifand only if

01 0 0 0 0 OUl

F= 0 02 0 0 00U2

o o o Om 0 0",,

where Oi is Pi and 07 is Pro+ 2, and

G diag(21, 2m), 2i : O, i= 1,...,m.

Proof Sufficiency follows by substitution which shows H(., F, G) is diagonal.
In fact, the ith diagonal element of H(s, F, G) is given by

(7.1) hi(s F, G) ci(lpis A biOi)- biTi/],i"

The necessity of G diag (21, ..., 2m) and 2i 0 is an obvious consequence of
Theorem 1. To prove the necessity of the condition on F we write

(7.2) H(s, F, G) H(s)(lm -F(I,s A)- ’B)- G,

an identity which is derived by straightforward manipulation of the two obvious
identities: (l,s A)- 1(1, BF(I,s A)- 1)- 1B (l,s A BF)- 1B and
(I,- BF(l,s- A)-1)B B(lm- F(1,s- A)-1B). Since H(. is diagonal, (7.2)
implies F(1,s- A)-1B must be diagonal if S(F, G) is to be decoupled. By par-
titioning F into rows and using Definition 6, this leads to the required conditions
on F.

THEOREM 4. Assume S is CD and the control law {F, G} has theform indicated
in Theorem 3. Then:

Oi(S)Ti/i
(i) hi(s F, G) 1,..., m,

Ji(S, O’i)

where zi(s) sr’ Oil Sri- Oir and

[li(S, O’i) sPi O’il spi- (ipi, O" O’ipi a/l];
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(ii) i(s) det (lr,s
(iii) 0 (0" T(,i)Vi, where V is a Pi x Pi nonsingular matrix which depends

only on Ai and hi, and the x Pi matrix ni 0... 0 ir,
(iv) q(s, F) cz,+ (s),,+ 2(s) Fl i(s, ai) where i(s) det (Ip.s Ai)i=1

i=m+ 1, m + 2.
Proof. From (7.1) it is apparent that hi(., F, G) may be interpreted as the

transfer function of the system Si(Oi,/i), where S {Ai, hi, ci}. Since S is a con-
trollable single-input, single-output system, the theory developed by Bass and
others (see, e.g., Morgan [8], [9) may be applied. We summarize this theory in the
following lemma.

LEMMA 4. Assume S {A,b,c} is single-input, single-output, order n and
controllable. Then the transferfunction of S(O, 2) has theform

o(s)
H(s, O, )

O(s, )

where co(s) is a polynomial of degree n or less and gg(s, a) s" as"
-a. Let a [a,,... a, n [q... qx and define tke matrix K [1 k,,,
where the columns lq R,,_ ib, 1, ..., n. Then K is nonsingular and OK a n.

Except for the form of (s), application of Lemma 4 to S proves part (i) of the
theorem. From the form of Ai it is clear that qi(s)- det (IpA-
det (Ir,s i) Sd’+ lZi(S) sP’ eilS

p’-
(XiriSpi-ri, where we have used

the notation of (ii). Letting Vi correspond to K-1 of Lemma 4 verifies (iii). The
remaining part of (i) follows by noting that

hii(s, O, 1) (1)i(s)O l(s, 0) (oi(s)(sdi- li(s))- is-di- 1.

Part (iv) is obtained by observing that l,s A BF W(s) can be written

W [wlx W12
0 W22J

where W22--lp aS- Am+ 2. Thus q(s,F,G)= det Wll det W22. Finally, W
is quasi-triangular and is easily expanded to give

det WI1 det (lp.,+,s A,,+ 2) [I Oi(s, ai).
i=1

THEOREM 5. Assume S {A,B, C} can be decoupled. If {F, G} decouples S,
the diagonal elements of H(., F, G) have the form given in part (i) of Theorem 4
where the integers Pi and ri and the polynomials i(s) are uniquely determined by S,
and 7i 1, i= 1,..., m. Furthermore, q(s, F) has the form given in part (iv) of
Theorem 4, where 5,,+ (s) and era+ 2(S) are polynomials of degree p,,+ and p,,+ 2

uniquely determined by S. The class ofcontrol laws which decouple S can be charac-
terized by G and F , where f# is an m-dimensional linear space and is a

(im=i Pi + mpm+z)-dimensional linear manifold. More specifically, there exist

matrices Gi, J],’", jip,, i= 1,..., m, and an (mpm+z)-dimensional linear space
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which are uniquely determined by S, such that

(7.3) G 2G,
i=1

Pi

(7.4) F -D-1A* nt- Z ((7ik- 7Cik)Jik -1- F",
i-lk=l

where F" e ,", rcik= ik, k 1, ri, and rti O, k r + 1, Pi.
Proof The form of H(-, F, G) follows immediately from the CLE property

between S and a CD system (Proposition 4 and Theorem 2) and Theorem 4.
The one-to-one control law correspondence associated with this CLE property
yields

(7.5) G D- A,

and

A diag(21, 2,,),

0 0 0 0 0 0]
/

(7.6) F U-

0 0 0 0

where T and T2 are the nonsingular matrices which arise in the proof of Theorem
2. Results (7.3) and (7.4) are a direct consequence of (7.5) and (7.6), Theorem 3
and Theorem 4. Substitution of(7.6)into det (1,s A BF)leads to the expression
for q(s, F).

8. Discussion. Theorem 5 establishes all the data needed for the design of
a decoupled multivariable system. The class of decoupled systems is given and
convenient formulas for computing F and G for an arbitrarily specified decoupled
system within the class exist. The general approach for obtaining the data for these
formulas (Pi, ri, %, rtij, A*, D, Gi, J) should be clear from the foregoing develop-
ments. But for nontrivial cases of S, hand calculations are not practical. For this
reason a computer program is now being written. Given A, B and C, it will generate
all the necessary data. This program, along with some example applications, will
be reported in a subsequent paper.

It is also possible to determine stability and decide when decoupling by
output feedback [4] is possible. We say the system S(F, G) is stable if q(s, F) is
Hurwitz, i.e., all roots of q(s, F) 0 have negative real parts. Clearly the design
ofa stable decoupled system is impossible if either ,, + l(s) or ,, + 2(s) is not Hurwitz.
If both ,,+ (s) and am+ 2(s) are Hurwitz, S(F, G) can be made stable by appropriate
choice of al, ..., a,,. Using the design formulas of Falb and Wolovich 3], we see
that the stability question is more critical. It can be shown that these formulas
lead to

2i
i= 1,--.,m.hi(s F, G)

sdi + .31_ mi 1Sdi ._ 1_ mi(d + 1)
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Thus S(F, G) can be stable if and only if the 0i(s), 1,..., m + 2, are Hurwitz.
We say S is decoupled by output feedback if there exists a pair of m x m

matrices {K, G} such that S(KC, G) is decoupled. The motivation for decoupling
by output feedback is clear since it corresponds to replacing (1.2) by

u(t) Iy(t) +
If K, G} is to output decouple S, KC must have the form of F in Theorem 5. This
means it may not be possible to output decouple S even if D is nonsingular. If
{K, G} output decouples S, linear constraint equations on al,-.., a,, may be
imposed. The details of the analysis which gives these results are straightforward
and are therefore omitted.

Still other questions arise: what is the effect of parameter variations and
disturbance inputs, what should be done if D is singular or ,,+ l(s) and m+ 2(S)
are not Hurwitz, can dynamic estimators of x be used to supply x when only y is
available, how are constraints on control effort imposed, what happens when (1.2)
is replaced by a sampled-data version, what form does the theory take if S is time
varying, can the ai be chosen by solving an optimization problem for S, what is
the effect of using nonlinear feedback on the system S. Some of these questions
will be explored in later papers.

9. Acknowledgments. The author thanks P. L. Falb and W. A. Wolovich
for the opportunity to inspect early drafts of their papers. Many interesting
numerical examples of multivariable systems were supplied by B. S. Morgan.
These helped develop insight which lead to the main results.
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CERTAIN RELATIONS BETWEEN THE
BELLMAN AND KROTOV FUNCTIONS

FOR DYNAMIC PROGRAMMING PROBLEMS*

I. V. GIRSANOV-

Abstract. Every Krotov function in some dynamic programming problem is identical with a

Bellman function in another problem with the same conditions and with a return function of a less

"sharp" optimum. The Bellman function is the envelope of a set of Krotov functions.

Let {v,} {Yt, u,}, 0 <= T, be a controllable sequence in which the phase
coordinates y, and the control ut are connected by the relations

(1) Yt+l f(t, y,, ut), 0,..., T- 1,

under the constraints

(2) vte V (or ut U,(yt), Yt e Yt).

{v, s < r < t} of the sequence a segment of the admissibleWe call the part vs
trajectory from s to t, and when s 0 and T, simply the admissible trajectory.
We denote the class of all admissible trajectories by V. Let

G GI(v’s) f y, u) f u).

We call an admissible trajectory 5S 1-optimal if

I() <= I(vS)
for any admissible trajectory. The phase coordinate y is called attainable at the
instant if Yt Y for some v VS. We denote the set of all points attainable at
the instant by the symbol

The Bellman equation yields necessary and sufficient conditions for the
optimality of S. To formulate these conditions we define the extended set of
admissible trajectories, retaining all of requirements (1) and (2) except Yo e Yo.
Correspondingly, we introduce the concept of extended attainable sets ft. For
y e ft we set

B(t, y) min l(vt B(T + 1, y) O.
yt=y
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Then

t(3) max [B(t, y) B(t + 1, f(t, y, u)) f (, y, u)] 0
U(y)

and every admissible trajectory v’, connected with the function B(t, y) by (3), is
optimal.

We note right away that every segment vf of an admissible trajectory, which
satisfies the Bellman equation on the time interval It, T], minimizes I(vf). Thus,
we have obtained the optimal trajectories for an entire class of minimum problems.

To verify the optimality of an individual trajectory , we can replace (3) by
a less stringent system of relations.

THEOREM 1. Let be an admissible trajectory, let

U(v’) f(a, v)

and let the function f(a, v) be such that, for all admissible v,
(4) U(vS)- I() <__ l(v)- I(fi0T).

Let f satisfy the Bellman equation with the functions f" instead off. Then, is
I-optimal.

The proof of the theorem follows in an obvious manner from the fact that, as a solution of the Bellman equation, minimizes U(v), and that by virtue of
(4) there holds the relation

iO(v)_ io() >_ U(v)- U(f)o") >= O.

The restriction (4) is most essential. It is satisfied, for example, for those f"
for which

(5) f(t, y, u) f(t, Yt, ,) <= f (, Y, u) f(t, y,, fftt)

on Vto
It turns out that in this case the function qS(, y)= -B(t, y) satisfies the

sufficient optimality condition introduced by V. F. Krotov [1], [2]. He has proved
that for the optimality of the trajectory fit (Yt, fit) it is sufficient that when
0 T- 1, for some (t,y),

(t + 1, y,+ x) (t, Yt) f (, Yt, fit) max [(t + 1,f(t, y, u))
y, Vt

(6) (t, y) f (, y, u)]

TO(T, YT) + f YT, W) min (T, y) + fO(T, y, u)
y, VT

By virtue of (3), on

0 >= dp(t + 1, f(t, Yt, ut)) dp(t, Yt) f(t, Yt, ut),

0 (t + 1, f(t, Yt, ut)) dp(t, Yt) f(t, ft,
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whence, taking (5) into account, we get

tdp(t + 1, f(t, ,, ,)) dp(t, ,) f (, ,, ftt)
_>_ qb(t + 1, f(t, Yt, ut)) qb(t, Yt) f(t, Y,, ut),

which, together with qS(T + 1, y) 0, are equivalent to Krotov’s conditions [1].
It is easy to show that the converse is also true, i.e., that the Krotov function

(t, y) of the original problem can be obtained as the Bellman function of the
problem of minimizing U(vS), where

f(t, y, u) f (, y, u) + sup (t + 1, f(t, y, u)) (t, y) f(t, y, u)]
Vt(u)

To establish a more precise relation we note that by adding a certain function
,(t) to f’(t, v) we can make the left-hand side of (6) vanish and consider that

(7) (T + 1, y) 0.

The transformed function will be called the normalized Krotov function.
THEOREM 2. The norlized Krotov function (t, y) coincides (up to sign)

with the Bellman function -B(t, y) at all points of the optimal trajectory and
satisfies on Y the relations

(8) ( + , y,+ ) (t, ,) f (, ,, ,) 0,

(9) max (t + 1, y,+ ) (t, y,) f(t, y,, u,) < O,
u6Ut()

(0) (t, y) (t, y).

Proof Relations (8) and (9) follow from the definition of the normalized
Krotov function, and from (7) and (8) it ensues that

B(t, y,) -(t, y,) and f’(t, , ,) f(t, , ).

Hence it is easy to derive (6) from (5).
Remark 1. The class of normalized and ordinary Krotov functions form a

convex closed set. Furthermore, the lower bound of any set of Krotov functions
is once again a Krotov function.

Remark 2. Relations (8) and (9) show that the class of normalized Krotov
functions relative to the original problem is given by a system of inequalities
which become equalities along the extremals. The Bellman function with a minus
sign is in the lower envelope of this class, which suggests the possibility of finding
Krotov functions with good differential properties even when the corresponding
Bellman function is poorly behaved (has breaks, discontinuities). Using standard
techniques, we find it is not difficult to replace the optimal trajectory v by a
minimizing sequence v").

The results presented above can be generalized in a natural way to the case
of continuous time for the systems of the form

dYt f(t, y,, u,)
dt



CERTAIN RELATIONS BETWEEN THE BELLMAN AND KROTOV FUNCTIONS 67

and for the functional

bo(Yo) + f(t, y,, ut) dt + dp(yr).

An analysis of Krotov’s sufficient conditions [2] shows that the system of
differential inequalities derived from them is a weakening of the Bellman equation
for the original problem. Its solution, after certain normalizations, coincides with
the Bellman function of the auxiliary problem.
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APPLICATION OF A RESOLVENT IDENTITY TO

A LINEAR SMOOTHING PROBLEM*

THOMAS KAILATHf

Abstract. By using a result of Siegert 3], we derive a new identity for the "resolvent" ofa covariance
function. This identity is used to obtain a simple relation between the "smoothed" and "filtered"
linear least-squares estimates of a signal process in additive uncorrelated white noise.

1. A resolvent identity. Let R(t, s), t, s I (R) L be a symmetric, continuous
function on I (R) I, where I is a finite interval on the real line, say I [0, T]. Then
the resolvent of R(t, s) is defined (see, e.g., Riesz-Nagy 1] and Smithies [2]) as the
function H(t, s; u, T) that is the solution of the integral equation

(1) H(t,s;u, T) + u R(t,r)H(r,s;u, T)dr R(t,s), 0 <_ t,s <= T,

where u is a complex number. The solution H(t, s; u, T) will clearly be symmetric
and continuous in (t, s) over I (R) I, and it will be unique [1], [2] whenever -u-x
is not an eigenvalue of R(t, s).

The resolvent plays an important role in the Fredholm theory of integral
equations and consequently also in several applied problems. In one such applica-
tion, Siegert [3] derived and exploited some specia! formulas involving the resol-
vent. In the present one, we shall use one of Siegert’s identities to obtain a new
identity which we shall apply to a (so-called smoothing) problem in linear least-
squares estimation.

The identity of Siegert is [3, Equation (59)]

(2)

(t, s; u, T) -uH(t, T; u, T)H(s, T; u, T)

-uH(T, t; u, T)H(T, s; u, T).

We shall use it to show thatif0__<t<s=< Tor0=<s<t T, then

(3) H(t, s; u, T) H(t, s; u, t) + H(s, t; u, s) u H(r, t; u, r)H(r, s; u, r) dr,
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" Stanford Electronics Laboratories, Stanford University, Stanford, California 94305. This work
was supported by the Applied Mathematics Division of the Air Force Office of Scientific Research
under Contract AF 49(638)1517 and by the Joint Services Electronics Program at Stanford University.
Some of this work was also done as a consultant to the Jet Propulsion Laboratories, Pasadena,
California.

This identity was also derived by Bellman [4], also by M. G. Krein [10], for symmetric and
nonsymmetric R(t, s).
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where it is assumed that

H(t, s; u, r) 0 for or s > r.

The operator form of (3) is often convenient. Let Hu denote the (integral) operator
on I (R) I with kernel H(t, s; u, T), let h, denote the (integral) operator with kernel
H(t, s;u, t) and let h,* denote the (integral) operator with kernel H(s, t;u, t). Then
(because H(t, s; u, t) 0 for s > t), h, and h,* are Volterra operators that are also
adjoints of each other. In this operator notation we can rewrite (3) as

(3a) H, h + h*. uh.h,

We now give the simple proof of (3) (and also (2)), but these can be omitted
without loss of continuity.

Proof of (3). To prove (3) from (2), we shall define

N(t, s; u, T) & H(t, s; u, t) + H(s, t; u, s)

u H(r, t; u, r)H(r, s; u, r) dr H(t, s; u, T)

and show that N(t, s;u, T) =_ 0. First note that

ON
(t, s u, T) -uH(T, t" u, T)H( T, s u, T) H(t, s u, T)aT

0 by (3).

Therefore N has the same value for all T. But for < s T, we see that

N(t, s;u, T) 0 + H(T, t;u, T) 0 H(t, T; u, T)

O,

by the symmetry in (t, s) of H(t, s" u, T). Therefore N(t, s; u, T) must be identically
zero for all 0 __< < s =< T, and by a similar arrangement, for all 0 =< s < =< T.
This establishes (3).

Proofof(2). For ease of reference, we include a proof of (2). First we differen-
tiate the defining relation (1) with respect to T to get

OH
(t, s" u, T) uR(t, T)H(T, s" u, T) + u R(t, r)-(r, s" u, T) dr.

Suppose now that

OH--(t, s;u, T)= -uH(t, T, u, r)H(s, T; u, T) + g(t, s; u, r).
c3T

Substituting this expression into the previous equation and using (1) again we get

g(t, s; u, T) + u fR(t, r)g(r, s; u, T) dr O,
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which is similar to (1) with the right-hand side set equal to zero. Therefore, when-
ever (1) has a unique solution (i.e., -u -1 is not an eigenvalue of R(t,s)) we must
have

g(t, s u, T) =_ O,

which proves that cH/OT must be as in (2).

(4)

2. Application to the smoothing problem. We shall apply the identity (3) to
the following problem:

We are given observations

y(t) z(t) + v(t), t I [0, T],

where z(t) is a signal process with (E denotes expectation)

e(z(t)) O, e(z(t)z(s)) R(t, s)

(a square-integrable function on 1 (R) I) and v(t) is a white noise process with

W(v(t)) o, E(v(O(s)) (t s)

and such that

E(v(t)z(s)) O, t, s I (R) I.

The problem is to find an estimate (tl T) of z(t) that satisfies

E([z(t)- (tlT)] 2) minimum

and

(tlT) a linear functional of {y(:), 0 _< r =< T}.

The quantity (tl T) is often called a smoothed (or noncausal) estimate of z(t) in
contrast to the filtered (or causal) estimate (tlt) which, as implied by the notation,
is defined as

(tlt) (tlT), T t,

the linear functional of {y(), 0 __< : __< T}
that minimizes E[z(t) $(t]t)]2).

The filtering problem has been widely studied and solutions have been obtained
in various forms. Recursive methods of calculating (tlt) by Kalman-Bucy filters
have been given special attention. However, recursive solutions of the smoothing
problem have generally been considered to be harder to obtain. In this paper
we shall show that there is a simple relation between the smoothed and filtered
estimates, viz.,

(5) 2(tiT) (tlt)+ fT h*(t, s)(y(s) 2(sis)) ds,

where h*(t, s) the impulse response of the adjoint of the optimum causal filter.
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If

(6)

then

(tlt) h(t, s)y(s) ds,

h*(t, s) h(s, t).

Since h(s, t) is zero for > s, h*(t, s) is zero for s < (which is consistent with the
limits of integration in (5)).

The relation (5) shows that the solution to the smoothing problem is com-
pletely determined by the solution to the filtering problem. If a recursive solution
is available for the filtering problem, then (5) immediately yields one for the
smoothing problem. In this way (cf. [5], [6]) we have easily derived all previous
smoothing formulas.

It is also worth noting that formula (5) for (tlb) is in a form that can readily
accommodate an increase in the interval of observation:if e > b,

(tlc) (tlb) + h*(t, s)(y(s) Pc(sis)) ds.

Proof of (5). We shall first show that

(7) (t[ T) H(t, r; 1, T)y(r) dr

and consequently that

(8) (tlt) H(t, s; 1, t)y(s) ds,

where H(t, s; 1, T) is the + 1-resolvent of R(t, s), the covariance function of z.
(We note that since R(t, s) is a covariance function, -u-1 1 is not an eigen-
value of R(t, s) and therefore the resolvent H(t, s;1, T) is uniquely defined.) Then
(5) will be a consequence of the relation

(9) H(t, s; 1, T) H(t, s; 1, t) + H(s, t; 1, s) H(r, t; 1, r)H(r, s; 1, r) dr

and the definition (6) of an adjoint filter. The relation (9) follows from the resolvent
identity (3) with u 1.

To prove (7), the projection theorem for linear least-squares estimates gives

(10) E(z(t)y(s)) =- E((tlT)y(s)), 0 <__ s <= T.

But by plugging in (7) and using (4), we obtain

(11) R(t, s) H(t, s; 1, T) + 1 H(t, r; 1, T)R(r, s) dr, 0 <__ t, s <__ T.

But this is just (1) with u 1. Therefore, (10) is satisfied and (7) is proven.



72 THOMAS KAILATH

Some previous work. Formula (5) can, with certain additional arguments, be
inferred from some work by Schweppe [7] on a different problem. For the special
case of "lumped" processes z(t), i.e., processes obtained by passing white noise
through a (possibly time-variant) lumped linear dynamical system, formula (5)
was obtained, in a different and more laborious way, by Kwakernaak [8] and
Fraser [9]. We might remark that (recursive) smoothing solutions have generally
been considered more difficult to obtain than (recursive) filtering solutions (cf. the
reference and discussion in [8]-.[93). Finally, we note that (5) has been derived in
a different way, by use of the concept of an "innovation" process, in Kailath and
Frost [5], [6], where further discussion of the smoothing problem, including
formulas for the mean-square error, various differential equations for (tlT),
some generalizations, and additional references, can be found. The innovations
method [6] shows that the assumption (4) of E(n(t)z(s))=_ 0 can be relaxed to
E(n(t)z(s)) 0 for s < t, provided h*(t, s) in (5) is not taken, as in (6), as the adjoint
of the causal filter, but is defined by h*(t, s) E((tlt)g(sls)), the covariance function
of the causal error (tlt) z(t) (tlt). In other words, we have

(12)

where

(13)

T

(tl T) (tlt) + E((tlt)(sls)) v(s) ds,

v( y( e(

is known [5] as the "innovation process" of y(. ).

3. Concluding remarks. The author obtained the special case (9) of the
resolvent identity (2). Dr. L. A. Shepp of the Bell Telephone Laboratories, Murray
Hill, New Jersey, provided the version (2) and gave the proof appearing in 1,
which was slightly different from the author’s original proof.2 It may be of interest
here to briefly sketch how the author was led to first conjecture (not prove)
relation (9).

Consider the equation (in the notation of 2)

(14) y(t) z(t) + v(t)

(15) (tlt) + (tlt) + v(t)-- (tlt) + v(t),

say. Then it can be shown [5] that if z(. and v(. are normal, then so is v(. ), and
that in fact v(-) has the same statistics as v(. ), i.e.,

e(v(t)v(s)) F(v(t)v(s)).

Moreover since (tlt) is a functional part of {y(s), s < t}, it can be regarded as
(conditionally) known, given {y(s), s < t}. These two facts suggest that the process
y(-) can be regarded in two ways, corresponding to (14) and (15). According to
(14), y(.) is zero-mean Gaussian with covariance function R(t,s)+ 6(t- s);

2However, it is easy to obtain (2) from (9): replace h by uh,, H by uHu and R by uR. Then the
resolvent equation (11) goes into (1) and the identity (9) goes into (3).
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according to (15), y(. is Gaussian with mean-value function (tlt) and covariance
6(t s), Therefore (of course, very heuristically), in an obvious operator notation
(with by) we can write the "density" of y(. as

k.exp (-1/2<y, (I + R)- y) k.exp (-1/2(y hy)’I(y hy)),

and by matching the terms in y, we get

(16) (I + R) -1 (I- h)’(I- h).

But then if H is the smoothing filter, it is given (cf. (11)) by

(17) H R(I + R)-1 I- (I + R) -1 h + h’(I- h),

which is the relation (9). It might be of some interest to obtain a rigorous version
of this heuristic argument.

The discrete-parameter case. When 0, 1, 2, ..., N, we define

(18) v(k) y(k)- (klk- 1);

and it turns out [5] that v(. is normal but (unlike the continuous-time case) now
it has a variance different from that of v(. ), viz.,

(19) E(v(k)v(1)) [E(v2(k)) + E(22(klk- 1))] 6kZ.
Then the analogue of (16) will be somewhat more complicated and we do not

obtain the simple relation (17) between the smoothing filter H and the causal
filter h. However, we may note that, as in the continuous-time case, the innova-
tions method [5]-[6] yields a simple formula

N E((klk- 1)(lll- 1))v(1)"(20) (klN) (k[k)+ E(v2(1))k+l

Finally we might mention that all our results can be readily extended to the
vector case. We have also recently found that the basic identity (3) can be used
to obtain some sufficient conditions for the so-called "covariance-factorization"
problem. These results will be described elsewhere.
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OPTIMAL REGULATION OF
NONLINEAR DYNAMICAL SYSTEMS*

D. L. LUKESf

Introduction. This paper deals with the optimal control of autonomous
systems of nonlinear differential equations. The control functions represent
feedback devices which operate upon the instantaneous state of the system to
generate control signals which automatically return the system to a prescribed
state of equilibrium whenever an impulsive disturbance occurs in the state. These
regulator devices are widely used in aircraft flight controls and many other control
systems.

We define optimal feedback control in terms of a performance integral.
The main result is Theorem 1.1 in which we prove the existence and uniqueness
of an optimal feedback control and show that it generates control signals which
are optimal in a certain local open-loop sense. The basic hypothesis used for the
development is that the system be stabilizable.

Theorem 1.2 is quite well known but included to show that for linear systems
the optimal feedback control coincides with the synthesis construction arising
from the open-loop theory. This latter topic was studied by Kalman [5] in 1960
and has recently been re-examined by the author [8] and others. In [8] may be
found a proof of the fact that the stabilizability of the system is equivalent to the
solvability of the Kalman-Riccati matrix equation of Lemma 2.3.

One of the first serious attempts to treat nonlinear systems was made by
Al’brekht [1], 2] who studied analytic systems around 1961-1963 and discovered
the optimal control as a formal power series by considering Lyapunov functions.
He presented some rather complicated dominated convergence arguments for
the convergence of the series for a scalar control variable. A mor6 extensive
treatment of the problem under the assumption of the complete controllability
of the system was made by Brunovsky and may be found in [3] (without
proofs).

The technique we use covers the analytic case and includes completely
controllable systems. Any finite number of control variables are allowed and the
analyticity assumption is relaxed to twice continuous differentiability. An outline
of the proof has been included in [-7]. The proof is carried out along the line of the
Hamilton-Jacobi formalism [6] but carries the usual treatment further by actually
proving that the required equations have solutions.
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Notation. We study differential equations in finite n-dimensional real and
complex number spaces R" and C", respectively, using the inner product and norm

notations x.y "=lxkYk and Ixl x/’ff for x (xl,x2, ..., x,) and

Y (Y, Y2, "’’, Yn) in R" or C". The transpose of a real matrix M is denoted by
M* and we use the matrix norm [IMII suplxl=llMXl. The notation M > 0
denotes that M is a real symmetric positive definite matrix.

1. Statement of the optimization problem and principal results. The prob-
lem is formulated in terms of a control system equation in R",

F(x, u),

and a performance integral

J G(x, u) dr.

Roughly speaking, we seek an r-dimensional vector feedback control function of
the state x, u u(x), which makes the integral as small as possible for all initial
states near the origin in R". This differs from the problem of optimal open-loop
control in which the initial state is fixed and the integral is minimized over u u(t)
in L2(0 o).

Hence, for each feedback control function u u(x) we consider the auto-
nomous differential equation

(.) V(x, u(x))

with the corresponding solution x x(t, Xo), where x(0, Xo)= Xo for all initial
states Xo near the origin in R". Since we are interested in the dependence of the
integral upon the initial state of (1.1) as well as upon the control function u(x),
we use the notation

(1.2) J(Xo, u) G(x(t, Xo), u(x(t, Xo))) dr.

1.1. The basic assumptions. Throughout the paper we assume that F(x, u)
and G(x, u) are defined on some neighborhood of the origin in R"/r and can be
represented in the form

(1.3) F(x, u) Ax + Bu + f(x, u),

(1.4) G(x, u)= x. llx + 2x. fu + u. u + g(x, u),

where A, B, 11, 3 and ff are real matrices and f(x, u) and g(x, u) are higher order

" :)terms to be discussed below. In (1.4) we assume g,, > 0.

A real matrix is called a stability matrix if its eigenvalues all have negative
real parts. In control theory we call the pair of matrices A, B in (1.3)and the control
system defined by F(x, u) stabilizable if there exists a real matrix D for which
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A + BD is a stability matrix. Our fundamental hypothesis in this paper is that
F(x, u) is stabilizable. For an extensive discussion of the stabilizability condition
on A, B the reader is referred to [7] and [8].

We consider the class of feedback controls which are of the form

(1.5) u--u(x) Dx + h(x),

where h(x) denotes higher order terms to be discussed shortly. The real matrices
D are always selected so that u(x) stabilizes (l.1) that is, we demand that in

F(x, u(x)) (A 4- BD)x 4- Bh(x) 4- f(x, u(x)),

A + BD should be a stability matrix.
We are interested in studying the optimization problem for two different

sets of conditions on the higher order terms which we now state.

The analytic case. When F(x, u) and G(x, u) are real analytic about the origin in
R"+, we understand the termsf(x, u) and g(x, u)in (1.3)-(1.4) to be real convergent
power series about the origin beginning with second and third order terms in
(x, u), respectively. In this situation we admit every h(x) in (1.5) given by real power
series converging about the origin and beginning with second order terms. The
feedback controls are called C stabilizing controls.

The differentiable case. We are also interested in studying the problem fOr
which F(x, u) and G(x, u) are twice continuously differentiable about the origin in
R"+ and in which we admit higher order terms h(x) in (1.5) which are at least
once continuously differentiable about the origin. We assume:

(a) f(0, 0) 0,

f(x, u)
(b) --i)X]---)- <= Cl(x,

(c) g(o, o) o,

(d)
2g(x, u) -_< Cl(x, u)l
(x, u)2

near the origin in R"+ for positive numbers 0 and C. The restrictions on the non-
linear feedbacks are

(e) h(O) =--0,

(f) h,,(x)ll -<= L[x[

near the origin for some positive numbers fi and L (depending upon h). The
feedback controls given by (1.5) and satisfying the above specified conditions are
called C stabilizing controls and the control process is called a C2 process.

1.2. Definition of optimal feedback control. Since we consider only stabilizing
controls u(x)= Dx 4- h(x) in (1.1), it follows that Ix(t, Xo)l and ]u(x(t, Xo))l decay
exponentially toward zero for [Xol suitably small. In fact if the characteristic values
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2 of A + BD have negative real parts all less than a constant -It,

Re 2(A + BD) < -It < O"

then

Ix(t, Xo)l <= Ce-"qXol

for 0 __< < c and ]Xo] small, where C1 is a positive number. Moreover,

]U(X(t, X0))! C2]x(t Xo) C1C2e-u’]Xo]
for ]Xo[ small and 0 _<_ < for some positive number C2. These basic estimates
show that for each stabilizing control u(x) the performance integral is uniformly
convergent to a finite value J(xo, u) near the origin. In fact we shall show that in
the analytic case J(xo, u) is real analytic in Xo near the origin and in the differen-
tiable case it is once continuously differentiable.

Note that one of our basic assumptions is that the Hessian matrix of G(x, u)

attherigin
II )(,

is positive definite. Hence J(xo, u) > 0 near the origin and

the integral is a composite indicator of the rate at which the feedbacks return the
disturbed process to its equilibrium state and the control energy expended during
the operation. This is the motivation for making the following technical definition.

DEFINITION. A C (C x) stabilizing feedback control u,(x)= D,x + h,(x) is
called optimal for the process (1.1) with respect to the performance integral (1.2)
if for every Co" (C) stabilizing feedback control u(x) Dx + h(x) there exists a
neighborhood Nu of the origin in R" in which

J(xo, u,) <= J(xo, u).

In order to assert the uniqueness of the optimal control we shall agree to
consider two controls to be the same (or equivalent) in case they coincide on some
neighborhood of the origin in R". We can now state the main theorem of the paper.

THEOREM 1.1 (Main theorem). For the C (C2) stabilizable control process in R"

5c F(x, u)= Ax + Bu + f(x, u)

with performance integral

1J(xo, u) G(x, u)dt , +g(x,u) dt,

there exists an optimal Co" (C1) stabilizing feedback control u,. The optimal control
solves the functional equation

F.(xo, u,(xo))J(Xo, u,) + G,(xo, u,(xo)) 0

.for all Xo near the origin and is unique in that:
(i) u, is the unique Co" (C1) solution to ();
(ii) u, is the unique Co" (C) stabilizingfeedback control;

(iii) u, synthesizes the unique optimal open-loop control.
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Furthermore, u,(x)= D,x + h,(x) and J(xo, u,)-- Xo. P,xo / j,(xo), where
the lowest order terms are given by matrices D, and P, > 0 depending upon only
A,B, ll, B and

TrtEOREM 1.2 (Truncated system). For the special case of Theorem 1.1 in which

and

Y Ax + Bu

J(Xo, u) dr,

the optimal control is u,(x) D,x, where D, -3-1[(, + B*P,]. Here P, > 0
solves the matrix equation

(9)
(1I (3 (,) + P,(A B3 if,,)

+ (A B3-1ff,*)*P, P,(B3-1B*)P, 0

and is the unique positive definite solution.
D,x is a global optimal control in the sense that in the definition of optimal

feedback control we can take N, to be the domain of J(Xo, u)and in footnote 1 we

may take oo and N, R". Finally, J(xo, u,) xo. P,xo.

2. Construction of the optimal control for the analytic case. In this section
we develop a proof of Theorem 1.1 for the analytic case. The differentiable case
is discussed in the next section. We extend the analysis into the complex space in
order to show that the optimal control is analytic.

Since F(x, u), G(x, u) and u(x)-- Dx + h(x) are given by convergent real
power series about the origin in R"+r, they may be extended as complex analytic
functions onto a neighborhood of the origin in (n + r)-dimensional complex
space. Hence we shall consider (1.1) and (1.2) for complex initial conditions Zo.

LEMMA 2.1. For each C control u(x)= Dx + h(x) there exists a positive
invariant neighborhood NC of the origin in complex n-space wherein the integral
J(zo, u) Zo. PZo + j(zo) is analytic in Zo. Here j(zo) is a power series beginning
with third order terms and converging in NC,. The matrix P > 0 depends upon
only the truncated problem (the data A, B, II, 3, f, D)and is given by theformula

P ea+lD)*t[ll + (D + D*f* + D*D]eA+l)’ dt.

That is, there exists an > 0 and a neighborhood of the origin N, such that for each Xo N,
the response x,(t)satisfies

Yc, =F(x,,u,(x,)), x,(0)=Xo, x,(t)N, for all 0=<t< oo,

and the corresponding control u,P(t)- u,(x,(t)) is the unique open-loop control achieving the

minimum of C(u)= j[-G(x(t),u(t))dt among all measurable controls u(t) on 0 =< < co with

lu(t)[ _<- ;and generating trajectories x(t) satisfying :t F(x, u(t)), x(O) Xo, x(t)
_
N, forall 0 =< < co.
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J(xo, u) is a real power series. In N thefunctional equation

F(z, u(z)). Jz(z, u) + G(z, u(z)) =- 0

obtains.
Since A + BD is a stability matrix, Re 2(A + BD)< -p < 0 for some p.

Hence there is a neighborhood N] of the origin in complex n-space wherein each
solution x(t, Zo) of (1.1),

5c F(x, u(x))= (A + BD)x +
initiating at Zo e N, remains in N, for all >= 0 and satisfies the basic estimate

{x(t, zo)l _-< Ce-Ut[Zo[ on 0 __< <

The neighborhood N, can be taken so small that [u(z)[ _<_ C2[z[ and so
[G(z,u(z))[ C[z[ 2 for all zN] for positive numbers C,C2, C, The
functions x(t, Zo) and u(x(t, Zo)) are analytic in Zo N for each fixed > 0 and
continuous in (t, Zo). Thus the integral

J(zo, u) G(x(t, Zo), u(x(t, Zo))) dt

is uniformly convergent in N, and we conclude that J(zo, u) is analytic for Zo e N.
To compute the power series of J(xo, u) we must obtain x(t, Xo) as a power

series in Xo in N, N c R". It is easy to see that

X(t, Xo) eta + B))txo nt- (higher terms)
and

U(X(t, Xo)) Deta + BD)txo + (higher terms).

If terrnwise integration is valid for G(x(t, Xo), u(x(t, Xo))), then it is easy to compute

[;oJ(xo, u) x0 e(a + D)*t(ll + gD + D’E* + D*D) eta + ,o)t dt Xo

+ (cubic and higher order terms in Xo).

In this case J(xo, u) has the required form. In order to justify this result we must
estimate the higher order terms in x(t, Xo). For this purpose we write

x(t, Xo) Xo + F(x(s, Xo)) ds

and

XL(t, XO) XO + P,(O)XL(S, XO) ds,

where F(x) F(x, u(x)) and Fx(O) A + BD. Then the difference is

A(t, Xo) x(t, Xo) x,(t, Xo) [P(x(s, Xo)) Px(O)XL(S, XO)] ds
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and

a [Px(O)x(s, Xo) + (s, Xo) -/(0)x,(s, Xo)] as

But

u(x(t, Xo))= D[eta+n)’Xo + A] + A l(t, Xo)

with IAl(t, Xo)l <_-ColX(t, Xo)[ 2-<- Ce-2U’lXol 2. Thus the quadratic terms of
J(Xo, u) are just

J(Xo) Xo" Pxo,

hence J(Xo, u) Xo. Pxo + (higher terms in Xo) as required.
Clearly P > 0 since II + fD + D*f* + D*BD > 0, which follows directly

from

[ex(O)6 + (s, Xo)]

where It(t, Xo)l C4lx(t, Xol 2 :< C5 e-2UtlXo]2. Therefore

A(t, Xo) eA + Bo)"-s):(s, Xo) ds

and

]A(t, Xo)l =< C6e-U’lXol 2 for xoNu, t>=O.
This yields the desired estimate

X(t, XO) eA + ID)tx0 + A(t, Xo).

Now we note

G(x, u(x))= x. llx + 2x. fu + u. u + 7(x)

with [(x)l =< CTIXl 3. Thus by taking N, small, we have

G(x(t, Xo), u(x(t, Xo)))= x. llx + 2x. qiu + u. 23u + 7(x(t, Xo))
and

Iy(x(t, Xo))l dt <= C8 e-3U’lXol 3 dt C91xol 3.

Hence the power series for J(xo, u)collects the linear and quadratic terms in Xo
from the expression

fo [(eA + lO)tx0 + A) ll(eA+)tXo + A)

+ 2(ea+n)’Xo + A). fgu(x) + u(x). u(x)] dt.
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Let x(t, Zo) denote the solution of (1.1) in complex n-space with x(0, Zo) zo
By the uniqueness of the solutions

x(s, x(t, Zo)) x(s + t, Zo)

for IZol small and all >= O, s _> O. Therefore

J(x(t, zo), u) G(x(s + t, zo), u(x( + s, Zo))) ds

G(x(s, Zo), u(x(s, Zo))) ds.

By the analyticity of J(z, u) with respect to z near the origin in complex n-space
we can differentiate the above equation and set 0 to get

F(z, u(z)). Jz(z, u) + G(z, u(z)) =- 0

for all [zl small.
LMM, 2.2. In the analytic case there exists a unique analytic solution u,(x, p)

to the equation

F.(x, u,)p + G.(x, u,) 0

near the origin in RZnfor which u,(O, O) O. Furthermore,

U,(X, p) --1/2-1(21*x q- B’p) + h,(x, p),

where h,(x, p) is a convergent power series about (0, 0) beginning with terms of
second degree in (x, p).

From (1.3)-(1.4),

F(x, u).p + G(x, u)= lAx + Bu + f(x, u)].p + x. llx + 2x. u + u. u
+ g(x, u),

and we see that at the point x p 0, u 0,

F,(x, u)p + G,(x, u) 0

and

[F,(x, u)p + G,(x, u)], 2 > 0.

Hence we can apply the implicit function theorem for analytic functions. Since
f(x, u) and g(x, u) are power series beginning with terms of degree two and three,
respectively, we can compute the linear terms in the series expansion of u,(x, p)
to get

21*x + 23u,(x, p) + B*p + (higher degree terms in (x, p)) 0

which shows that

u,(x, p) -1/23-(2(*x + B’p) + (higher degree terms).
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LEMMA 2.3. In the collection of all positive definite real symmetric n n
matrices there exists a unique solution P, to the quadratic; matrix equation

(U E- E*) + (A B-*)*P + P(A B- 1,) P(B- B*)P O.

For the proof see [8]. There the converse is also proved--namely, if this

has a solution P, > 0 for
t[ /equation , > 0, then the solution is unique

and the matrices A, B are stabilizable.
LEMMA 2.4. Suppose there exists a C stabilizingfeedback control u,(x) D,x

+ h,(x) for the analytic system (1.1) which solves the nonlinear functional equation

() F,(x, u,(x))Jx(x, u,) + G,(x, u,(x)) 0

for all x near the origin in R". Then"
(i) u, is the unique C solution, to ();
(ii) u, is the unique C stabilizingfeedback control;
(iii) u, synthesizes the unique optimal open-loop control.

Furthermore, D, --1[-15" + B*P,] and J(x, u,) x. P,x + j,(x), where P,
is defined in Lemma 2.3 and j,(x) is a power series ofhigher order terms described in
Lemma 2.1.

Consider the real-valued function defined near the origin in R"+r,

By Lemma 2.1,

Q(x, u) F(x, u). Jx(x, u,) + G(x, u).

Q(x,u,(x))=o near x=0

and our hypothesis asserts that

Compute the Hessian

Q,(x,u,(x))=o near x=0.

Q,,(O, O)= 2 > o.

Hence there exists an e > 0 such that

0 Q(x, u,(x)) <= Q(x, u 1);

that is,

0 F(x, u,(x)). J,(x, u,) + G(x, u,(x)) <= F(x, ul). Jx(x, u,) + G(x,

provided Ixl < e and lull < e; moreover, strict inequality holds for ux u,(x).
We take e sufficiently small so that G(x, u) >= O.

Now let ui(x) u,(x) be a C stabilizing feedback control for (1.1) and let
Nl be a neighborhood of the origin in R" such that Ix] =< : and lUl(X)l =< e in N
and each response x,(t) or xl(t) to the corresponding feedback control which
initiates in some neighborhood N

_
N of the origin remains in N for all
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_>_ 0. Hence for all initial Xo e N,
[F(Xl(t), u (x, (t))) Jx(x, (t), u,) + G(x (t), U (X (t)))] dt

which yields the result

0 <= J(xo, u,) + J(xo, Ul)

or

J(xo, u,) <= J(xo, u),

and strict inequality holds provided u(xo) u,(xo). Therefore u, is the unique
optimal feedback control and the unique C solution of the functional equation
().

Now choose a neighborhood N,
___
N of the origin which is positive in-

variant for the responses to the optimal control u,(x). Choose N, so small that
]x,(t)] __<_ c on 0 =< < for all initial conditions in N,. Now let 2o be an arbitrary
fixed initial condition in N, and consider any measurable open-loop control fi(t)
satisfying the conditions that Ifi(t)] =<- c and the response 2(t) N, for all > 0.
There is no loss in assuming that

o
G(2(t), (t))dt < oo

since G(2(t), (t)) .>= O. Then, as above,

0 F(x, u,(x)). Jx(x, u,) + G(x, u,(x))

F(x, fi(t))" Jx(x, u,) + G(x, fi(t))

with strict inequality holding where fi(t) - u,(x). If fi(t) u,(2(t)) almost every-
where on 0 =< < oo, then the uniqueness theorem for differential equations
asserts 2(t)= x,(t) which implies that fi(t)= u,(x,(t)) almost everywhere. Now
assume that fi(t) u,(2(t)) on some set with positive measure. Then

fo0 < [F(2(t), ft(t)). Jx(2(t), u,) + G(2(t), ft(t))] dr.

Since C(fi) G(2, f)dt < o, it is easy to show that lim,._,o 2(t) 0. Hence
o

0 < -J(2o,U,) + C(fi) and C(u,) J(2o,U,) < C(ft).

Thus u,(x,(t)) is the unique optimal open-loop control for 2o with the required
constraints.
By Lemmas 2.1, 2.2,

u,(x) -1/2--(2*x + 2B*P,x) + (higher terms in x).
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By Lemma 2.1 we have

F(x, u,(x)), ax(x, u,) + G(x, u,(x)) 0

for Ixl small. Expanding the left-hand side and using the expansion of u,(x) to
collect the linear terms in x produces the equation

(U -1,) _3t_ P(A B- ff*) + (A B- lE,),p P(B- IB*)P O,

which is the equation of Lemma 2.3. But P > 0 by Lemma 2.1 and hence, by thc
uniqueness of the solution, P P, and J(x, u,) x. P,x + j,(x).

PrffThereml’2Frmtheassumptinthat(H ), > 0 it follows from

setting u -?3-ff*x in the associated quadratic form that II E--1E, > 0.
By defining A, A + BD, A B-1[(, A- B*P,], we may write the matrix
equation of Lemma 2.3,

,A,P, + P,A, -[(ll- 3 (*)+ P,(B B*)P,] < 0,

which is the standard Lyapunov equation [8], from which it follows that A, is
a stability matrix. If we let u,(x) D,x, then in terms of its associated quadratic
form we can write the quadratic matrix equation as

A,x. 2P,x + G(x, u,(x)) O,

for all x R’. By integrating this equation along the trajectory A,x, x(O) Xo,
where Xo is any initial condition in R", we obtain the equation

Xo P,xo G(x, u,(x)) dt.

But the integral is just J(xo, u,). It is now a simple matter to verify that u,(x)
satisfies the functional equation () in Lemma 2.4. The global nature of u,(x)
can be concluded by carefully examining the proof of Lemma 2.4 or else by noting
that u,(x) is given by the same formula as the synthesis of the optimal open-loop
controls studied in [8].

2.1. A linear Hamiltonian system. In order to set up the nonlinear problem
for a perturbation analysis we reformulate the solution to the truncated problem
(Theorem 1.2) in terms of a Hamiltonian system.

We consider the quadratic form

2H,(x, p) x. ll,x + 2x. E,p p. !B,p
in the two real n-vectors x and p where we define

II, 2(H-, 1/2B2 1B*,

(E, (A B!3- 1,),
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in terms of the data (A, B, 11, 3 and (g) from the truncated problem. It generates
a Hamiltonian system in R2",

5c
(?H,(x, p)

?p

cH,(x, p)
x

which may be written in the matrix form

-,
LEMMA 2.5. The linear Hamiltonian system

tl, ,
in R cransforms into the system

by a nonsingular real linear transformation

where A, A + BD, D, - lift;, + B*P,-] and Q is the matrix solution ofthe

foequation A,Q + QA ,, Q eA*t,eA*t dr. The inverse ofM is given by
theformula

M_I=
I, Q i.
2P, 2P,Q- I,

The integral defining Q converges uniformly since, as we noted above, A,
is a stability matrix. Integration by parts shows that the integral solves the equation
A,Q + QA -,. It is clear that Q 0 since 3, >= 0. We verify the fact that
M is nonsingular and the formula for M- by factoring M:

M=
-I. 0 -I. -2P, I.

m-1

2P,

I,
2P,

I, 0

2P, 1,

0)-,
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The proof now reduces to the verification of the equation

-, 0 I- 2QP, Q
=0.-g;, -A** 2P, -I2P, -I,, I,

This is equivalent to showing that each of the four terms

(i) 2QP, Qa, A, + 2A,QP,,
(ii) -, + 2QP,, -Q, A,Q,
(iii) 2P, + H, + *2A,P,,
(iv) -2P,, + , A,

is zero.
From the formula for A, written in terms of , and ,, A, ff 2,P,

which shows term (iv) is zero.
Substitution of

A,Q -, QA -, Q(, 2P,,)
into (ii) shows that term is zero and in term (iv) produces

g 2P,g Qa, (g 2,P,) + 2[-, Q(, 2P,,)]P,

-2Q[)g, + if,P, + P,ff 2P,,P,]

-2O[(u -’*) + (A B-’g*)*P, + P,tA B-’g*)

P,(B- B*)P,]

=0.

Substituting for A, in term (iii) we have

2P,ff + , + 2(, 2P,,)P, Zing, + ,P, + P,ff --2P,,P,] 0.

The following theorem restates the conclusions ofTheorem 1.2 in a form which
points to a proof of Theorem 1.1 by a perturbation analysis.

THEOREM 2.6. For the linear Hamiltonian system

-, -,
in R there is a linear n-dimensional invariant manifold in which the origin is asymp-
totically stable. The manifold is described by he equation p 2P,x. Moreover, this

manifold generates the optimalfeedback controlfor the truncated problem ofTheorem
1.2. That is, ifwe define p,(x) 2P,x, then

u,(x, p,(x --[g*x + *p,(x] ,x
is the optil control. (See Lemma 2.2.)

The motion in the nifold projects as the optil closed-loop motion; that is,

for any trajectory
p(t)]

in the nifold, 2 Ax + B(D,x).
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The fact that the equation p 2P,x describes the required manifold follows
from Lemma 2.5 by noting that q 0 if and only if p 2P,x and recalling that
A, A + BD, is a stability matrix. The projected motion is optimal because
when p 2P,x, y x and A,xo The optimality of u,(x, p,(x)) is verified by
the calculation

u,(x, p,(x))= --3-(2;*x + *p,(x))

3- 1(1, ._It B*P,)x D,x
together with Theorem 1.2.

We notice that the equation (I,- 2QP,)x + Qp- 0 describes another
linear n-dimensional invariant manifold in which the origin is asymptotically
unstable.

2.2. A nonlinear Hamiltonian system. We now turn to the nonlinear
(perturbed) control problem. Conclusions analogous to Theorem 2.6 are obtained
by considering a perturbed Hamiltonian system. In terms of the given functions
F(x, u) and G(x, u) and the function u.(x, p) defined in Lemma 2.2 we select the
Hamiltonian

H,(x, p) F(x, u,(x, p)). p + G(x, u,(x, p))

and analyze the corresponding system of canonical differential equations

c?H,(x, p)
5= cp

(2.1)
H,(x,p)

The linear part of this system is the linear Hamiltonian system previously studied
in Lemma 2.5 and Theorem 2.6.

THEOREM 2.7. For the nonlinear analytic Hamiltonian system (2.1) in R2" there
exists a real n-dimensional analytic invariant manifold S in which the origin is
asymptotically stable.

The proof is carried out by an analysis in 2n-dimensional complex space. The
conclusions of the theorem are drawn by restricting the calculated results to the
real part of the space. We show that there exists an n-vector of real analytic
functions q,(y) defined in a neighborhood of the origin in R" such that the equation

q q,(y)defines an n-dimensional manifold in [Y/-space. The required manifold
q!

S in -space is obtained from S by the nonsingular real linear transformation

=M-1
p,(x q,(y
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where the formula for M- is given in Lemma 2.5, and hence S is defined in terms
of the curvilinear coordinates x.

Since u,(x, p) satisfies the defining equation in Lemma 2.2,

F(x, u,)p + G,(x, u,) O,

the canonical system (2.1) can be rewritten as

2 F(x, u,),

D -[Fx(x, u,)p + Gx(x, u,)],
where u,(x, p) -1/2B-1(2*x + B’p) + h,(x, p). By collecting the linear terms
we see that the equations have the form

where

r
x Bh,(x,p)+f(x,u,) ].p I_-[2h,(x, p) + g(x, u,) + fax, u,)p]

YBy Lemma 2.5 the change of variables M transforms the system into
q P

A,
+ rt(2.2)

0 -A, q q

where

l"M

By the mean value theorem, for every e > 0 there exists a 6 such that the Lipschitz
condition

() u
holds for

Y _< 6 and _<_ 6. Since A, is a stability matrix, a conditional
q v

stability theorem [4, p. 329] can be applied to establish the existence of the required
manifold. We outline the proof of the cited theorem insofar as it is applied here.

Let

and U2(t)
-ta**

Ul(t)
0 0 e

Then

0
Ul(t)-+- U2(t) and j Uj,j= 1,2.
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Let > 0 be chosen so that the real parts of the characteristic values of A. are
less than -. Then there exist positive constants k and a such that

Ux(t)[[ =< ke -(+)t, >= O,

U2(t)l[ =< ket, <= O.

Consider the integral.equation

O(t, a) gl(t)a + gl(t S)rM(O(S a)) ds
(2.3)

U2(t s)r(O(s, a)) ds,

where a is a constant vector. Let e be chosen above so that 2ek/a < -- and let [al
satisfy 2kla[ < 6. Using successive approximations to solve (2.3) with initial
approximation Oto(t, a) O, we readily obtain

IO + 1)(t, a) O)(t, a)l <-- _k_ e_at

which leads to the existence of a solution 0 of (2.3) which satisfies

IO(t, a.)l =< 2klale -’

The last n components of the vector a do not enter into the solution since they do
not enter the successive approximations. That 0 is a solution of (2.3) is immediate
for lal small, since by the estimate of U2(t)l[ the integral in (2.3) converges. It is
also clear from the uniform convergence of the successive approximations that 0
is continuous in (t, a) for >_ 0 and lal small. Furthermore, 0 is analytic in a for
fixed t. From (2.3) it follows that the first n components of 0(0, a) are 0j(0, a) aj,

j 1, 2, -.., n, and the latter components are given by

0(0, a) U2(- s)rM(O(s, a)) ds
j,

j n + 1, ..., 2n, where [. ]j denotes the jth component. We define the function
q, by

q,j(al, a2, ..., a,) U2(- s)rM(O(s, a)) ds
n+j

j 1, 2,..-, n, and the initial values Y/ 0(0, a) satisfy the equationfor
q

q q,(y) 0

in
qY)-space which defines an n-dimensional manifold in (;)-space.
Each point 00 on S can be written as 0(0, a) for some a and we notice that
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0(0, 0o) 0o. Let Y](t, 0) denote the unique solution of(2.2) for which Y/(0, 0) 0
q q

in a neighborhood of the origin in 2n-dimensional complex space. Then

O(t, 0o)-- [Y}(t, 0o)fort >= 0, 0o and 10o] small because both trajectories satisfy
q

(2.2) and they intersect at 0. An important consequence of the previous
equation is that

(;)(t, 0o)0 as tv

for 0o S and ]0o] small because

Yl (t, 0o) ]O(t, 0o)l <- 2klOole -’.
q

Moreover we can show that the trajectories of (2.2) intersecting S do not leave S.
Let 0o S and [0o[ be small. It satisfies the equation for the manifold which is

Oo 0 Oo U(- s)r(O(s, 0o)) ds O.

trajectory through 0o at 0, O(t, 0o)= Y](t, 0o) satisfies the differentialThe
q

equation (2.2). Differentiating the left-hand side of the equation for S along the

trajectory by first replacing O(s, Oo) by )(s, Oo) and then replacing Oo by (Y)(t,
and using the formula

s, (t, 0o) (s+t, 0o),
q q

which follows from the uniqueness of the solutions to (2.2), we find the derivative
to be zero at 0. This proves that the trajectory through 00 at 0 for [0o[
small does not leave S.

Proofof Theorem 1.1 (Analytic case). To prove the main theorem it is sufficient
to establish the existence of a C stabilizing control which solves the functional
equation () occurring in Theorem 1.1 and Lemma 2.4. The remaining conclusions
of the theorem then follow as a corollary to the lemma.

We define u,(x)= u,(x, p,(x)) about the origin in complex n-dimensional
space. Recall p,(x)describes the manifold S discussed in Theorem 2.7 and u,(x, p)
was defined in Lemma 2.2 by the implicit function theorem. In the proofofTheorem
2.7 we proved that the motion of (2.1) on S about the origin in complex 2n-space
satisfies

F(x, u,(x)),
(2.4)

,(x) -[F(x, u,x))p,(x) + 6(x, u,(x))],
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where x x(t, Xo), x(O, Xo) Xo with IXol small. The integral

G(x, u,(x)) dt G(x, u,(x, p,(x))) dt

converges uniformly in a neighborhood of the origin in complex n-space by the
estimate

p,(x
<2M-lk

which follows easily from the estimate of

M( Xo ’}1-.
p,(xo)t

c

(Y)(t, Oo) establishedintheproofof
q

Theorem 2.7. The uniform convergence together with the continuity and analyticity
of the functions in the integrand permit the following differentiation of the integral
when the initial conditions are restricted to real space. We shall use the defining
equation for u,(x, p),

(2.5) F,(x, u,(x, p))p + G,(x, u,(x, p)) O,

and the differential equations (2.4) for the motion on S.

(?J(xo, u,) fo [ C?x (?G(x, u,) c3u,
,o 2o + o ,A t

[L-,(x) (x, u,)p,() Xo u,

p,(xo) + p,(x) dt

fop,(Xo) + (x, u,)p,(x)t

p,(xo).

Thus, J(xo, u,) p,(xo) for IXo] small, and hence by (2.5),

F,(xo, u,(xo))J(xo, u,) + G,(xo, u,(xo)) O,

which proves u,(x) solves (), and the proof is completed.

2.3. Calculation of the power series for u,(x) and J(x, u,). Since u,(x),
J,(x) J(x, u,) and F,(x) F(x, u,(x)) are analytic about the origin they can be
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expanded in power series:

u,(x) u,"(x) + u,’(x)+...,
J,(x)-- J(2)(x) -b J(3)(x) -k- ...,
F,(x) Fl)(x) q- FZ)(x) q-

In preceding sections we saw that the lowest order terms have been computed as
the solutions to the truncated problem:

u2’(x) O,x,
J{2)(x) X" P,x,
F(1)(x) A,x.

The computation reduced to solving the quadratic matrix equation

(11 EB- If*) + P(A BB- f*) + (A BB-E*)*P P(B?B- XB*)P 0

for P P, > 0 and then computing D, and A, by the formulas

D, -- (E* + B’P,),

A, A + BD,.

We now develop the procedure for computing the remaining terms in the
power series. The computation of successively higher order terms reduces to
solving successively higher order systems of linear algebraic equations.

By Lemma 2.1 and Theorem 1.1,

F(x, u,(x)). Jx(x, u,) + O(x, u,(x)) O,

Fu(x, u,(x))Jx(x, u,) + Gu(x, u,(x)) 0

about the origin. We can rewrite these equations in the form

[A,x + B(u, D,x) + f(x, u,)]. Jx(x, u,)

+ x. tIx + 2x. if,u, + u,. u, + g(x, u,) O,

u,(x) -1/23-I[(B + f,)*Jx(x, u,) + 2(*x + g,].

Hence,

A,x J,(x, u,) -[B(u, D,x) + f(x, u,)]. Jx(x, u,)
2x. if,u, u,. u, g(x, u,) x. tlx,

U,(X) --1/2-I[(B -k" f,,)*J,(x, u,) + 2(*x + g,,(x, u,)].

Substituting the power series for u, and J(x, u,) and then selecting the mth order
terms from the former equation and the kth order terms from the latter, we obtain
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the equations
m-1

A,x Jm)(x) [B(u, D,x) + f(x, u,)](m-k+ 1)J(xk)(X
k=2

for m 3, 4, 5, and2

[(m )/21

2x. .,u(,m-l) 2 "(’)..,., ,u(,
k=l

u,m/2 u’n/2- Cm(x, u,)

k-1

u#)(x) -1/23-’[B*J +’)(x) + (f,)*J)J-J+’)(x) + gt’)(x, u,)],
j=l

k 2,3, 3

The right-hand side of the former equation is independent of u, 1) since its
coefficient is -[B*J(x2)(x)+ 2*x + 2u1)] 0. Thus

m-1

A,X Jm)(x) Z Bum-k+ l)(X)" J)(x)
k=3

m-1

fm-k+ l)(X, U,)" J)(x)
k=2

[(m )/21 ,, u, (x) u/(x). u/(x)
k=2

g(x, u,)

form=3,4,5,-...
We can show that these two equations can be solved to generate the power

series for u,(x) and J,(x). Since f(x, u) and g(x, u) are power series beginning with
terms in (x, u) of order two and three, respectively, it is clear that

1) + u2 + + u-l)f(J(x, u u2 + ...)= fJ(x, u,

and

1+u2+ + (m-2)gm)(x, U) + () + ") g)(X, U, U,

so the sequence of terms

j,3,,

determines the right-hand side of the equation for J(m)(x) and the terms

(1),u(2) (k-l). j(2),j(3), j(k+l)}

determine the right-hand side of the equation for u, (x).

[k] denotes the integer part of k and the term with u’/2 in it is to be omitted for m odd.
We use the convention that , 0 for < k.
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Since A, is a stability matrix, the equation for J(m)(x), which has the form

A,x J(xm)(x) H(m)(x),

where Htm)(x) is a homogeneous form of degree m in x, has a unique solution

J’)(x) H(’)(eA*tx) dr.

Since the two equations for J(m)(x) are equivalent, the former can be solved for the
coefficients of the form J("(x) by equating coefficients of similar terms in x and
solving the resulting linear algebraic equations. Hence, starting with u,l(x) D,x
and J2(x) x. P,x we can compute consecutively the terms in the sequence

J(2)(X), U(,1 )(X), J(3)(x), u(,2 )(x), J(4)(x), u(,3)(x),
thereby generating the power series for J,(x) and u,(x).

From the power series the following conclusion is clear.
COROLLARY 2.7. In the analytic case a sufficient condition for the optimal

closed-loop control to be linear is that thefollowing equations hold:
(i) f(x, O,x) O,
(ii) f.(x. D,x) O,

(iii) g(x. D,x) O,
(iv) g,(x, D.x) O.

3. Construction of the optimal control for the differentiable case. The basic
pattern for treating differentiable systems follows the analytic case. Hence we
discuss only those points which will assist the reader in checking the details of the
proof himself.

We note that by application of the mean value theorem to the basic assump-
tions (a)-(f) we obtain the additional inequalities:

(g) If(x, u)l -< Cl(x, u)l+ ’,
(h) Ig(x, u)] =< Cl(x, u)l ’+ 2,

(i) .g(x, u)
(x, u) <= Cl(x, u)l "+’,

(j) Ih(x)l- Zlxla+ 1,
which hold near the origin. The remarks about the exponential decay of Ix(t, Xo)l
and ]u(x(t, Xo))] remain valid. We use the basic estimate

Ix(t, xo)l C e-U’lxol,

which we used in the proof of Lemma 2.1. Using the fact that x(t, Xo) is of class C
with respect to Xo near the origin, inequalities (b), (j) and the fundamental in-
equality of differential equations, we can easily obtain the estimate

ax(t, XO <= C2 e -ut
c3xo
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for all _>_ 0 and [Xo[ small. It follows that the integral

-xo(X, u(x)) at

converges uniformly, hence J(Xo, u) is of class C and

8J(Xo, u) f OG(x, u(x))dt
Xo 30 Xo

near the origin. The lemma corresponding to Lemma 2.1 states 3(Xo, u) Xo. PXo
+ j(xo), where j(0)= 0, ’o(Xo)l C]xol* and hence (Xo)[ C[xo] near
the origin.

The analogue of Lemma 2.2 states that u,(x, p) is of class C , and since
h,(x, p) -- [g,(x, u,) + f(x, u,)p], using (b) and (d), we can easily show
that h,(x, p)/(x, p)]] C,](x, p)]* near the origin for some positive numbers a,
and C,. This last inequality together with (b) and (d) implies that the higher order
term

(x [Bh,(x,p)+f(x,u,)
p k- [2h,(x, p) + gx(x, u,) + f,(x, u,)p]

in the nonlinear Hamiltonian system satisfies an inequality

r (x, p) C4l(x, p).
P

Hence by the mean value theorem the Lipschitz condition

r()- ru(:) e]()-()
required in the proof of Theorem 2.7 is available. The same proof establishes the
existence of the required function p,(x)described in the proof of the theorem.
The fact that p,(x) is of class C is proved by applying Theorem 4.2 of [4, p. 333].
The remainder of the proof is the same as for the analytic case.

Rerk. We note that J(Xo, u,) is of class C2 because we proved 3(x, u,)
p,(x).

4. Elementary examples. We now calculate the optimal feedback controls
for a few systems.

Example (Natural barriers).

J [Ix] 2 / lul 2] dt.

Since the states of the unit sphere in R", (Ix] 1), are solutions to the system
equation for every control, the domain of the optimal stabilizing control could



OPTIMAL REGULATION OF NONLINEAR DYNAMICAL SYSTEMS 97

never be extended outside the unit sphere. It is easy to verify that

u,(x) -x

solves () of Theorem 1.1 and hence is the optimal control. We can compute the
optimized integral

J,(x) -log (1 [xl 2)
and note that the domain of u, is the entire unit ball (Ix[ < 1).

Example 2 (A linear quadratic problem).

91 X2,

92 /’/,

J [x + x + u]

Transforming F(x, u) and G(x, u) to vector-matrix notation we obtain the
matrices of the system,

N
0

and those of the performance integrand,

The quadratic matrix equation for P, is

o 11o/.
0

11 + PA + A*P- PBB*P 0,

which is equivalent to the scalar equations

-2p2 p122 0,

1 + 212pl 2 P22] p222 0,

2Pll P12 P22 Pa2P22 0,

which can be solved to produce the required positive definite matrix

’)
From this we compute the matrix which provides the optimal control

D, B- ’(if,* + B’P,) -(0 3) (-1 ).
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Therefore the optimal control and corresponding performance integral are

.,()

J,() ,/Sx + 2x + ,/52
Example 3 (Computation of a higher order term).

)1 X2,

U
). x x2 + (x

J [x + x + sin2 u] dr.

Expanding the nonlinear terms about the origin we have

1 X2,

2 U + X X + (X X2)U2 +

J= x + x + u2 T + dt.

We note that the truncated system is the same as Example 2, hence the linear
term of the optimal control is

,x)
and the first term in the expansion of J,(x) is

J(2’(X) X + 2X1X2 + X.
The linear term of the optimized system is

From the analysis of the power series for u, developed in 2 we have the equation

0 2W/X + 2X2a, a3I) 2 2, +
which mustbesolved for J{3)(x). Lettingy3)(x)= ClX + 2x21x2 .qt_ c3x ix22 ..+_ c4x32,
we reduce the equation to the system

--C2 -2,

3c 2c3 N//-c2 2x/,
2c2 3c4 2X//3C3 2,

C3 3X/-C4 2x//,
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which has the solution

Hence

C1

C2 2,

C3 -N//,
10

C4 --21"

j(3)(x 8 3 74_.NX1X22 10.3-2--fX + 2X2X2 + 21-a’2

From the general formula for u,2)(x) we can now compute

u,2x) -1/2{0 1)a?tx)
__12 _N/X X2 __XI--:(2x +

2

Successively higher order terms would be computed in a similar manner.
Example 4 (Equivalent systems). We call two optimization problems (F, G)

and (, r) equivalent if they generate the same optimal control u, and the same
corresponding integrals 3,. Equivalence is denoted by the notation IF,
Several facts concerning equivalence can now be stated and are direct consequences
of Theorem 1.1.

If p(x) > 0 near the origin, then

For instance, Example is equivalent to

:: _1
at.

Another valid equivalence is given by

IF + 6F, G + fiG] IF, G],

which holds for all perturbations satisfying 6F(x). 3J,(x)/c3x + 6G(x) 0. Appli-
cation ofthis relation to Example 2 using 6F -1/2XlX2 and 6G /xix2 + XlX
generates the equivalent problem

91 X2( 1/2X1),

j-. [21 qt_ x -- N//x12x2 -- X1XI] dt.
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As a final remark we note that two equivalent problems must have equivalent
truncations.

Acknowledgment. These results are part of the author’s doctoral thesis
written under Lawrence Markus at the University of Minnesota.

REFERENCES

[1] E. G. AL’BREKHT, On the optimal stabilization of nonlinear systems, J. Appl. Math. Mech., 25
(1962), pp. 1254-1266.

[2] , Optimal stabilization of nonlinear systems, Mathematical Notes, vol. 4, no. 2, The Ural
Mathematical Society, The Ural State University of A. M. Gor’kii, Sverdlovsk, 1963. In
Russian.

[3] P. BRUNOVSK’, On optimal stabilization of nonlinear systems, Mathematical Theory of Control,
A. V. Balakrishnan and Lucien W. Neustadt, eds., Academic Press, New York and London,
1967.

[4] E. A. CODDINGTON AND N. LEVINSON, Theory of Ordinary Differential Equations, McGraw-Hill,
New York, 1955.

[5] R.E. KALAN, Contributions to the theory ofoptimal control, Bol. Soc. Mat. Mexicana (2), 5 (1960),
pp. 102-119.

[6] , The theory of optimal control and the calculus of variations, Mathematical Optimization
Techniques, R. Bellman, ed., University of California Press, Berkeley, 1963.

[7] E. B. LEE AND L. MARKUS, Foundations of optimal control theory, John Wiley, New York, 1967.

[8] D. L. LUKES, Stabilizability and optimal control, Funkcial. Ekvac., (1968), pp. 39-50.



SIAM J. CONTROL
Vol. 7, No. 1, February 1969

THE QUADRATIC CRITERION FOR DISTRIBUTED SYSTEMS*

D. L. LUKESf AND D. L. RUSSELL

Introduction. Let us consider a linear control system in En’.

(,)
dx

Ax + Bu,
dt

the control u lying in Er. A control function u,(t) lying in L2[to, T] satisfies the
quadratic criterion of optimality if it yields a minimum value for the cost functional

C(u) [xrr(t)Wx(t) + ur’(t)Uu(t)] dt + xrr(T)Gx(T),

where it is understood that x(t) is the response to the control u(t) via (*) corres-
ponding to some initial state X(to) Xo. This problem was first studied by Kalman
1] and has recently been re-examined by Wonham [2] and Lukes [3]. An excellent
expository treatment is given by Lee and Markus in their text [4].

Our purpose in this article is to explore the applicability of the quadratic
criterion to distributed parameter systems or, alternatively, to differential equations
in a Hilbert space. We shall show that such application is indeed possible and,
perhaps more important from the engineering point of view, that the optimal
controls thus found are limits of optimal controls corresponding to finite-
dimensional models of the distributed or infinite-dimensional system. The theory
will first be developed in the abstract situation and then applied to specific
examples.

1. Problem statement. Some basic assumptions underlying our work will
be set forth in this section. Later, in order to obtain additional more specialized
results, we shall set forth further hypotheses. A further basic assumption will be
made at the beginning of 3.

Let H1 and H2 be real or complex Hilbert spaces. The system state x will be
an element of H1 while the control vector u lies in H2. We assume that A is a
(possibly unbounded)closed linear operator defined on a dense domain A

_
H1

and generates a strongly continuous semigroup eat for >= 0. Then A*, the adjoint
of A, has the same properties and for some real/o, M,

(1.1) IIeat ea*tll M e"t t _>_ 0.
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Our assumption is fulfilled, for example, if A is normal with spectrum a(A) lying
in a left half-plane Re (#) =< 0 and then (1.1) holds with M 1. For more general
sufficient conditions on A see, e.g., [5], [6], [7]. In all these theories a(A), o(A*)
are required to lie in some left half-plane so that we may without loss of generality
assume there is a real 2 such that (A 2I)- and (A* 21)- exist as bounded
linear operators on H.

Our control system is

(1.2)
dx

Ax + u,
dt

where/’H2 -0 H is a linear operator which can be written in the form

(1.3) / (A 21)-1B,

B" H2 -o Ha being bounded. A control u(t) defined on [to, T] is admissible if it is
measurable and

(1.4) Ilu(t)ll a dt < co.
o

The relevant concepts of measurability and integrability are discussed in
6, Chapter 3].

Let Xo e A be given and let u(t) be an admissible control. A result pro.ved by
Balakrishnan in SJ shows that the response x(t) to u(t) via (1.2) which initiates at

Xo at time to lies in A for all to and satisfies (1.2) for almost all >= to. We may
therefore form the cost functional

(1.5) C(u) [(x(t), Ix(t)) + (u(t), Uu(t))] at + (x(T), Jx(r)),

provided if’, U and satisfy the following conditions. We assume

(1.6) W (A* 21)W(A 2I),

(1.7) ( (A* 2I)G(A 2I),

where W and G are bounded self-adjoint positive semidefinite operators on H
and U, U- are bounded self-adjoint positive definite operators on H/; i.e., for
some positive numbers b0, b,

(1.8) bollUl{ <_ (u, Uu) <= bxllu 2.

Clearly C(u) >= 0 and hence, for fixed Xo, has a greatest lower bound Co >= O.
The optimal control problem is this" show that there is an admissible control
u, such that

(1.9) C(u,) Cxo
and characterize u. in terms of the operators appearing in (1.2) and (1.5).

See remark at the end of 5.
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At first reading the assumptions made on/, and ( in this section may
appear curious and somewhat arbitrary. That this is not the case is demonstrated
by the examples of 5.

2. Preliminary transformation. It is not easy to treat directly the problem
posed in 1. The main difficulty lies in the fact that the Kalman-Riccati equation
(cfo [1], [3], [4]) involves the unbounded operators and ( in a way which makes
analysis of its solutions very difficult. We shall see that a very simple transformation
overcomes this problem--and creates some new problems.

Since x(t) A we may define y(t) H1 by

(2.1) x(t) = (A 21)-Xy(t).

Then since

(2.2)

we have

(2.3)

x(t) eA(t-t)Xo + ea(’-S)(A I)- 1Bu(s) ds,
tO

y(t) eAtt-t)yo + eat’-S)Bu(s) ds.

The vector function y(t) is a "mild" solution of the differential equation dy/dt Ay
+ Bu. The differential equation itself may not be satisfied b.y y(t), however. In-
deed y(t) need not be differentiable in general. Equation (2.3) is all we have to
work with.

The cost functional (1.5) now becomes

(2.4)
T

C(u) [(y(t), Wy(t)) + (u(t), Uu(t))] dt + (y(T), Gy(T))

and thus involves bounded operators only. If we now proceed formally, taking
y(t) to be a solution of dy/dt Ay + Bu and follow the existing theory for finite-
dimensional systems,we are led to the Kalman-Riccati equation

(2.5)
dt

A*Q + QA + W- Q(BU-’B*)Q

with terminal condition

(2.6) Q(T) G.

Here B* H1 H2 is defined by

(2.7) (B’x, u) (x, Bu), x e H1, u e H2.

Again, however, we cannot expect "strict," i.e., differentiable solutions of (2.5).
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The most we can expect is a solution of the integral equation

Q(t) ea*tr-t)GeAtr-t)

ea’ts -’)[ W + Q(s)(BU B*)Q(s)]eats- ’) ds

which is strongly continuous in t. Now the development of the finite-dimensional
theory very definitely makes use of the differentiability of y(t) and Q(t). We shall
follow the basic ideas already introduced in the existing finite-dimensional theory
but we must not differentiate y(t) nor Q(t).

We remark that the proofs used in the finite-dimensional theory are valid
essentially without modification if A is a bounded operator since y(t) and Q(t)
are then differentiable. Thus our interest centers on unbounded A.

3. Optimal control on a finite interval. We begin this section with another
assumption on the operator A. This assumption was not introduced earlier
because the work of 1 and 2 does not require it. It is entirely probable that the
results which we shall obtain are valid under much weaker conditions.

ASSUMPTION A. We assume the following properties of A: there is a sequence
{E} of projections on H such that E:H - H,,, Hx,+

___
H,, lim_o E I

in the strong sense, there exists K > 0 such that ]IEII =< K for all k, A AE, is
bounded and extends E,A, lim_oo A,x Ax for x 6 A. The adjoint operators
A*, A’ and E’ have similar properties. This assumption is certainly fulfilled if A
is a spectral operator. (A complete definition of this concept is given in [9] and
[10] .) We note that e’4tEk eA’t and E’ea*t e"4t.

Let t be real and let Q(t) be given as a bounded self-adjoint operator.
Applying to the integral equation (2.8), with T replaced by t and G replaced by
Q(tl), the familiar technique of successive approximations one can show without
difficulty that there is a real 2 < tx and a positive number K such that in It2,
the integral equation has precisely one strongly continuous self-adjoint solution
Q(t) with Q(t,) as specified. Moreover, Q(t)is uniformly bounded, i.e., []Q(t)[] __< K,

[t2, tl]. In particular, this is true for t, Tand Q(t,) G. This is a local result,
however, in that t, 2 must be chosen sufficiently small. One of our main tasks
is to obtain a global solution of the integral equation. First we prove a lemma.

LEUUA 1. Assume Q(t) is the unique strongly continuous solution of (2.8) on
Its, T] and there satisfies IIQ(t)ll <= K. Let y(t) be a solution of(2.3) on Its, T] with
u(t) an admissible control. Thenfor Its, T],

.tT(y(t), Q(t)y(t)) (y(T), Gy(T)) [(y(s), Wy(s)) + (u(s), Uu(s))] ds

T

(u(s) + U-’B*Q(s)y(s), U[u(s) + U-’B*Q(s)y(s)]) ds.
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Proof. Let us put

(3.2) Qk(t) EQ(t)Ek.

We note that Qk(t) converges strongly to Q(t) as k oz and satisfies

(3.3)
e-[ W + E’Q(s)(BU-B*)Q(s)E]e-ds,

where W E’WE, G EGE. Since Ak, A’ are bounded operators, (3.3)
can be differentiated in the usual manner. Then putting yk(t)= Ey(t), we can
compute

d{(y(t), Qk(t)y(t)) [(y(s), Wy(s)) + (u(s), Uu(s))] ds}

(3.4)

(Aky(t) + EBu(t), Q(t)y(t))

+ (y(t), [-AQ(t)- Q(t)Ak- + EQ(t)(BU-1B*)Q(t)Ek]y(t))

+ (y(t), Q(t)[Ay(t) + EBu(t)])+ (y(t), Wyk(t)) + (u(t), Uu(t))

(EkUu(t), Q(t)y(t)) + (y(t), Qk(t)EkBu(t))

+ (y(t), EQ(t)(BU-’B*)Q(t)Ey,(t)) + (u(t), Uu(t)).

Since Qk(T) Gk, it follows that

(Yk(t), Qk(t)yk(t)) (yk(T), GkYk(T))

(3.5) [(y(s), Wyk(s)) + (u(s), Uu(s))] ds

[(EBu(s), Qk(t)y(s)) + (y(s), Q(s)EBu(s))

+ (yk(s), EQ(s)(BU-tB*)Q(s)Ey(s)) + (u(s), Uu(s))] ds.

We then let k and use the strong convergence of Qk(t), EQ(t) and Q(t)Ek to
Q(t), Gk to G, W to W, the convergence of yk(t) to y(t) and the Lebesgue dominated
convergence theorem to obtain (3.1). Thus the proof of Lemma is complete.

Lemma 1 is important in its own right and also plays an important part in the
proof of the following lemma.

LEMMA 2. The strongly continuous solution Q(t) of the integral equation (2.8)
has a unique strongly continuous extension to (- , T].
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Proof Let (to, T] )(t,, T], taken over all t, < T for which (2.8) has a

unique bounded self-adjoint solution Q(t), strongly continuous on (t, T] with
Q(T) G. If to -oo, there is nothing to prove, so we now suppose that t
is finite and shall show that this leads to a contradiction.

For t < o _-< T consider the initial value problem

(3.6)
dlP(t)_ [A BU-’B*Q(t)]p(t), .9([o)
dt

where ))o is an arbitrary element of H1. The solution .9(t) exists on [o, T] and
satisfies

(3.7) )(t) ea(t-),9o ea(’-s)BU IB*Q(s),9(s) ds

and thus is a solution of (3.6) in the "mild" sense. Now p(t) is a solution of (2.3) for

(3.8) O(t) U-1B*Q(t)ip(t)

and hence, from (3.1), we have

(3.9) (o, Q(o).9o)= (p(r), Gp(T)) + [(.9(s), Wp(s)) + (a(s), Ufi(s))] ds >= O.

Thus Q(t) is positive semidefinite on (t, T]. Now let

(3.10) p(t) ea(t-?)po
corresponding to u(t) =- 0 in (2.3). Then (3.1) yields

(,90, Q(o),9o) 0o, eA*(T-?)GeAtT-?).90)

and we see that Q(t) is uniformly bounded above on (to, T].
Now we prove that Q(too) may be defined as the strong limit of Q(t) as + to.

For all s _< T let us put

A*(s-’)[ W + Q(s)BU- B*Q(s)]eA(s- ’) s > t,
(3.12) Rt(s

(0, s<=t.
Then for (t, T] and y e HI,

(3.13) Q(t)y eA*(T-t)GeA(T-t)y Rt(s)y ds.
too

Since A and A* generate strongly continuous semigroups, Rt(s)y converges to
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Rtoo(s)y as t; to. Now the boundedness of lQ(t)j, leAtr-ll and ea*tr-ll on
(t, T] implies

(3.14) R,fs)y r Y]l, e (t, T],

for some fixed r 0. The Lebesgue bounded convergence theorem for vector-
valued functions (see, e.g., [6]) then shows that

(3.15) lim R,(s)y ds R(s)y ds
tt

and, defining (t) from (3.13) with t, we have

(3.16) lira (t)y (t)y, y H,
tt

and

(3.17) Q(t) < M2ee"’r-’)llG + (T- t)r.

Since Q(t) satisfies the conditions originally placed on G, we can replace G by
Q(t) and Tby t in (2.8) and the resulting equation will have a solution on a small
interval [, t]. It is a simple matter to verify that this provides a strongly con-
tinuous solution Q(t) on [, T], thus contradicting the definition of t. It follows
that t - and the proof is complete.

We are now able to characterize the optimal control u,(t).
THEOREM 1. Let Q(t) be the solution of (2.8)for to <-_ <__ T. Let o A and the

costfunctional C(u) be given as in the problem statement of 1. Then the control law

(3.18) u,(t) U-1B*Q(t)y,(t) U-*(A* 2I)Q(t)(A 2I)x,(t),
which determines x,(t) as the solution of

(3.19) dx,(t)_ [A -U--I*(A* 2I)Q(t)(A 2I)]x,(t) x,(to) Xo,
dt

yields the unique optimal control u,(t) minimizing C(u). Moreover, for each such Xo
and Yo (A 2I)xo, we have

(3.20) Cxo C(u,) (Yo, Q(to)yo) (Xo, (A* 2I)Q(to)(A 2I)xo).

Proof. For any admissible control u(t) on [to, T] we have, by Lemma 1,

C(u) (Yo, Q(to)yo)

(3.21) + (u(s) + U-’B*Q(s)y(s), Uu(s) + g-’B*Q(s)y(s)])ds
to

and, since U is positive definite, we have

(-3.22) C(u) > (Yo, Q(to)Yo), u(t) U- ’S*Q(t)y(t),

while (3.20) holds if u, is given by (3.18).
Remark. Since solutions x(t) of (1.2) lie in A and (A I)/ is bounded, the

applicability of (3.18) and (3.20) is not affected by the unboundedness of A.
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4. Optimal control on the infinite interval. Let us replace T by + and the
cost functional (1.5)by

(4.1)

C(u) [(x(t), x(t)) + (u(O, Uu(t))] at
to

[(y(t), Wy(t)) + (u(t), Uu(t))] dt

and otherwise pose the same problem as in 1.
DEFINITION. We say that the system (1.2) is optimizable relative to IY/if there

is a constant Ko > 0 and a bounded operator D such that solutions y(t) of

(4.2) y(t) eAtt-t)yo + eat-)BDy(s) ds,
to

corresponding to controls

(4.3) u(t) Dy(t)= D(A 2I)x(t),

yield values of C(u), as given by (4.1), satisfying

(4.4) C(u) <_ Ko[lY011 , yoeH1.

We note that for u(t) given by (4.3), C(u) will be independent of to. Hence the choice
of to is irrelevant in the definition and we take Ko to be independent of to.

In the case of finite-dimensional systems it has been shown that complete
controllability implies stabilizability which in turn implies optimizability. That
no such simple relationship holds for the systems we are interested in will be
made clear in 5.

For each T, let QT(t), _< T, denote the solution of (2.8)with G 0 so that

(4.5) Qr(T) 0.

We can then prove the following lemma.
LEMMA 3. Ifthe system (1.2) is optimizable relative to , then there is a bounded

self-adjoint positive semidefinite operator Qo defined on HI such that Qr(t) converges
strongly to Q for eachfixed as T --.

Proof Let T >__ first be fixed as in 3. Since (Yo, Qr(t)yo)is the minimum
value of the cost (2.4) with to t, G 0, the facts that A, B, W and U are nontime-
varying and W and U are nonnegative imply that

(4.6) Ko yoll 2 -> (yo, Qr(t- z)yo) >- (yo, Qr(t)yo)

for all r > O. Since the integral equation for Q(t) is autonomous,

(4.7) Q(t )= Q+(t),

and hence, for each fixed <= T,

(4.8) KollYoll 2 >= (Yo, Qr+(t)yo) >= (yo, Qr(t)yo)

so that Qr(t) is self-adjoint, monotone increasing with Tand bounded above. It
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is well known (see e.g., [7]) that this implies the existence of Q(t) as T
Now Qoo(t) Q is independent of because

(4.9) lim Qw(t)= lim Qr+,(0)=
T

in the strong sense. This completes the proof. For later reference we note that (4.8)
implies

(4.10) llQw(t)ll N Ko for all finite t, Z N Z

TH;OREN 2. U’(1.2) is optimizable relative to W, then the control law

u,(t) -U-B*Qy(t)
(4.11)

U -I*(A* 2I)Q+(A 2l)x+(t),

which determines x(t) as a solution of
dx(t)

dt
(4.12)

x(to) Xo A,

yields the unique (synthesized) optimal control u minimizing C(u) as given by (4.1).
Moreover, for Yo (A 2I)xo,

(4.3) C(u) (yo, 0yo) (Xo,(A* 2)Q(A 21)Xo).

Proof For fixed Yo 6 H let us denote by y(t) the unique solution of

(4.14) ,’(t) eAO’--)yo ea"-s)BU B*Qy(s) ds
lo

and by yr(t) the unique solution of

(4.15) y,(t) e"-’)yo e(-")BU B*Qr(s)yr(s) ds

Then

(4.16)

y(t) yr(t) eat-)BU B*[QT(S) Q]yo(s) ds
tO

+ e4(’-s)BU 1B*QT(S)[YT(S y(s)] dso

Using (1.1) and (4. 0) we have, for z, fl > 0,

(4.17) Ilyo(t)- y,r(t) cr/r(t) + fi {lyo(s)--yr(s)l[ ds,

where

(4.18) tiT(t) ]I(QT(S) Qo)yo(s) ds.
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By virtue of the strong convergence of Qr(s) to Q and (4.10) we are able to apply
the Lebesgue bounded convergence theorem to conclude

(4.19) lim q,(t) O.

Furthermore, the convergence is uniform on bounded intervals since r/r(t) is
monotone increasing in to A well-known result in ordinary differential equations
(see, e.g., [11, exercise, p. 37])shows that

(4.20) y(t)- y,(t)ll =< r/.(t) + ,[3e(--’?7,(s) ds.
to

Then (4.19) and (4.20) imply that

(4.21) lim y(t) yr(t) 0
Tc3

uniformly on bounded intervals.
Let us now define controls

(4.22) uT(t) U-1B*QT(t)yr(t),

(4.23) u(t) U-1B*Qy(t).

The optimizability of the system (1.2) relative to if’ implies the existence of controls
yielding costs uniformly bounded with respect to Iiyoll " (cf. (4.4)). Let u(t) be any
admissible control yielding finite cost. We shall show that this cost is greater than
or equal to the cost of the control (4.23). Let y(t) be the response to u(t,) via (2.3).
From the work of 3 we have

(Yo, QT(to)Yo)= [(yT(s), WYT(S)) + (UT(S), Uu,r(s))] ds

(4.24) N [(y(s), Wy(s)) + (u(s), Uu(s)); ds

[(y(s), Wy(s)) + (u(s), Uu(s))] ds < .
Now Lemma 3 implies that

lim (Yo, QT,(to)yo) (yo, Qyo).(4.25)
T-

Thus, if we can show that

lim [(yr(s), Wyr(s)) + (ur(s), Uur(s))] ds

(4.
[(y(s, (s + (u(s, u(s] s,

(4.24) will yield both the optimality of u and the equality (4.13).
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(4.27)

From the optimality of UT(t on [to, T],
T

[(YT(S), WyT(S)) + (UT(S), UUT(S))] ds
to

=< [(yoo(s), Wy(s)) + (u(R)(s), Uu(s))] ds
to

and hence

(4.28)

T

lim [(yT(S), WyT(S)) + (UT(S), UUT(S))] ds
Too

=< [(y(s), Wyoo(s)) + (u(s), Uuoo(s))] ds.

All that remains in the proof of (4.26) is to establish the reverse inequality.
For to =< =< Twe clearly have

(4.29)

W

[(YT(S), WyT(S)) + (UT(S), UUT(S))] ds
to

tl

>= [(YT(S), Wyr(s)) + (UT(S), UUT(S))] ds.

For tl fixed it follows directly from (4.9), (4.10), (4.21), (4.22), (4.23) and the
Lebesgue bounded convergence theorem that

(4.30)

T

lim [(yT(S), WyT(S)) + (ur(s), UUT(S))] ds
T

>=,i [(y(s),Wy(s))+(uo(s),Uu(R)(s))]ds.

Now letting t in (4.30)and combining the resulting inequality with (4.28)
we have (4.26).

Thus the optimality of uo and the equality (4.13) have been established. All
that remains is to show that uo is the unique optimal control. For any Yo
let be an admissible control, with response )7, yielding finite cost C(t), and differing
from uo on a set of positive measure. Then the set of real numbers

(4.31) {tit >= to, (t) + U- B*Qoo(t 0}
has positive measure. If this were not the case yoo(t) and jT(t) would both be solutions
of

(4.32) y(t) ett-t)yo e(’-)BU- B*Qooy(s) ds

and hence, by uniqueness, would coincide. Then we would also have t(t) uoo(t),
a.e., contrary to our assumption on . From the fact that the set (4.31) has positive



112 D.L. LUKES AND D. L. RUSSELL

measure it follows that, for sufficiently large T,

(4.33) ((s) + U-B*Qoo(s), g[(s) + U-B*Qoy(s)])ds > d > O.

Taking u(t) (t), y(t) y(t), Q(t) Qr(t) in (3.21) and letting r --, oe we see that

C() (Yo, Qyo)

(4.34) + ((s) + U- B*Qoo(s), U[g(s) + U-B*Qoy(s)]) ds

C(uj) + d

so that is not optimal. Thus u, is the unique optimal control and Theorem 2
has been proved.

We conclude this section with a theorem showing that Qo obeys the analogue
of the Kalman matrix equation

THEOREM 3. Ifthe operator A*Q, + Q A is defined on the domain

(4.35) {y Hlly A dom A, Qy A* dom A*},
then Q(R) satisfies the Kalman operator equation

(4.36) A*Q + QA + W- QoBU-1B*Qoo 0

in the sense that W + QoBU- 1B*Q is an extension ofA*Q + QA as defined
on (4.35) to H1.

Remark. Thus A*Q + QoA is bounded on (4.35) and has a bounded exten-
sion to all of H1. This does not imply that either A*Q or QooA is bounded,
however.

Proof As in the proof of Lemma 1, 3, set

(4.37) Qo,k-- EQooEk, QT,k(t)-- EQT(t)Ek.

Then Qr,k(t) satisfies the differential equation

(4.38)
dQT,k AQT k + QT,kAk + Wk- EQrBU-1B*QTEk
dt

for =< Tand the terminal condition QT,k(T) 0. Since QT(t) converges strongly
to Qoo as - oo, we conclude that the right-hand side of (4.38) converges strongly
to

(4.39) A’Qoo,k q- Qoo,kAk + Wk- EQooBU-1B*QooEk

If this limit were different from zero we could use (4.38) to show that QT,k(t), and
hence QT(t), does not converge strongly as -, oo, a contradiction. We conclude
that, for all k,

(4.40) AtQoo,k + Q,kAk --W + EJQoBU-1B*QooEk

As k -* oo, the right-hand side of(4.40) converges strongly to W+ QBU-1B*Qo.
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The proof of the theorem will be complete if we can show that, whenever y lies in
the domain (4.35),

(4.41) lim (A’Qoo,k + Ooo,kAk)y (A*Qoo + QooA)y.
k--*

First .we compute

(4.42) QooAy Qoo,kAky (I E)QooAy + EQooA(I Ek)y.

Since E’ converges strongly to I, limk-,oo (I- E)QooAy 0. On the other
hand, since ye A dom A, Assumption A of 3 implies that A(I- Ek)y
converges to zero as k oe. Since EQoo is uniformly bounded, we conclude
limk-o EQooA(I Ek)y 0 and hence

(4.43) lim Qoo kAky QAy, y e A.

We next wish to show that, for y in (4.35),

(4.44) lim AQ,ky A*Qooy.
k--*

NOW

(4.45) lim Qoo,kY lim EQooEky Qy

since EQoEk converges strongly to Qoo. On the other hand, since we have already
proved (4.43), all terms except AQ,k in (4.40) converge, when applied to the
vector y, as k --* oe. It follows that

(4.46) lim A’Qoo,kY- lim A*Q(R),ky

exists. Combining (4.45) and (4.46) and using the well-known fact that A* is a
closed operator, we conclude that

(4.47) lim AQo,kY A*Qy.
koo

Putting (4.43) with (4.47) we have (4.41). The proof of the theorem is complete.

5. Applications and remarks. We shall now show that the theory developed
in the preceding sections can be expected to have a reasonably wide range of
application.

Consider a "linear oscillator" in a Hilbert space H:

(5.1)
d2w
dr---f + Tw Bu,

with control u lying in a second Hilbert space H2 We assume that/ is a bounded
operator,/’H2 - H, while Tis a positive definite self-adjoint operator, possibly
unbounded, defined on a domain A dense in H. The energy of such an oscillator
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is given by

dw 1
1/2W, T 1/21,11)w,--d-- (T

dw dw),,
where T 1/2 denotes the positive square root of T. There are many familiar examples.
If we take, for e R1,

(5.3) (Tw)() (-1)"
d" d"w

-d P()-
and impose, via specification ofboundary and smoothness conditions, appropriate
requirements on A, T will be self-adjoint and strictly positive. The cases n 1 and
n 2 correspond to the string and simple beam, respectively. In R2 one can
consider the membrane

(5.4) (Tw)(, rl)

or the plate

2W 2W
(2 t012

{ }law awl(5.5) (Tw)(, rl) - +
c32 + c32 ],

again with appropriate boundary and smoothness conditions. There are many
other examples.

Setting

dw
(5.6) w w,

dt
w2,

we have a first order system in H1 H H:

(5.7) d- W2 r w2

If we now put

(5.8)
W1

W2 iT12 _iT/2

X1

X2

we obtain, in place of (5.7),

(5.9)
x2 0 iT /2

--i /2B]x12) --- T--r-/ /

and the energy is now

(5.10) E(X1, x2) (Yl/Zxl, T1/Zx1) + (T1/2x2, T1/zx2).
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If we set x
xl and
X2

(5. ) A

(5.12) /

iT/2

0

dw
(5.16) u -k/-1-, k > 0.

dt

The resulting closed-loop system

(5 17)
d2w

k dw-
dt---+ dt

+ Tw=O

has solutions with a uniform exponential rate of decay. In this case the cost (5.15)
can be uniformly bounded in terms of the initial energy and the results of 4
apply to show that there is an optimal control relative to the cost functional (5.15).
Now ifthe original system involves damping, as is the case in practically all physical
problems, we could replace the left-hand side of (5.1) by the left-hand side of (5.17).

(5.13) W
0 T

and take U to be any bounded, self-adjoint positive definite operator on
then we have a system satisfying all of the conditions laid down in 1. Moreover,
since A is normal in this case, Assumption A of 3 is certainly valid.

Theorem then implies that on any finite interval [0, T] there is a unique
linear control for the linear oscillator (5.1) which minimizes

7r dw
(5.14) fo IE(w(t), tt + (u(t), Uu(t))] dt +. E{w(’I’),-d-[(T))
a cost functional involving the energy of the system during the interval [0, T]
and also the final energy at time T. This is true regardless of the nature of the con-
trol space H2 and thus applies to control via finite-dimensional forces as well as
infinite-dimensional (i.e., distributed) forces.

The situation on the infinite interval is more complicated. If we wish to use
the cost functional

(5.15) E w(t)
dw

+ (u(t), Uu(t)) dr,

there is some difficulty in obtaining any control yielding bounded cost. If Hz H
and B is nonsingular, we can set
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Then, regardless of the nature of/ or the control space H2, there will be an optimal
control relative to the cost functional (5.15), for the control u 0 yields bounded
cost.

Frequently one wishes to consider an undamped oscillator with scalar
control u. The pertinent equation is then

(5.18)
d2w
dt2

+ Tw gu, g H.

It turns out that for the system (5.18) there is, in general, no control yielding a
cost which is uniformly bounded relative to the initial energy (which is the norm of
y after the transformation of 2 is applied to (5.9))and hence (5.15)cannot be used.
However, it has been shown in [12] that, if appropriate assumptions are made
concerning the expansion of the vector g in terms of the eigenvectors of T, then
there is a control policy, namely u -(dw/dt, g), which with cost functional

(5 19) (w(t) w(t)) + r-/dw dw
-a?’ T-/ + u(t) clt

yields a cost uniformly bounded with respect to the initial energy, and thus the
existence of an optimal control relative to (5.19) is established.

Our theory also applies to the "heat equation"

dw
(5.20) + Tw Bu,

dt

with the same assumptions on T as above. Appropriate cost functionals would
involve (w, w), for example. In this case the preliminary transformation of 2
is not necessary.

The theory which we have developed would be of little use in practice unless
there is a feasible way to calculate the operators Q(t) and Q. Fortunately such
a procedure does exist in many cases as we shall see.

For many of the operators A arising in physical problems the spectrum
consists of a countable sequence {2,} of eigenvalues, and the corresponding
sequence {b,} of normalized eigenvectors tbrms a basis for the state space H1
in fact the {b,} are usually a complete orthonormal set. It is then natural to
take Ek to be the projection from H onto the span of bl, b2, "", bk with null
space equal to the span of bk + 1, bk + 2, "and to define E’ similarly in terms of the
unique biorthogonal sequence for {4,}. One may then consider finite-dimensional
approximations to the system (2.3),

(5.21)
dyk

Akyk d- EkBu,
dt

where Yk Eky, and a correspondingly truncated cost functional

Ck(U) [(yk(t), WkYk(t)) + (u(t), Uu(t))] dt

(5.22)
+ (yk(T), GkYk(T)),
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where

(5.23) W E’WEk, Gk E’GEk.
For the truncated problem (5.21), (5.22) one obtains the solution

(5.24) uk(t) U- B*EtQk(t)yk(t),
where Ok(t) satisfies

Ok(t)--- ea,(T-t)Gkca(T-t)
(5.25) fr e’(-’[- Wk + Qk(s)EkBU- B*EOk(s)]eA(-‘’ ds.

In fact, since all operators here are bounded, Ok satisfies

(:5.26) dOk AO + OkAk + Wk OkEkUU-’U*E’’,Ok, 0k(T)
dt

Now (k(t) can be calculated using the known techniques available in the
finite-dimensional case. If in some sense we have limk_, 0k(t)= Q(t), then
repeated clculations of Ok(t), for larger and larger values of k, will yield increasing-
ly good approximations to Q(t). In general it is not immediately clear that this is
true, but the theorems presented below cover many, if not most, of the situations
which arise in practice.

Our first theorem treats the case where A is a normal operator and the
operators W and G both commute with A (and hence with A* and the projections
Ek E’). The example of the linear oscillator (5.1) with cost functionals (5.14),
(5.15) fits into this rather restrictive category of problems as will (5.20) with a
cost functional of the type suggested there.

THEOREM 4. IfWand G both commute with the normal operator A, then we have

(5.27) (Yo, Qk- l(t)yo) <= (Yo, Qk(t)yo) -<- (Yo, Q(t)yo), <= T, Yo 6 H,.

For each Yo H1 andfinite t < 7;

(5.28) Ok(t)yo Q(t)yo -, 0 as k -- oo

uniformly for Its, T]. Consequently, for Yo H,

(5.29) (Yo, Ok(t)yo) (Yo, Q(t)yo) as k oo

uniformly for Its, T]. If the system (1.2) is optimizable relative to W, we take
G 0 and then (5.28), (5.29) are valid uniformly for oo < <= T and

(5.30) lim Qk,

Proof We have, for each to =< T,

(5.31) (Yo, Q(to)yo) C(u.),

where u. is the optimal control on [to, T] corresponding to the initial condition
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y(to) Yo and the cost functional (2.4). Thus,

(Yo, Q(to)yo) [(y,(t), Wy,(t)) + (u,(t), Uu,(t))] dt
to

(5.3)
+ (y,(T), Gy,(T)).

Let the same control u, be used now for the truncated system (5.21) with initial
condition yk(to)= Ekyo and cost functional (5.22). The resulting response is
yk(t) Eky,(t) with cost

Ck(U,) [(y(t), WkYk(t)) + (u,(t), Uu,(t))] dt
to

+ (yk(T), GkYk(T))

(5.33) [(y,(t), EkWEky,(t)) + (u,(t), Uu,(t))] dt
to

+ (y,(T), EkGEky,(T))

<= C(u,) (Yo, Q(to)yo).

The last inequality in (5.33) follows from

(5.34)
(y, EkWeky) <= (y, Wy),

(y, EkGEky) <= (y, Gy), y6H,

which is an obvious consequence of the fact that W and G commute with the
orthogonal projections Ek. Then since

(5.35) (Ekyo, O(to)Ekyo) (Yo,

is the optimal cost for the truncated problem, the second inequality in (5.27)
follows. An entirely analogous argument proves the first inequality.

Since for each the Qk(t) are increasing and bounded above by Q(t), there is a
nonnegative self-adjoint 0(t)such that 0k(t)converges strongly to 0(t) for each t.
An application of the Lebesgue bounded convergence theorem shows that Q(t)
solves (2.8) and thus, by uniqueness, ((t) Q(t). Thus the convergences (5.28)
and (5.29) follow. The fact that the convergence (5.29) is uniform on compact
intervals follows from (5.27) and Dini’s theorem. From Schwarz’s inequality for
bilinear forms and (5.27) we have

II[O,(t)- Q(t)]yoll 4 --(Yo, [Q(t)- Ok(t)]2yo)2

(5.36) =< (Yo, [Q(t)- O(t)]yo)([Q(t)- O(t)]yo, [Q(t)- Ok(t)]Zyo)

=< (Yo, [Q(t) Qk(t)]yo)(21]Q(t)[

The boundedness of IIQ(t)l on compact subintervals of (-, T] follows from
(3.11), hence the uniform convergence (5.29) applied to (5.36) proves the uniform
convergence (5.28).
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Now if (1.2) is optimizable relative to , then Q exists; moreover, (4.6) and
(5.27) imply that Qk, also exists and

(5.37) (Yo, Ok-,Yo) <= (Yo, Ok,Yo) <= (Yo, QYo).

Then there is a nonnegative self-adjoint Qoo such that, for y e H1,

(5.38) lim Ok,Y QY.
k--

Clearly

(5.39) (Y, OooY) <= (Y, Qy), y HI.
Now if there were some .9 H1 and e > 0 such that

(5.40) (., 0o.9) -< (.9, Q.9) e,

we would argue as follows. Choose < T so that

(5.41) (, Oig) <= (, Q(t,)ig) < -.
Then choose k so large that

(5.42) (, Q(t,)ig) (.9, O(tx)i9) < -"
Then clearly

(5.43) (, O(t,)ig) > (9, OP) >= (i9, O,P),
which is a contradiction. Thus (5.39) must be an equality for all y 6 H and, since
Qo Qo is self-adjoint, this implies that

(5.44)

The fact that (5.28) and (5.29) now hold uniformly for all follows readily if we
compactify (-, T] in the usual manner by adjoining - and extend the
functions in (5.28), (5.29) to by continuity (e.g., (Yo, Q(- )yo) (yo, Qooyo)).
The convergence is still monotone and Dini’s theorem and then (5.36) along with
(4.10) can be applied again.

Recall that the operators O_,(t), Q not only represent optimal costs but, what
is even more important insofar as engineering applications are concerned, they
constitute the major part of the feedback synthesis construction. The real signifi-
cance of (5.30) is that

lim Ok(t)---(5.45)
k-

with no restriction regarding the manner in which (k, t) approaches (,-).
The following result treats more general cost functionals than Theorem 4, but a
severe (from the mathematical, but certainly not the engineering, viewpoint)
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restriction is imposed upon the controls and (5.45) is replaced by the weaker result

(5.46) lim (lim 0k(t)) Q
t--* k-o

for the case of optimal control on an infinite interval.
THEOREM 5. If the control space H2 is finite-dimensional we have

(5.47) Qk(t)y Q(t)y

<_ T, y Ha. If A is normal, then the convergence (5.47) is uniform on each finite
interval <- <__ T.

Proof Let Qk(t) solve

Ok(t)
(5.48) r

| ea*(’-"[ W + O_.k(S)EkBU- IB*E’O(s)]eas- ds.

Then

(5.49) Ok(t) EOk(t)Ek,
since both are solutions of (5.25). Now EkB" Ha ---, H and converges strongly as
k oo to B. But, since Ha is finite-dimensional, strong convergence implies
convergence in the norm, and so we have

(5.50) lim EkB B O.
koo

But convergence in norm of a sequence of operators also implies convergence in
norm of their adjoints hence

(5.51) lira IIB*E B*II 0
kc3

and thus

(5.52) lim EkBU-XB*E BU-B* O.

Comparing (5.48) with (2.8) we see that Q(t) and Qk(t) satisfy equations differing
only in the terms which appear in (5.52). Using (5.52), we can easily prove that

(5.53) lim liOn(t)- Q(t)ll 0
koo

uniformly on any compact interval t _<_ _<_ T. The strong convergence (5.47)
follows from (5.53), Assumption A and the estimate

(5.54)
II[O(t)- Ok(t)]Yll I1[I E’]Q(t)yl + IIE’IIQ(t) [I E[Iyll

/ g’ll IIg IIQ(t) Q(t)ll Ilyi

easily attained from (5.49). If A is normal, E’ is an orthogonal projection, hence
Dini’s theorem applies to the second term of (5.54). Then the uniformity of the
convergence (5.47) follows easily from. (5.54) using the uniformity of the conver-
gence (5.53) and the bo,andedness of IIQ(t)II on [t, T].
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It would seem that the strong convergence (5.28), (5.47) should be true under
much more general conditions than those assumed in Theorems 4 and 5. The
essential result needed is the strong convergence, as k --. oe, of solutions of the
integral equations

to the solution of

O(t) 0(o) + F(Q(s)) s

(5.56) Q(t) Q(to) + F(Q(s)) ds,

given that Qk(to) converges strongly to Q(to) and the coefficients in the expression
Fk(Q) converge strongly to the corresponding coefficients in the expression F(Q).
Problems of this type are studied separately in 13].

We conclude with a remark relative to the operators land d described by
formulas (1.6) and (1.7). It is quite possible that these operators, as written, might
have domain consisting only of the zero element in H1. This would be true, e.g.,
if the range of W, or G, were disjoint from the domain ofA*. In such an eventuality
if’ and ( need not be defined at all. We merely replace (x(t), flex(t)) in (1.5) by
((A 2I)x(t), W(A 2I)x(t)). This changes nothing in the remainder of the work.
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ON THE TOURS OF A TRAVELING SALESMAN*

KATTA G. MURTY

Abstract. Adjacency properties of tours on their convex hull are discussed. A rule is given by
which it can be tested whether any two tours are adjacent vertices on this convex hull or not. Based on
this rule an algorithm is described for generating all the adjacent tours of a given tour.

1. Introduction. The traveling salesman problem is the problem of finding a
minimal cost tour covering a set of n cities given the costs of traveling between
every possible pair of cities. Here a tour is a path covering all the cities, each city
being covered once and only once in the path. A precise mathematical definition
of a tour is given later on.

Let us denote the cities by 1,2,..., n. We put

if in the tour the salesman goes from to j,
xij 0 otherwise.

Then the matrix X (xij), which is a cyclic permutation matrix, represents the
tour.

If in a tour the salesman goes from il to i2, then (il, i2) is called an arc or cell
in that tour.

We use the letters i,j to denote cities.
Let Cij cost of traveling from to j, g= j; cii 0, an arbitrarily chosen very

large positive number. Then C (cu) is the cost matrix for the problem and this
is given. Starting from any city, the salesman can choose to go to any of the
remaining n- cities initially. From that city he can go to any of the remaining
n-2 cities and so on. Thus, the total number of distinct tours is (n-1)!. The set
of all possible tours is denoted by T and their convex hull’by Kr. We shall use
the letters or s to denote tours.

Given any tour we describe an algorithm in this paper for generating the
adjacent tours of t on the convex polyhedron Kr.

2. Notation. The convex polyhedron KA is the set of all feasible solutions

X (Xij),

Xij 1,
(1)

xi= 1, i= l,-.-,n,
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an n x n matrix, where the Xij satisfy

j= 1,...,n,
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An extreme point of KA is called an assignment. Every assignment is a per-
mutation matrix, i.e., it is an n n matrix with a single nonzero entry equal to 1
in each row and column. We use the letters a, b to denote assignments.

Occasionally it is convenient to denote an assignment by its unit cells, i.e.,
the cells in the matrix X representing the assignment which have unit entries in
them. All the other cells have zero entries, of course. Thus,

(2) a {(1,j,), ..., (n,j,)}

is an assignment, where Jl, "", J, is a permutation of the numbers 1,2,-.-, n.
We also write

(r, jr) 6 a

which means that in the matrix X representing the assignment a, the entry in the
cell (r, jr) is 1. The same fact is also expressed by saying that (r,j) is a cell in the
assignment a, or that the assignment a has an allocation in the cell (r, jr).

For any assignment a we shall denote specifically by {a} the set of cells of a,
i.e., if a is the assignment given by (2), then

{a} {(1,jl),--., (n,j,)}.

A tour is an assignment whose cells can be written down as a complete path
covering all the cities and then returning to the starting point, without any sub-
tours. In other words a tour is an assignment whose cells can be written down as

{1,jl ), (Jl,J2),’", (J,-1,1)},
where j l, J2, J,- is a permutation of the numbers 2, 3, --., n. To be specific,
we can say that is a tour covering the cities {1,2, ..-, n}. Thus, T cz: A and
KTm KA

By a self-loop at a city we mean a cell of the form (i, i). It corresponds to an
allocation along the principal diagonal of the matrix X representing an assign-
ment. Any cell of the form (i, i) is also called a diagonal cell. Any cell of the form
(i, j) where :/= j is called a nondiagonal cell.

Pick any subset S of the cities {1,2,..., n} such that S {1,2,---, n} and
S {1,2,..., n}. Then any tour covering the cities in S only is known as a
subtour.

A nontour is an assignment which is not a tour and which has no self-loops.
In other words it is an assignment without any allocation along the principal
diagonal, whose unit cells constitute at least two subtours.

D.A. is an abbreviation for the diagonal assignment which is the assignment
represented by the unit matrix.

Two assignments a and 6/2 are called adjacent assignments if the line segment
joining them is an edge of the convex polyhedron KA, i.e., if and only if every point
of the form /a + (1 2)a2 for all 0 _< 2 N has a unique representation as a
convex combination of assignments.

Two tours t and t2 are called adjacent tours if the line segment joining them
forms an edge of the convex polyhedron KT, i.e., if and only if every point of the
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form 2tl + (1 2)t2 for all 0 =< 2 N 1 has a unique representation as a convex
combination of tours. Since Kr c KA, two tours which are not adjacent as assign-
ments may be adjacent as tours.

Suppose the tour {(il, i2), (i2, i3), "’", i,, il)}. Then the tour i= {(i2, i),
(i3, i2), .’., (il, i,)} is called the reflection of the tour t.

The O-loop ofa nonbasic cell. Consider a basis for (1) representing an assign-
ment a. Such a basis consists of 2n basic cells, the n cells of a which are at value
and n 1 other independent cells which are at value 0 in the basis.

Let us try to obtain a new basis by bringing the nonbasic cell (il ,Jl) into the
basis. To do this, we put an entry of +0 in the nonbasic cell (il ,j). Since the sum
of all the entries in each row and column should equal 1, we should put a -0
entry somewhere else in column jl and row i.t. Make all these subsequent entries
among the basic cells only. Taking up from column j, put alternate entries of
-0 and + 0 among columns and rows until the + 0 entry in each row and column
is canceled by a -0 entry. The set of all the basic cells along the -0 and + 0 path
is called the O-loop of the nonbasic cell (i ,j) in this basis. The maximum value
which 0 can take without the resulting solution violating the nonnegativity con-
straint of the xis’s is known as the value with which the nonbasic cell (i ,j) enters
the basis.

ZBC is an abbreviation for any zero-valued basic cell in any basis for (1).
In any basis for (1), if a nonbasic cell (it ,j) enters the basis with a value of zero,
then it can be brought into the basis as a ZBC replacing any of the old ZBC’s
in its 0-100p. If it enters the basis with a unit value, then it can be brought into the
basis by replacing one of the unit-valued cells in its 0-100p. But in this process some
of the other unit-valued basic cells might become ZBC’s.

3. Mathematical theory. We shall first of all look at a characterization of the
set of all tours T as a subset of the set of all assignments A. This leads to the
corollary that the traveling salesman problem is a special case of the general
problem of finding the minimal cost adjacent vertex of a given vertex in a linear
programming problem. This can be solved easily when the linear programming
problem is nondegenerate. But if the given vertex is a degenerate vertex, the
problem of finding its minimal cost adjacent vertex becomes very hard, which
explains the difficulty in solving the traveling salesman problem.

THEOREM 1. Considering KA, the set of all feasible solutions to (1), we have:
(i) all tours are adjacent assignments to D.A.
(ii) every nontour is not an adjacent assignment of D.A.

(iii) the class of all adjacent assignments ofD.A. consists of
(a) all the tours,
(b) all the subtours in a smaller number of cities with self-loops at the

remaining cities.
This theorem has been proved by Heller in [1].
(i) can be proved by taking a basis for (1) representing the D.A., with

(1, 2), (2, 3), ..., (n 1, n) as ZBC’s. In this basis for (1) if the nonbasic cell (n, 1)
is brought into the basis, the tour {(1,2),(2, 3), ..., (n, 1)} is obtained. Thus the
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tour {(1, 2), (2, 3),.-., (n, 1)} is obtained by performing a single pivot in a basis
for (1) representing the D.A., and hence it is an adjacent assignment of the D.A.
A similar argument holds for every other tour.

(iii) is proved by a similar argument.
(ii) follows because any 2n of the cells among those of the D.A. and any

nontour are not linearly independent and hence cannot constitute a basis for (1).
Thus any nontour cannot be obtained by a single pivot step in any basis repre-
senting the D.A., which proves (ii).

COROLLARY 1. The traveling salesman problem is a special case ofthefollowing
problem: given a feasible vertex V (i.e., an extreme point) in a linear programming
problem, find the minimal cost adjacent vertex of V.

Proof Consider the assignment problem with C as the cost matrix, i.e., the
problem of minimizing Z i,j cijxij subject to the constraints (1).

The cost of any self-loop is a, which is a very large positive number. Hence,
(iii) of Theorem implies that the minimal cost tour is the minimal cost adjacent
assignment of D.A.

COROLLARY 2. Consider any assignment a which has no self-loops:

a= {(ia,Jx),’",(i,,j,)}, irg:jr, r-- 1,...,n.

If the cells ofa together with any n of the diagonal cells as ZBC’s form a basis
jbr the system 71 constraints (1), then a must be a tour and conversely.

Proof This follows easily because if a contains at least two subtours, then
any 2n- of the cells {(1, 1), ..., (n, n), (il,jl), "", (i,, j,)} cannot constitute
a basis for (1) as in (ii) of Theorem and conversely.

4. Properties of nonadjacent tours. The following theorem provides a test for
determining whether two given tours are adjacent tours or not.

THEOREM 2. Two tours tl and t2 are not adjacent tours ifand only if it is possible
to form another tour t3, distinct from t and t2, by taking some cells out of t and
the others out of t2, but no cells outside those of tx and t2. Such a tour 3 contains
all the common cells oft and t2. In other words, and t2 are not adjacent tours

if and only if there exists a tour t3, 3 =/: t, 3 =/: 2 such that

{t3} c {tl} kA {t2} and {tl} {t2} {t3}.

Proof If tl and t2 are not adjacent tours, then by definition there exists
0<< such that

(3) ct + (1 )t2 iSi,
i:1

where/3i > 0, =/g 1, each of the s for i- 1,..., r is a tour and at least
one of them, say sl, is distinct from t and 2.

In (3) none of the s for 1,..., r can contain any cell outside those of
and t since/i > 0 for all to r.

It also implies that each of the si must contain all the common cells of t and
t2, since//i > 0 for 1, ..., r.
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Hence, the tour sl which is distinct from and 2 satisfies all the requirements
in the proposition for the tour 3.

On the other hand, if there exists a tour like 3 above, then t4 such that

where \ indicates set theoretic difference, represents another tour by Lemma 1,
which follows. And, 1/2tl + 1/2t2 1/2t3 + 1/2t4. Hence, tl and t2 are not adjacent
tours.

DEFNU:ON. Consider any tour t, where

{(i,, i2), (i2, i3),’",(i,, il)}.
Then, a subset of like

{(il, i2), "’", (it-1, it)}
is called a segment of from to i. It consists of all the cells of along a path
from to i in t. The arc (il, i2) itself may be considered as a segment of from
il to i2.

LMMA 1. Suppose tl and 2 are two distinct tours and t3 is another tour such
that

t3 tl, t3 : t2,

{t3} = {tl} {t2},

Then, the cells
{t3} {tl} {t2}.

{t4} [{tl} {t2} U [{tl} L) {t2} X {t3}],
where \ indicates set theoretic difference, represent another tour.

Proof Since both {t3} and {t4} contain all the common cells of tl and t2, it
is sufficient to prove the lemma for the case when and t2 have no common cells.

In {tl} w {t2} there are two cells in each row and column. Of these t3 con-
tains one in each row and column, since t3 is a tour. Thus, t4, which consists of the
remaining cells, contains one cell from each row and column. Hence, t4 is an
assignment.

It remains to show that in t4 there is a path from any city to any other.
Since t3 is a tour, it must consist of some segments of and some of 2.

Actually, it consists of alternating segments from tl to 2 respectively, i.e., it may
consist of a segment from i, to i2 of l, then a segment from it2 to it3 of t2, then
again a segment from i3 to i4 of tl, etc.

Thus, t4, which consists of the remaining segments of and t2 (after striking
off those in common with t3) contains a path from each city to each other. Hence,
t4 is a tour.

LEMMA 2. and , the reflection oft, are always adjacent tours jbr n >= 3:

Proof Consider

{(1, 2)(2, 3)(3, 4)(4, 5)(5, 6)(6, 1)},
{(2, l)(3, 2)(4, 3)(5, 4)(6, 5)(1, 6)}.
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If these are not adjacent tours, then by Theorem 2 it is possible to form a tour s
distinct from and from the cells {t} w {}.

Suppose (1,2)e s. Then, since s contains only one cell from each row and
column, (1, 6) q s and (3, 2) q s. So, (5, 6) s, (3, 4) s. Hence, (5, 4) s. Now, since
s cannot contain any subtours, (1,2)e s implies that (2, 1)q s. Similarly, (6, 5)q s,
(4, 3) s. Hence, (2, 3.) s, (6, 1) e s, (4, 5) e s. Hence; s t. Hence, it is not possible
to form a tour distinct from and with the cells of {t} w {}. Therefore, by
Theorem 2, and are adjacent tours.

In general, by renumbering the cities, we can assume that

t* {(, :), (2, 3), ..., (n , n), (n,

By a construction similar to the above, we verify that the only tours that can
be formed using only the cells {t*} w {*} are t* and *. Hence, by Theorem 2,
t* and * are adjacent tours. Only when n 2, {(1, 2),(2, 1)}.

LEMMA 3. Suppose n > 4 and r <= n 3. Let

{(1, il), (il, i2), (i2, i3),’", (i,,-2, i,,_ 1), (i,,_,, 1)}
be any tour. Pick any r of the cells of t. Then there exists an adjacent tour oft
containing exactly those r cells in common with t.

Proof. The tour may be represented by the sequence

lili2 in-2in-1
indicating the order in which the cities are visited in the tour t.

The sequence which represents , the reflection of t, is obtained by reversing
the order in which the cities occur in the sequence representing t. Thus is repre-
sented by the sequence

in_xin_ 2 i2ixl.
Case 1. Suppose the r cells which were picked constitute a segment of from

to it, say. We wish to find an adjacent tour of which contains this entire segment.
For this we shall treat all these cities from to ir along the segment as a single
block of cities. This is indicated by enclosing the segment from to i within
brackets, in the sequence representing t, which then becomes

We treat this entire block as if it were one location. Any arc entering this block
enters at and any arc leaving the block leaves from i. In t, the n r cells which
are not on the segment from to i form a tour in the cities it+l, ..., i,_ and
the block, the reflection of which has all the properties desired of l. To generate
it we write down the reverse sequence obtained by reversing the order of the
cities it+ 1,"", i,_ and the block in the sequence for t. In reversing the order
of the cities, we treat the block as if it were another super-city, and we reverse its
position in the sequence, but keep the order of the cities within it unchanged.
This gives rise to the sequence
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The tour represented by this sequence

tl {(i,_ 1, i,-2), "", (it+z, it+ 1), (i+ 1, 1), (1, il),’", (i-1, i), (it, i,_ 1)}
is an adjacent tour of which has all the cells of the segment from to i in common
with t.

Case 2. Suppose the r cells which were picked constitute k nonoverlapping
segments of t, say from 1 to i1, from i2 to i3, etc.

As before, write down the sequence representing the tour and in that
sequence represent each of the k segments above as a block"

[1il it]il+ 1’’" lit2"’" il3
Any city which is not in any block is known as an out ofblock city.

Now reverse the order of the out of block cities and the blocks in the above
sequence, without changing the order of the cities inside each block. This gives
a new sequence and let be the tour represented by it. Then is an adjacent
tour of and its common cells with are exactly the r cells which were picked
(contained within the blocks).

As an illustration, if

{(1, 3), (3, 2), (6, 5), (9, 8); (2, 7), (4, 9), (5, 1), (7, 10), (8, 6), (10, 4)},
the tour obtained by the above procedure, containing the first four cells in t, is

tl {(1, 3), (3, 2), (6, 5), (9, 8); (2, 6), (5, 9), (8, 4), (4, 10), (10, 7), (7, 1)}.
LEMMA 4. When n >= 6, it is always possible to find a pair of nonadjacent tours.

Proof If n 6, let

tl {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)},

t2 {(1, 3),(3, 2),(2,4),(4, 6),(6,.5),(5, 1)},

t3 {(1, 2), (2, 3), (3, 4), (4, 6), (6, 5), (5, 1)},
and if n > 6, let

tl {(1, 7), (7, 8), ..., (n 1, n), (n, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)},

t2 {(1, n),(n,n- 1),(n 1, n- 2), ..., (8, 7),(7, 3),(3, 2),(2, 4),(4, 6),(6, 5),(5, 1)},

t3 {(1, 7), (7, 8), .-., (n 1, n), (n, 2), (2, 3), (3, 4), (4, 6), (6, 5), (5, 1)}.

Then, t3 - tl, t3 4 t2 and {t3} c {tl} w {t2}. Hence, by Theorem 2, tl and tz
are not adjacent tours.

LEMMA 5. When n >= 6, the number of adjacent tours of any given tour is

Proof. When n > 6 and r __< n- 3, by Lemma 3 we know that there exists
at least one adjacent tour of containing exactly any selected r cells of in common
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with it. Hence, if U, is the number of adjacent tours of a given tour, then

y, =2"-
n=O

This indicates that the number of adjacent tours of a given tour goes up at least in
the order of 2". This completes the proof.

The important steps in the simplex algorithm for minimizing a linear function
on a convex polyhedral set described by a set of linear inequalities are the following

(i) An easy method has been developed by which adjacent vertices of any
given vertex may be obtained.

In the simplex method this is done by bringing a nonbasic variable into the
basis (one pivot step).

(ii) If the present vertex does not minimize the linear function on the solution
set, then a simple criterion has been developed, by which one can obtain
an adjacent vertex at which the linear function takes a value less than or
equal to that at the present vertex.

In the simplex method this is done by bringing into the basis a nonbasic
variable whose relative cost coefficient is negative.

Even though it is not easy to describe the convex polyhedral set Kr by a set
of linear inequalities, it is possible to develop a simple method by which adjacent
tours of a given tour may be obtained. This corresponds to Step (i) of the simplex
method discussed above.

The method for obtaining adjacent tours of a given tour uses pivot steps on
the assignment matrix, which is characterized by the set of linear constraints (1).
This is discussed below.

4.1. An algorithm for generating an adjacent tour of a given tour. Any basis
for the system of constrains (1) with the n ZBC’s along the principal diagonal
represents a tour by Corollary 2. Such a basis is known as a diagonal basis (DB)
of that tour. Using the test developed in Theorem 2 and Lemma 2, an algorithm
which starts with a DB of a given tour and leads to a DB of an adjacent tour is
described below.

Consider a given tour t. Then, the cells of are known as the original basic
cells (OBC’s).

Step 1. Start with any DB for t. Bring any nonbasic cell which is not a diagonal
cell into the basis replacing an OBC (or a diagonal cell if this is not possible) in its
row or column.

The new cells that are brought into the basis are called the new basic cells
(NBC’s),

At any stage an OBC in the row or column of an NBC is known as an excess
cell. A row (or column) is known as a deficit row (column) if it has

(i) only one basic cell in it and if this is either a diagonal cell or an excess cell
(ii) only two basic cells in it and if one of them is a diagonal cell and the

other an excess cell.
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Step

10

12

TABLE

Current basis

(1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 8) (8, 9)
(9, 10)(10, 1); (1, 1)(2,2)(3,3)(4,4)(5,5)
(6, 6)(7, 7)(8, 8)(9, 9)

(2, 7)(7, 8)(8, 9)(9, 10)(10, 1)(1, 2)(3, 3)
(4, 4) (5, 5)(6, 6); (1, 1)(2, 2)(3, 4)(4, 5)(5, 6)
(7, 7)(8, 8)(9, 9)(6, 7)

(2, 7)(6, 5)(5, 6)(7, 8)(8, 9)(9, 10)(10, 1)
(1, 2)(3, 3)(4, 4); (1, 1)(2, 2)(3, 4)(6, 6)(7, 7)
(8, 8)(9, 9)(6, 7)(4, 5)

(2, 7)(6,5)(5, 6)(7,8)(9, 10)(10, 1)(1,2)(3,3)
(4, 4) (8, 9); (4, 9) (1, 1)(2, 2) (3, 4)(6, 6)(7, 7)
(8, 8) (9, 9) (6, 7)

(2, 7)(6, 5)(7, 8)(9, 10)(10, 1)(1, 2)(3, 3)
(4, 4)(5, 6)(8, 9); (4, 9)(8, 6)(1, 1) (2, 2)(3, 4)
(6, 6)(7, 7)(8, 8)(9, 9)

(2, 7)(6, 5)(1, 2)(7, 8)(9, 10)(3, 3)(4, 4)(5, 6)
(8, 9) (10, 1); (4, 9)(5, 1)(8, 6)(2, 2)(3, 4)(6, 6)
(7,7)(8,8)(9,9)

(2, 7)(10, 4) (4, 9)(8, 6)(6, 5)(5, 1)(1, 2)(7, 8)
(9, 10)(3, 3); (2, 2)(4, 4)(6, 6)(7, 7)(8, 8)
(9, 9)(3, 4)(5, 6)(8, 9)

(2, 7)(10, 4)(4, 9)(8, 6)(6, 5)(5, 1) (3, 3)(7, 8)
(9, 10) (1, 2); (3, 2)(2, 2) (4, 4)(6, 6) (7, 7)
(8, 8)(9, 9)(5, 6)(8, 9)

(8, 6)(6, 5)(5, 1)(1, 3)(3, 2)(2, 7)(10, 4)(4, 9)
(7, 8)(9, 10); (2, 2)(3, 3)(4, 4)(6, 6)(7, 7)(8, 8)
(9, 9)(5, 6)(8, 9)

(8, 6) (6, 5) (5, 1)(1, 3)(3, 2)(2, 7)(10, 4)(4, 9)
(7, 8)(9, 10); (2, 2)(3, 3)(4, 4)(5, 5)(6, 6)
(7, 7)(8, 8)(9, 9)(8, 9)

(10, 4)(4, 9) (1, 1)(2, 2) (3, 3)(5, 5)(6, 6)(7, 7)
(8, 8)(9, 10); (8, 6)(6, 5)(5, 1)(1, 3) (3, 2)
(2, 7) (4, 4) (9, 9) (8, 9)

(10, 4)(4, 9)(1, 1)(2, 2) (3, 3)(5, 5)(6, 6)(7, 7)
(8, 8)(9, 10); (8, 6)(6, 5) (5, 1)(1, 3)(3, 2)
(2, 7)(7, 10)(4, 4) (9, 9)

(1, 3)(3, 2)(2, 7)(7, 10)(10, 4)(4, 9)(9, 8)
(8, 6)(6, 5)(5, 1); (1, 1)(2, 2)(3, 3)(4, 4)(5, 5)
(6, 6)(7, 7)(8, 8) (9, 9)

Excess
cells

(6,7)

(6,7
(4,5)

(8,9)
(6, 7)

(5,5)
(8,9)

(5,6)
(8,9)

(10, 1)

(3,4)
(5,6)
(8,9)

(1,2)
(5, 6)
(8,9)

(5, 6)
(8,9)

(8,9)

(8,9)

(9, 10)

Deficit
and

columns

row 3
col. 3

row 4
col. 3

row 8
col. 3

row 5
col. 3

row 10
col. 3

row 3
col. 3

row
col. 3

row 7

row 9

NB
diagonal

cell brought

(2, 7)

(6,5)

(4, 9)

(8,6)

(5,1)

(10,4)

(3,2)

(1,3)

(1,1)

(7, 10)

(9, 8)

OBC
diagonal

cell
removed

(2,3)

(5,5)

(4,5)

(6,7)

(1,1)

(10, l)

(3,4)

(1,2)

(5,6)

(7,8)

(8,9)

(9, 10)
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Subsequent steps. Bring into the basis a nonbasic cell which is not a diagonal
cell and which is in a deficit row or column and not in a row or column of any
NBC, replacing if possible an OBC in its row or column or otherwise a diagonal
basic cell in the same row or column.

The process terminates when a DB is reached.
If at any stage a DB is not reached, but there is no deficit row or column,

then the number of diagonal basic cells must be < n- 1. Bring a nonbasic
diagonal cell back into the basis replacing an excess cell if possible, or otherwise
an OBC in its 0-loop. When n- diagonal basic cells are again in the basis,
either a DB is obtained or some deficit rows and columns are created.

The steps are repeated until a DB is reached. The new DB represents the DB
of an adjacent tour of by Theorem 2.

Also let be any tour and an adjacent tour of t. Start with a DB for and
bring successively the cells of {tl} {t} (where \ indicates set theoretic differ-
ence) as NBC’s in the above algorithm. By Theorem 2 there does not exist any
other tour 2 distinct from and tl whose cells form a subset of {t} w {t }. Hence
the above algorithm will terminate only when all the cells of t are brought into
the basis.

Thus by an appropriate choice of NBC’s at the various steps, all the adjacent
tours of a given tour can be obtained by the above algorithm.

4.2. A numerical example. Let {(1, 2), (2, 3), .-., (9, 10), (10, 1)}. Starting
with a DB for t, we obtain an adjacent tour of t. The bases for (1) during the various
steps of the algorithm are given in Table 1.

In the table, the basic cells at each stage of the algorithm are arranged in
two groups; the cells listed before the symbol ";" are unit-valued basic cells and
those that follow the ";" are ZBC’s.

Since Step 12 gave a DB, the tour

{(1, 3), (3, 2), (2, 7), (7, 10), (10, 4), (4, 9), (9, 8), (8, 6), (6, 5), (5, 1)}
is an adjacent tour of t.
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CONTINUITY IN THE STRONG TOPOLOGY OF
OPERATOR-VALUED SOLUTIONS OF NONLINEAR DIFFERENTIAL
EQUATIONS WITH AN APPLICATION TO OPTIMAL CONTROL*

DAVID L. RUSSELL,"

0. Introduction. A classical result in the theory of ordinary differential
equations concerns continuity of solutions with respect to initial conditions and
parameters. If for x R", It Rm, real, we denote by x(t, , It) the solution of

(0.1) 2 f(x, t, It)

which satisfies the initial condition

(0.2) x(0, , It) ,
then the familiar result is the following. Suppose that the solution x(t, o, Ito)
exists for e [0, T). Given 6 > 0, if we choose I]( -(o[] and lIt -/2ol] sufficiently
small, then the solution x(t, , It) exists for [0, T 6]. Moreover, uniformly for
all e [0, T 6],

(0.3) lira x(t, , It) x(t, o, Ito).
-’o

Of course, certain rather general conditions must be imposed upon f(x, t, It).
These conditions as well as a proof of the result just indicated may be found, for
example, in 1].

In this paper we wish to consider differential equations with solutions X(t),
where X(t) fl(B1, B2), the Banach space of all bounded linear transformations
X’.BI B2, where B and B2 are themselves Banach spaces. Now the usual
topology used in fi [](B, B2) is the one induced by the norm

(0.4) IlXl] sup IlXy[12,
yB

where }1" I[ is the norm in B. As long as we speak of continuity with respect to
this norm topology there is very little change from the results described above as
we pass from finite-dimensional systems to systems having operator-valued
solutions X(t). There is, however, another topology in /3 which is of frequent
interest. We say that a sequence (X, fl converges to X, fi in the strong
topology of fl if, for every y fl,

(0.5) lim X,y Xoyl[ 2 0.
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We may then ask Given a differential equation with solutions in fl, does continuity
with respect to initial conditions and parameters prevail if we work only within
the framework of the strong topology?

It is immediately clear that if any such results are obtained they must differ
somewhat from those already known for (0.1). For example, let fl denote the
space of bounded linear transformations from the Hilbert space 2 into itself.
An element X fl can be represented by an infinite matrix:

(0.6) X

Xll X12 X13

X21 X22 X23

X31 X32 X33

Let us denote those X represented by diagonal matrices as

(0.7) X diag (Xl 1, x22, x33, ").

Consider then the differential equation

(0.8) X" x2

in [3 fl(l2, 12). We prescribe initial conditions

(0.9)

X,(0) diag(- 1, 1,..., -), 1, 1, 1,...),

n entries

X(0) diag(- 1, 1, 1,...).

n= 1,2,3,...,

It is clear that lim,_ X,(0) X(0) in the strong.topology of ft. Now the corres-
ponding solutions of (0.8) are

(o.o)

X,(t) diag
1

-1--t’ ’--1-t’l--t’ 1-t

n entries

1
Xoo(t)=diag

_1 t’-l- t’-I t’

The solution X(t) exists for all >__ 0 while none of the solutions X,(t) is defined
for >= 1. This is a definite departure from our experience with finite-dimensional
systems. Observe, however, that for all < 1, X,(t) converges strongly to Xoo(t)
asn .

In 1 we shall study, under fairly general assumptions, the question of strong
continuity of solutions with respect to initial conditions and parameters. Because
we wish to include the case of "mild solutions" (cf. [2]) of certain differential
equations whose linear part involves an unbounded operator, we work with the
integral equation (1.6) below. This equation is of a type general enough to include
most differential equations in/ which are likely to be of interest.
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In 2 we shall show that our results are of more than purely mathematical
interest in that they can be applied to the study of finite-dimensional approxima-
tions to certain optimization problems for differential equations in Hilbert spaces,
or, in engineering parlance, distributed parameter systems.

1. Strong continuity results for integral equations. Let [2 fi(B ,B2) be
the Banach space of bounded linear transformations X’B1 B2 equipped with
the norm (0.4) and let ) be a compact topological space. For X /,/ , t, s real,
0 _<_ s t, let F(X, , t, s) and G(X, 1, t) be functions

(1.1) F" fl
(.2) .[ R’ 1, G(X,,0) X,

with the following properties.
PROPERTY 1. Let X(p,t) and X0() be continuous relative to the strong

topology of [4 for e , real. Then F(X(, s), p, t, s) and G(Xo(), , t) are both
continuous relative to the strong topology of [ for e , and s real, 0 s t.

PROPERTY 2. Corresponding to any set

(1.3) 0 T, IlXll K

there is a positive number L L(T,K) such that if X,X2,t satisfy (1.3), then,
uniformly for e fl, 0 s T,

(1.4) ]F(X2, , t, s F(X , t, s)

THEOREM 1. Let X(g, t) be the solution of the integral equation

(.

sati@ing the initial condition

.7 x(, o Xo(.

ff Xo(l) is strongly continuous for e , there is a positive number T such that
X(g, ) is strongly continuous in the set {g e , e [0, T]}.

Remark. The integral equation (1.6) clearly covers the case of a differential
equation

(1. 2 (X, , t,

where P(X, , t) is a polynomial in X with coecient operators which are strongly
continuous functions for gefl, e R This is true because multiplication of
bounded operators preserves strong continuity.

Pro[of Theorem 1. The usual proof of the local existence and uniqueness of
solutions of (1.6) employs the method of successive approximations. One sets

(. 0(,, t Xo(I, 0 T,
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and thereafter

(1.10) X,+ (tt, t)-- G(Xo(#),l,t) + f(X,(la, s),tz, t,s)ds.

Using Properties (1) and (2) above, one shows in a way which is by now familiar
to all tim,t, if T is sufficiently small,

(1.1) lim X.(g,t) X(lz, t) =0

uniformly ti)r 0 N T, where X(g, t) is the unique solution of (1.6) and (1.7).
For each fixed y e B, Xo()y’ B2 is continuous witB respect to the

lie topology of Be for # e . Since is compact there is a positive number
M(y) such that

The principle of uniform boundedness [3] may then be invoked to show that there
is a positive number M such that

Using (1.13) together with the fact that the inequalities (1.4) and (1.5) for F and G
are required to hold uniformly for g e , 0 s T, it is immediately evident
upon examination of the method of successive approximations that T can be
chosen independently of g e and that (1.11) holds uniformly for l* e ),
Moreover, there is a positive number K M such that

For details of the method of successive approximations, we suggest
l.et l*o e[L 0 s0 to. Since Xo(, t) Xo(#) converges strongly

as I.. converges to l-o, we may use Property to see that h)r each y e B,

(l.l 5) lim G(Xo(I,), 1*, t)y G(Xo(lo), IZo,

Combining (1.10) with (1.15) we see that

(1.17) lim XI(Iz, t)y Xx(lo, to)y,
t- tO

if and only iL for all ye B,

(1.1g) lira F(Xo(#,s), l,, t,s)y ds F(Xo(/ao,S), lo, lo,s)y ds.
to
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Lettl > to be fixed and let P=F, 0<_s_<_t=<tl,/=0, <s__<t.Thenthe
continuity expressed by (1.16)implies that for 0 _<_ s =< tl, s - to,

(1.19) lim P(Xo(#, s), #, t, s)y P(Xo(#o, s), Po, to, s)y.
t-to

The continuity (1.16) together with the compactness of the set (q, 0 s = t
implies the boundedness of F in that set. We may then apply the Lebesgue domina-
ted convergence theorem to the integral

F(Xo(p, s), la, t, s)y ds

to obtain the desired result (1.18). The Lebesgue dominated convergence theorem
for vector-valued functions is proved in [3]. We have noted that (1.17) is implied
by (1.18) and hence X(/t, t) is strongly continuous for psi, 0 __< _<_ T.

One now proceeds by induction, showing, just as above, that the strong
continuity of X,(p, t) implies that of X,+ (#, t) via (1.10). Thus X,(p, t) is strongly
continuous for p, 0 _<_ __< T, n 0, 1,2,....

Now let e > 0 be chosen and let y B, Let N be chosen so that

(1.20) X(#, t) X,(/, t)ll < p 6 , 6 [0, T],

for all n >= N. Then let p, be chosen close enough to Po, to in the product topology
of (R) [0, T] so that

(1.21) II(XN(Po, to) XN(#, t))y[[2 -< e/2.

Then we readily verify that

(1.22) X(#o, to)y X(ft, t)yll 2 <= ,
and the proof of Theorem is complete.

The result expressed by Theorem 1 is purely local in that strong continuity
of X(#, t) persists only over a sufficiently short interval [0, T]. The example (0.8)
offered in the Introduction shows that in general we cannot expect more. However,
we can obtain global results if we assume a certain boundedness of the solutions.

THEOREM 2. Let it be known that, for all p f, X(#, t) exists and satisfies (1.6)
for all >= O. A necessary and sufficient condition in order that X(#, t) should be
strongly continuous in the set {#,t >= 0} is that there exists a nonnegative
function K(t) (without loss ofgenerality increasing) such that

(1.23) IIX(, t)ll =< K(z), # 6 D, 0 =< =< : < oo.

Proo. The condition is clearly necessary. If, for each y Bl, X(#, t)y is con-
tinuous in the compact set {p D, [0, :]}, then IIg(, t)yll2 is bounded there.
The principle of uniform boundedness then shows that X(/t, t)[I is bounded in that
set.
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Now we shall show that the boundedness (1.23) is sufficient for global strong
continuity of X(/, t). Let z > 0 be chosen and let to [0, z). For to =< _<_ we have

(1.24)

where

(1.25)

X(#, t) (kt, to, t) + F(X(#, s), #, t, s) ds,

G(lz, to, t) G(Xo(t), #, t) + F(X(#, s), #, t, s) ds.

Let us assume that X(#, s) is strongly continuous in the set { fl, 0 _<_ s __< to}.
Now Property 1 implies the boundedness of G(0, kt, t) and F(0, #, t, s), uniformly
for 0 __< s __< =< z. Combining this with the a priori bound (1.23) and Property 2
we obtain a bound on G(Xo(#), #, t) and F(X(#, s), #, t, s) which is uniformly
valid for p 92, 0 __< s __< =< :. The Lebesgue dominated convergence theorem
implies that ((#, to, t) is strongly continuous for kt 92, 0 _< _<_ :, for the integral
in (1.25) involves X(kt, s) only for 0 =< s =< to. We may now apply the techniques
of Theorem 1, altered only very slightly, to extend the strong continuity from
[0, to] to [0, to + 5P], where the size of > 0 depends only upon z, not upon to.
Starting with to T, the interval length found in Theorem 1, a finite number of
extensions cover [0, z] and the proof is complete.

We end this section by noting that the case of a sequence Xk(t) of solutions
(as, for example, (0.8)-(0.10)) is included in Theorems 1 and 2 by taking
92 1, 2, ..., ov with a neighborhood system described by"

(i) N is a neighborhood of the finite integer n if N is any subset of 92 which
includes n.

(ii) N is a neighborhood of ov if N is a subset of 92 which contains all but
finitely many n.

Clearly fl, as thus topologized, is compact.

2. Application to quadratic optimal control problems. Let A be a normal
operator defined on a Hilbert space H1 with spectrum contained in some left
half-plane"

(2.1) o-(A) {plRe (#) =< #o}.
Let H2 be a second Hilbert space and /’H2 --* H1 a bounded linear operator
which, for some 2 rr(A), can be written in the form

(2.2) / (A -/ll)-

where B" H2 -- H is also bounded. We consider the linear ordinary differential
equation

(2.3)
dx

Ax + Bu
dt

in H with initial condition

(2.4) x(0) Xo 6 A dom (A).
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Given a fixed time T > 0 let us consider the problem of finding a control u,(t)
lying in the set of measurable vector-valued functions

(2.5) u’R H2 Ilu(t)ll 2 dt <

which minimizes

C(u) {((A 2I)x(t), W(A 2I)x(t)) + (u(t), Uu(t))} dt

(2.6)
+ ((A 2I)x(T), G(A 2I)x(T))

with respect to all controls in (2.5). Here W, U and G are bounded self-adjoint
operators. W and G are required to be positive semi-definite while U is to be positive
definite. Because (2.2) implies x(t) A for all t, C(u) is always defined.

The above problem has been considered in detail by D. L. Lukes and the
present author in [4], where it is shown that the minimizing control u,(t) is
generated by the feedback law

(2.7) u,(t) U- ’/*(A* 2I)Q(t)(A 2I)x,(t) =- D(t)x,(t),
which gives rise to responses x,(t) satisfying

(2.8) dx,
[A + BD(t)]x,(t).

dt

The bounded linear operator Q(t)’H H is given for =< T as the unique
strongly continuous solution of the integral equation

(2.9) Q(t) eA*(T’-t)GearT’-t) eA*ts-t)[ W + Q(s)(BU- B*)Q(s)]eAts-t) ds.

An optimal control theory formulated in such an abstract setting is of very
little value to the engineer unless it represents a limiting case relative to some
approximating sequence of finite-dimensional problems. In practice the spectrum
of A is usually discrete, consisting of a sequence of complex eigenvalues, and the
corresponding eigenvectors form a complete orthonormal set in H x. Thus, a
natural way to define finite-dimensional approximations is to restrict attention to
finite-dimensional subspaces of H spanned by finitely many of the eigenvectors
of A. H2 may already be finite-dimensional (this is usually the case) but if not it
will also be necessary to consider finite-dimensional subspaces of it.

We arrange the eigenvalues of A in a sequence, 2x,22, 23, ..-, and we let
Ek denote the orthogonal projection from H onto the space Hk spanned by the
eigenvectors of A corresponding to the first k eigenvalues 2,22,..., 2k. The
projections Ek commute with A and converge strongly to the identity as k- .
Also, we let {/k} be a similar collection of orthogonal projections on H2 which
commute with the self-adjoint operator U. For k 1, 2, 3,... we put
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according as T’Hx Ha, T’H2 Ha, T’H1 H2 or T’H2 H2, respectively.
Also, we set

(2.11) Xk EkX, Uk ffkU.
We consider now the finite-dimensional systems

(2.12) dXk= AkXt + BkHk k 1,2, 3,...
dt

with initial conditions

(2.13) x(O) Xo.

One then seeks for a control u,(t) minimizing

C(u) {((A 2E,)x(t), W(A 2E)x(t)) + (u(t), Uu(t))} dt

(2.14)
+ ((A, 2E)x(Ta), G,(A- 2E,)x,(T)).

Again one shows that the minimizing control u,(t) is generated by

(2.15) Uk,(t) U ~* *Bk (Ak 2Ek)Qk(t) (Ak 2Ek)Xk,(t) bk(t)Xk,(t)
yielding responses Xk,(t) satisfying

(2.16) dXk,= [Ak + kbk(t)]Xk*(t).
dt

Here Qk(t) satisfies

Ok(t) eA,(T-t)GkeA(T -t)

(2.17)
T

eAr’(s-t)[ Ok(S)(BkU 1B*k)Ok(S)]sA(s-t) ds.w, +

It should be emphasized that in general Ok ::/: Qk’ bk : Dk, Ilk* =] bl*k’ and Xk, X,k.

The real test of this approximation procedure is provided by asking if, for
0 _<_ =<- T1,

lim Uk,(t) u,(t)(2.18)
k-

(2.19) lim (Ak 2Ek)Xk,(t) (A 2l)x,(t),

Evidently both of these will be true if, again for 0 _<_ _<_ T1,

lira Ok(t)y Q(t)y, y(2.20)

i.e., if Ok(t) converges strongly to Q(t) as k - .If we reverse the time sense in (2.9) and (2.17) and attach an index "" to
Q(t), then (2.17), k 1, 2, ..., and(2.9) satisfy all of the conditions set down in 1.
The parameter pace f consists of 1, 2, 3, ..., o topologized as indicated at the
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end of 1. Theorem then implies the validity of (2.20) for sufficiently close to
T., =< T1. The result is obtained in the complete interval () :<__ T by showing
that ][0k(t) Q(t) are uniformly bounded for O " T1, thus permitting the
application of Theorem 2. This boundedness is rigorously demonstrated in [4
and is a consequence of the observation that the quadratic forms (y, Q(t)y),
(yk, Ok(t)yk) represent the minimum costs associated with problems of the above
type posed on the interval It, Tt] with initial conditions x(t)= (A- 2I)-1y,
Xk(t) (Ak 2Ek)- Yk.
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EXISTENCE OF SADDLE POINTS IN DIFFERENTIAL GAMES*

P. VARAIYA AND JIGUAN LIN’

1. Introduction. We consider games in which there are two players I and II
whose respective states x(t) R", y(t) R at time obey the differential equations
(1) and (2) respectively"

(1) (t) f(x(t), u(t), t),

(2) .9(t) g(y(t), v(t), t).

The control functions u and v are constrained by u(t) U, v(t) V, where U c Rp,
V Rq are fixed compact subsets. The game starts at time 0 in some specified
initial states x(0) Xo, y(0) Yo and ends at a specified time T, at which instant
I receives from II a certain amount--the payoff. We consider two kinds of payoff.
The payoff of the first kind is the value of a functional lt(x, y), where x and y are the
trajectories of the two players. The payoff of the second kind is the smallest time
for which the triple (x(t), y(t), t) belongs to a specified closed subset

F R" x R R,

where it is assumed that R" x R T} F and T < . At each time player I
selects a control u(t) U based upon his observations of the trajectory of II up to
time in such a way as to maximize the payoff; conversely, at each time player II
selects a control v(t)e V based upon his observations of x(z), 0 __< z =< t, in such a
way as to minimize the payoff. Games with payoff of the first kind have been called
games of prescribed duration [1], while games with payoff of the second kind have
been called pursuit-evasion games (player ! is the evader, I! is the pursuer). Now
it is difficult to make precise the notion of a strategy for the players which takes
into account the information available to them at each instant of time. In this
paper we shall propose a precise definition of a strategy (which agrees with our
intuition) and we justify it by demonstrating the existence of a saddle point. Our
definition is an extension of that given in [2] in a direction suggested by Roxin [3].

Whereas the technique that we use to prove the saddle-point theorems
(Theorems 7, 8, 9) is borrowed to a large extent from Fleming [4], the spirit of this
paper is closer to the approach ofRyll-Nardzewski [5]. In the next section we state
standard assumptions on the systems (1) and (2) which guarantee compactness of
the space of trajectories of the two players. In 3 we define classes of strategies
with differing information patterns and prove an important (although easy)
result which allows us to compare these different classes of strategies. In 4
we use this result to give a very simple proof of Fleming’s theorem for a payoff
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of the first kind, namely, we show that the optimal payoff for the majorant and
minorant games (see [4]) converge to the same limit VF as the discrepancy in the
information patterns vanishes. In 5 we propose our definition of the game and
show existence of saddle points for a payoff of the first kind (Theorem 7). The
value of the game agrees with that of Fleming. As a corollary to this result in
6 we obtain existence ofsaddle points for payoffs of the second kind. In 7 we give

one example which seems to show that our definition cannot be made more
attractive.

2. Conditions on the differential systems. We make the following assump-
tions on the differential systems (1). Corresponding assumptions are made (but
not stated) regarding (2).

(i) For each fixed t,f is continuous in (x, u) for all (x, u)e R" x U.
(ii) There is a measurable function k, integrable on finite intervals, such that

for every u e U and x, 92 in R",

If(x, u, t) -.f(2, u, t)l k(t)lx 1.
(Here and throughout [. denotes Euclidean norm in R" or R".)

(iii) There are positive numbers M and N, and a measurable function l, in-
tegrable on finite intervals such that for every x in R, and u in U,

If(x, u, t)i =< l(t)(M + Nlxl).

(iv) Convexity condition: For every x in R", in R, the set

f(x, U, t) f(x, u, t)lu U}
is convex.

A measurable function u (v) is said to be an admissible control if u(t)e U (v(t)s
for all t. A solution x of (1) (y of (2)) is said to be an admissible trajectory if it arises
from an admissible control.

DEFINITION. Let Xr(x0) denote the set of all admissible trajectories x of
which are defined on [0, T] and which start at Xo at time 0, i.e., x(0) Xo. Similarly
we define Yr(Yo)-

We consider Xr(xo) as a subset of the Banach spaces C}mthe space of all
continuous .functions from [0, T] into R" under the max norm. Similarly, Yr(Yo)
is a subset of C}. The next result is well known (see, for example, [6] or[7]) the
first part is a consequence of the assumption that the sets f(x, U, t) and g(y, V,
are convex, whereas the second part follows from the assumption that f, g satisfy
Lipschitz conditions.

THEOREM 1. (i).IfXo R" and Yo Rm are compact, then

) Xr(xo) c C} and Q) Yr(Yo) c C
xoXo YoeYo

are compact.

(ii) Xr(" ), Yr(" are continuous functions of their arguments. (Here continuity
is with respect to the Hausdorff metric.)
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Let Xo c R", Y0 C R" be compact, and define

XT X.(Xo), YT YT(Yo).
xoXo Yo Yo

TqEOREM 2. For each 6(0, 1] there exists a map FI’XT- XT with the
.following properties:

(i) lfx X(xo), then FI’(x)6 X(xo).
(ii) Ifx, in Xr satisfy

then

(iii) Let

then

x(z)= (z) .for O =’t (= t,

n’(x)() n’()(z) for 0 <=

sup {I x FI’(x)[ Ix e Xr};

lim e(6) O.
6--*0

(Here and throughout denotes norm in the Banach spacesCr, C’.)
Remark. The idea of the proof is the following: We take x Xr. Suppose x

arises from a control u. Then let HX(x) be the trajectory arising from the same
control u delayed by 6T. Since different controls may yield the same trajectory,
care has to be taken in choosing the control in order to obtain property (ii).
Because the proof of this theorem does not directly contribute to our main interest
it is presented as an Appendix.

3. Strategies. Let Xo, Yo be specified initial states. Throughout this paper the
symbol 6 (with or without subscripts) represents a number which is equal to 1/2"
for some integer n >__ 0. We now define three classes of strategies A6(xo, Yo) {6},
A(xo, Yo) {}, and A6(Xo, Yo) {} for player I and three classes of strategies
B6(xo, Yo) {f16}, B(xo, Yo) {fl}, and B.6(Xo, Yo) {f16} for player II.

DEFINITION. (i) A6(Xo, Yo) is the set of all functions 6" Yr(Yo) XT(xo) such
that if y, are in Y(Yo) with y(z) (z) for 0 =< z =< i6 T, then z6(y)(z) 6(9)(z) for
O<__v<=(i/ 1)6T, i-O, 1,...,1/6- 1.

(ii) A6(xo, Yo) is the set of all functions 6" Yr(Yo)--* Xr(xo) such that if
y, 9 are in Y(Yo) with y(z)- (z) for 0 <= z < i6T, then z6(y)(z)- 6()(z) for
0 _<_ z <= i6T, i= O, l, ..., 1/6.

(iii) A(xo, Yo) is the set of all functions " Yr(Yo) XT(xo) such that if y, 3)
are in YT(YO) with y(z)-- .9(z) for 0 __< z __< t, then (y)(z)- ()(z) for 0 __<_ z __< t,
O<_t<_T.

The sets of strategies B6(xo, Yo), B(xo, Yo) and B6(xo, Yo) are defined in the
same way.

It is convenient to regard the strategies A6, A, A6 for I as subsets of F(Y(yo),
X(xo))---the space of all functions from Y(Yo) into X(xo) with the topology of
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pointwise convergence. Similarly, we regard B6, B, B6 as subsets of the topological
space F(Xr(xo), Yr(Yo)). By the Tikhonov theorem F(Xr(xo), Yr(Yo)), F(Yr(yo),
Xr(xo)) are compact.

The first part of the next result is a direct consequence of the definition, while
the proof of the second part is a duplication of the arguments in Lemma 4.1 of [2].

THEOREM 3. If6 <= 2, then
(i) A A A A’ A and Bz B, B B’ Bz.

(ii) The sets Aa, A, A are closed and hence compact subsets of F(YT(Yo),
Xr(xo)). Similarly the sets Ba, B, B are closed and hence compact subsets
ofF(Xr(xo), YT(Yo)).

Recall the map 1-Ix and the function e(6) in Theorem 2.
THEOREM 4 (Approximation theorem). (i) If A, fla6 B, then (1-I aa)

belongs to A, and (flao 1-Ix) belongs to B.
(ii) II(y) (Hx )(y) =< (b)for a Aa, y YT(YO).
Proof (i) is a consequence of the definition, while (ii) follows from Theorem 2.

4. Payoff of the first kind; Fleming’s theorem. Let Xo R", Yo Rm be
fixed compact sets. Let Xr [,JxoXo Xr(xo), Yr Q)yoro Yr(Yo). The payoff is a
continuous real-valued function / defined on the compact space Xr Yr.
Let Xo Xo, Yo Yo be specified initial states. Following Fleming [4], for each
6 we define a majorant game G(Xo, Yo) and a minorant game G(xo, Yo) as follows"
In the majorant game, player II picks a strategy fl B(xo, Yo) and then player I
picks a strategy c A(xo, Yo). Then a unique pair of trajectories (x, y) Xr(xo)

Yr(Yo) is determined by (, fl) stepwise on successive intervals [0,6T],
[6T, 26T],..., IT- 6T, T] as follows"

1. By definition of , (xl)(t) fl(x2)(t) for 0 _<_ _<_ 6T and for all Xl
in Xr(xo). Let

y(t) fl(x,)(t), O<=t<=6T,

where x XT(XO) is arbitrary.
2. If y, Y2 in YT(YO) are any trajectories such that y(t)= y2(t)= y(t) for

0 =< 6T, then by definition of a6,

a6(y)(t) a6(y2)(t), O<t<6T.

Let

x(t) 6(yx)(t), O <__ <=.ST,

where yl e Yr(Yo) is any trajectory such that yx(t) y(t) for 0 =< _< iT.
3. If x, x2 in Xr(xo) are any trajectories such that Xl(t) x2(t) x(t) for

0 <= <= 6T, then by definition of f16,

fla(X)(t) fl6(X2)(t), 0 <= <= 26T.
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Let

y(t) fffi(x1)(t), 0 2c5T,

where x Xr(xo) is any trajectory such that Xx(t) X(t) for 0 =< =< 6T.
Analogous to step 2, the knowledge of y on the internal [0, 2fiT] determines

via the trajectory x on [0, 26T]. This in turn determines y via fl on the internal
[0, 36T] and so on. We shall denote the dependence of (x, y) on the strategies
&, fl) by sometimes writing x x&, fl), y y&, fl).

In the minorant game, player I first selects a strategy A(xo, Yo), and then
II chooses some fl B(xo, Yo). In a dual manner to the steps outlined above there
results a unique pair of trajectories (x, y) in Xr(xo) Yr(Yo) whose dependence
on (0, fl) will sometimes be denoted by x x(0, fl), y y(a, B).

Since I tries to maximize the payoff and II tries to minimize it, we define

V(xo, Yo) min max kt(x(, fl), y(z, fi)),
fl6eB,(xo, Yo) o’ A’(xo, Yo)

V(xo, Yo) max min /(x(, fl), y(, fl)).
a,eA,(xo,Yo) fleieB’(xo, yo)

From Theorem 3(i) it follows that

V(Xo, yo) -_< V,(Xo, yo) <= V’(Xo, yo) <= V(Xo, yo)

whenever 6a 6. Hence the two limits

V(Xo, Yo) lim VO(xo, Yo), V(xo, Yo) lim Va(xo, Yo)
--’ 0

exist.
From the definition of the strategies and the manner in which they determine

the outcome of the trajectories, it should be clear that an alternate definition of
Va, V is the following characterization which is closer to that of Fleming [4]"

Va(xo,Yo) rain max min max
yeYl(YO) xleXI(xo) y2eY2(yI(OT)) xZ6x2(xI(cT))

(3)
min max #(x, y),

y/6Y/6(y/6- ((1-6)T)) x/’5eX/6(x /6- t((1 -b)T))

Va(xo,Yo) max min

(4)
x,

max min /(x, y),
XI/6.XI/f(X 1/6- 1((1 --fi)T)) yl/6Yl/6(yl/6-1((1 -O)T))

where, X(xo) (Y(Yo)) is the set of all admissible trajectories x (ya) of (1) ((2))
defined on the interval [0, fiT] and starting at Xo (Yo); and inductively if x (y) has
been chosen, Xi+ (xi(ifT)) (Yi+ l(yi(ibT))) is the set of all admissible trajectories
x+1 (y+) defined on [i6T, (i + 1)6T] and starting at time icT in the state
x(ibT) (y(ibT)). The outcome (x, y)is defined by x(t)= x(t)(y(t)= yi(t)),
(i 1)fiT <= <= ibT, 1, 2, ..., 1/6. Since the various sets of trajectories X,Y
are compact and vary continuously with initial conditions (by Theorem 1), and
since/ is a continuous function, it follows that V, V are well-defined and vary
continuously with their arguments (Xo, Yo) Xo Yo.



146 P. VARAIYA AND JIGUAN LIN

The next lemma gives two other alternate expressions for V
LEMMA 1.

(5) V’(Xo, Yo) max min /(x(, fi), y(od, rio)),
6Aei(xo,Yo) fldBd(xo,Yo)

(6) V(x o, Yo) min max
[]’5 B5(xo,Yo) oeieAzs(xo,yo)

(ii)

n(x(, ), y(,

(7) Va(xo, Y0) min sup 12(x, fl(x)),
fl6Bd(xo,y) XXT(XO)

(8) V(xo, Yo) max inf /l(0o(y), y).
6Ad(xo,Yo) yeYT(YO)

Sketch ofproof We shall prove (5) and (7). A proof of (5) can be obtained by
noting that for any sets W, Z and any real-valued function 7 on W x Z, the follow-
ing equality holds:

inf sup ?(z, w) sup inf 7(z, s(z)),
zeZ wW seS zeZ

where S is the set of all functions s from Z into W. This equality, together with the
representation (3) of V and the definitions of e, fi,, can then be used to give (5).

Evidently Va(xo, Yo) is at least as large as the right-hand side of (7). On the
other hand if e A(Xo, Yo), [3a e B(xo, Yo) and if x x(e, fl), y y(e, rio) is the
outcome, then

(x, y) (x,

and so the right-hand side of (7) is bigger than V.
Following Fleming we propose the following definition.
DEFINITION. The game has a value Vv(xo, Yo) provided that the two limits

V(xo, Yo) lim V(xo, yo) and V(xo, Yo) lim V(xo, Yo)

are equal. In that case we define the (Fleming) value of the game"

V.(Xo, yo) V(xo, yo).

LEMMA 2. Let q > O. Then there is a 6" such that for all fi < i5" and all
(Xo, Yo) e Xo Yo,

0 V(xo, Yo)- V(xo, Yo) <-_ rl.

Proof Since/ is continuous on the compact space Xr x Y’r, there is c* > 0
such that

(9) 1/(2, y) (x, Y)I =< r/

whenever Ilx- 211

_
c*, x, : X and ye Yr. Let 8" > 0 be such that for all

8 < 6", c(6) < :*, where (8) is the function defined in Theorem 2(iii). Now let
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6 < 8", (Xo, YO)e Xo Yo be fixed. Let 7o,t
a - A’(Xo, Yo) be such that

(10) Va(xo, Yo) <= lu(x(Zop,, a), Y(ept, fla)) for all fla e Ba(xo, Yo).

Then aeAa(xo Yo) byThe existence of Copra follows from (5). Let a H eopt.
Theorem 4(i). Let [aeBa(xo, Yo) be arbitrary and suppose that x eXr(xo),
y e Yr(Yo) are such that

Let apt(y), and let a fi’ H. Then. x H’(X) and [a e Ba and furthermore,

It follows from (10) that

But x-2 Hff(2)-2 e(f) N c*, so that by (9),

v(xo, o)
Since e A and since fl e B is arbitrary, it follows that

Va(xo, Yo) , + max min g(x(, flo), y(7, [))

q + V(Xo, yo).

The lemma is proved.
TuOM 5 (Fleming). Under the assumptions (of 2) on the d[ierential

equations (1) and (2),

(11) V(xo, Yo) V(xo, Yo).

Furthermore, Vv(’," )is continuous on Xo x Yo.
Proof The equality (11) is a corollary of the preceding lemma, while the

continuity of Vv follows from the fact that V is continuous and the fact that V
converges uniformly to V.

Rerks. The crucial point in the proof of Lemma 2 (which implies Theorem
5) is the existence of the maps Hff with the required properties. Suppose property
(iii) of Theorem 2 is replaced by (iii’)"

(iii’) Let

.() sup

Then

lim rl(6) -> O.

Theorem 5 can now be strengthened to Theorem 5’, and with obvious modification
the same proof applies.

THEOREM 5’. Let #(x, y) be upper semicontinuous in x jbr fixed y and lower
semicontinuous in y.[’or fixed x. Suppose that the differential equations (1) and (2)
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satisfy the assumptions of 2 and suppose that for all > 0 there exist maps
II’Xr --* Xr which have properties (i), (ii) of Theorem 2 and property (iii)’ above.
Then

V(xo, yo) V(xo, yo).

It can be shown that if # is of the form

p(x, y) pl(x, y) + L(t, x(t), u(t)) dt M(t, y(t), u(t)) dt

with p continuous, L, Mconcave in the control variables u, v varying over convex
sets U, V, then/(x, y) is upper semicontinuous in x for fixed y and lower semi-
continuous in y for fixed x. Furthermore, in this case there exist maps II" which
satisfy the conditions of Theorem 5’, and hence the Fleming value is defined
(compare [4, Theorem 2]).

5. The fair game" Existence of saddle points for payoffs of the first kind. In
this section we propose a direct definition of a game. Our definition is in some
sense a limit of the games GD, Go as 6 goes to zero. However, our formulation is
much closer to that of Ryll-Nardzewski [5].

As before let Xo, Yo be specified initial states. Player I chooses a strategy
A(xo, Yo), player II chooses a strategy /3 e B(xo, Yo). It would be natural to

define the outcome of such choice to be any pair x e Xr(xo), y Yr(Yo) such that

(y) x, /(x) y.

Unfortunately, the above pair of equations may have either no solution or it may
have more than one solution. The existence of a solution (but not uniqueness) can
be guaranteed if e,/3 are required to be continuous functions; but then as we shall
show in 7 we cannot guarantee existence of optimal strategies. We therefore
propose the following definition.

DEFINITION. Let A(xo, Yo)and fl B(xo, Yo). A pair x Xr(xo), y Yr(Yo)
is said to be an outcome of (, ) if there is a sequence x. Xr(xo), y.
n 1, 2, 3, ..., such that

lim x, lim e(y,) x, lim y, lim//(x,) y.

(Evidently if and ] are continuous at y, x, respectively, then (y) x,/(x)
Let O(e,/) {(x, y)l(x, y)is an outcome of (e,/)}.
THEOIFM 6. For each A, B, 0(, t3) is a nonempty closed subset

XAxo) x rAyo).
Proof The closedness of O(,//) follows from standard diagonal arguments.

We now show that O(e,/J) is nonempty. Let 6k, k 1, 2,..., be a sequence
decreasing to zero and let eak (II’k e)e A. Let (xk, y) be the pair such that

(y) x, /(x) y.

Since Xr(xo), Yr(Yo) are compact we can assume (taking subsequences if necessary)
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that there are x e Xr(xo), y e Yr(Yo) such that

lim Xk lim Oak(yk) X, lira Yk lira fl(Xk) y.

But

110%(yk) :(Yk) (1-I]:k CZ)(Yk) cz(y) __<

by Theorem 4(ii). Since lim_ a(6k) 0, the assertion follows.
DEFINITION. For each/3 e B(xo, Yo), let

#+(fl) sup max
oeA(xo,Yo) (x,y)eO(o,fl)

and for each A(xo, Yo)let

p_ (z) inf min
fleB(xo,yo) (x,yIeO(,fl)

Now let

p(x, y),

(x, y).

V+(xo, Yo) min p+(fi),
B(xo,Yo)

V_(xo, Yo) max
oA(xo,Yo)

In order to show that the min and max in the definition of V+, V_ actually
exist, the following result will be helpful.

LEMMA 3.

(12) p + (fl) sup p(x, fl(x))
XeXT(XO)

and

p-(e)= inf p(a(y),y).
Y6YT(YO)

Proof We prove the first equality. Clearly p, + (fi) is at least as big as the right-
hand side of (12). Now let e A and let x, x, be in Xr(xo), y, y, in YT(Yo) for
n 1, 2, ..., such that

Then,

It follows that

limx,= lim(y,)=x, limy,= limfl(x,)=y.

lim (x,, fl(x,)) p(x, y).

p+(fi) __< sup p(x, fl(x)).
xeXT(XO)

LEMMA 4. ]/+(fl) is a lower semicontinuous function offl B(xo, Yo). P-(a) is an

upper semicontinuous function of a A(xo, Yo).
Proof. We shall only prove the first half of the assertion since the proof for

the second half is analogous. Let z be a real number and let

B {fllfl e B(xo, Yo), P+(fl) <-_ z}.
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We must show that B is closed. Let {fl(k)} be a net in B converging to fl in B,
i.e., for each x e Xr(xo), limk (k)x fi(x). Let x e Xr(x0). Then by definition
Iz(x, [3(k)x) <= z for all k. It follows from the continuity of p that kt(x, fl(x))=< z.
Hence p + (/3) __< z.

COROLLARY. There is a * B(xo, Yo), * A(xo, Yo) such that:

(i) #+(fl*) _< #+(fl), flB,

(ii) p+(fl*) V+(xo, Yo) Vv(xo, Yo) V_(xo, Yo) #-(*), and

(iii) min p(x, y) max (x, y).
(x,y) eO(*,fl*) (x,y) eO(*,fl*)

Proof (i) follows from the preceding lemma and the fact that B(xo, Yo) and
A(xo, Yo) are compact spaces. Again from the same lemma and the definition of
V + we see that

p + (fl*) v + (Xo, yo) min sup p(x, fl(x))
flB(xo,Yo) XXT(XO)

V(xo, Yo),

where the last equality is the same as (7). Similarly,

_(*) V_(x0, yo) v(xo, yo)

so that (ii) follows from Theorem 5. To prove (iii) it is enough to note that by
definition of p_ and p+,

p_(a*) _<_ min #(x, y) =< max #(x, y) =< p+(fl*),
(x,y) eO(*,fl*) (x,y)eO(*,fl*)

and then (iii) follows (ii).
We can now define the fair game and prove the existence of a saddle point.

The game G is defined as follows: Player I selects a strategy cz A(xo, Yo) while II
independently selects a fl B(xo, Yo). The payoffis given by #(x, y), where (x, y) is an
arbitrarily chosen pair from O(,/3). The saddle-point theorem shows that the
value is independent of the arbitrary choice of the outcome.

THEOREM 7 (Saddle-point theorem). There exists cz* A(xo, Yo), fl* B(xo, Yo)
such thatfor all cz A(xo, Yo) and all fl B(xo, Yo),

max p(x, y) =< max p(x, y)
(x,y) eO(,fl*) (x,y) eO(a*,fl*)

min ,u(x, y)
(x,y) eO(*,fl*)

__< min #(x,y).
(x,y) eO(*,fl)

Furthermore, p(x, y) Vr(x, Yo)for all (x, y)e O(e*, fl*).

=< min sup p(x, fla(x))
fl,4 B,(xo,Yo) XeXT(XO)
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Proof By the definition of/a+,/a_ we see that

max /a(x, y) =</a +(fl*), /a_(e*) =< min /a(x, y).
(x,y) eO(,fl*) (x,y) eO(*,fl)

The result now follows from the previous corollary.
DIYTION. Given two players I and II with dynamics (1) and (2) respectively,

and a continuous payoff/a of the first kind, the (Fleming) value of the game
corresponding to initial conditions (Xo, Yo) will be denoted by

Vv(; x0, y0).

Remark 1. In this paper the dynamics of the two players are separate and the
payoff has the form/a(x, y). As seen in this section (Theorem 7), if/a is continuous,
then a saddle point exists without introducing mixed strategies. Unfortunately,
if only the conditions ofTheorem 5’ are satisfied, then the conclusion ofTheorem 7
may not hold; however, the following weaker version is true.

THEOREM 7’. Suppose that the conditions of Theorem 5’ hold. Then there exist

* A(xo, Yo) and fl* B(xo, Yo) such thatfor all A(xo, Yo) and all fl B(xo, Yo),

inf #(a(y),y) =< inf /a(a*(y), y) VF(Xo, Yo)
y YT (YO) y YT(YO)

sup /a(x, fl*(x))
xeXT(xo)

=< sup /a(x, fl(x)).
XXT(XO)

Remark 2. In the light of the preceding remark and the remark at the end of
4 the results of this paper appear to simplify and improve some results of[1] and

[5], since we demonstrate existence ofa saddle point without using mixed strategies.
However, in [8] the dynamics are intertwined and the class of games considered is
bigger; as a consequence mixed strategies are necessary to obtain a saddle point.

6. Payoff of the second kind: Pursuit-evasion games. In this section we
consider payoffs of the second kind. Before we define the game .we introduce a
definition which will be helpful in relating these games to the game’s considered
in the last section.

Let F c R" R [0, ) be a nonempty closed set. For each T < define
the function/ar:Xr(xo) Yr(Yo) R by

/at(x, y) min {Ix(t) 21 + ly(t) P[ + It ill(2, P, :)e F, e [0, T]}.

It is easy to show that/aT is continuous. Evidently/aT(X, y) is nonnegative and

(13) y) 0 if and only if (x(t), y(t), t) e F for some t.

We now define the game: There is given a closed set F c R" x R" x [0, c) and a

Tma < such that (x, y, Tmx)e F for all (x, y)e R" x R". The game is played on
the fixed time interval [0, Tmax] Player I (the evader) selects a strategy c e A(xo, Yo)
while I! (the pursuer) independently selects a strategy fl B(xo, Yo). The payoff
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given by t(x, y), where (x, y) O(, fi), is chosen arbitrarily and t(x, y) is the smallest
capture time, i.e.,

t(x, y) min {tl(t, x(t), y(t)) V}.
Player I tries to maximize the payoff while II tries to minimize it. As before we
define

V_(xo, To) sup inf inf t(x, y),
oA(xo,Yo) 6B(xo,Yo) (x,y)O(o,)

V + (Xo, To) inf sup sup t(x, y).
flB(xo,Yo) x6A(xo,Yo) (x,y)60(ot,)

THEOREM 8. V_(Xo, To) V +(xo, To).
Proof Evidently V_(xo, To) .-<_ V + (Xo, To). Let e > 0. Then from the definition

of V_, for every strategy a there is a strategy fi and a (x, y) (a, fl) such that

t(x, y) <= V_(xo, To) + ,
i.e., there is a =< T V_(xo, To) + c such that

(14) (x(t), y(t), t) F.

Now define the continuous function #T on the set XT(XO) X Yr,(To) as in
the beginning of this section, and consider the game defined on the fixed time
interval [0, T] with the continuous payofffunction #r. By Theorem 7 this game has
a value V.(#T; Xo, To). However, because of (13) and the argument leading to
(14), we conclude that

VV(#T Xo, To) 0.

Going back to Theorem 7, the saddle-point property implies the existence of a
strategy fl() such that for every a A(xo, To) and every (x, y) 0(, fl(e)),

r(x, y) O.

From (13) we can then conclude that for every z A(xo, Yo) and every
(x, y) e o(,/()),

It follows that

t(x, y) <= 7; V_(xo, To) + .
V +(xo, To) <= V_(xo, To) + .

Since e > 0 is arbitrary, the theorem is proved.
DEFINITION. Let T* V +(xo, To) V_(xo, To).
THEOREM 9. There exists a strategy fl* B(xo, To) such that

sup sup t(x, y)- T* <= sup sup t(x, y)
eA(xo,Yo) (x,y)eO(a,fl*) aeA(xo,Yo) (x,y)60(a,fl)

for all fl B(xo, To), i.e., there exists an optimal pursuit strategy.
Proof Consider the game defined on the fixed time interval [0, T*] with the

continuous payoff function #r*. Clearly VF(#T* ;Xo, TO) 0 and so there exists a
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strategy fl* such that for all a e A(xo, Yo) and all (x, y)e 0(, fl*), #r,(x, y) 0;
this implies that t(x, y) <= T*.

Unfortunately, trivial examples show that in general there does not exist a
strategy a* e A(xo, Yo) such that

(15) T* inf inf t(x, y).
flcB(xo,Yo) (x,y)cO(a*,B)

We can therefore only assert the following theorem.
THEOREM 10. If there is a strategy * A(xo, Yo) which is optimal for player I

(i.e., satisfies (15)), then the pair (*, *)forms a saddle point, i.e.,for all A(xo, Yo),
fle B(xo, Yo),

sup t(x, y) <- sup t(x, y) T* inf t(x, y)
(x, y) cO(a,[l*) (x,y) c0(*,11") (x,y) c0(*,[1")

=< inf t(x, y).
(x,y)cO(*,)

Various conditions can be placed on the set of trajectories and the endzone
F which guarantee existence of an optimal evasion strategy e*. One such condition
is the following.

(C) As the initial states and time (Xo, Yo, to) approach F, the value T*(xo, Yo, to)
approaches 0.

In this case we can show that the function

T(c) inf inf t(x, y)
ItcB(xo,Yo) (x,y)cO(,/)

is an upper semicontinuous function of e e A(xo, Yo), and hence there exists *
such that T(c*) __> T(e) for all c. Evidently then T(*) T* and e* satisfies (15).
We now sketch a proof to show that condition (C) above implies the upper semi-
continuity of T(c).

DEFINITION. Let e e A(xo, Yo). We say that a pair (x, y)e Xr(xo) x Yr(Yo)
is a possible outcome if there is a sequence y,, n 1, 2, ..., in Yr(Yo) converging
to y such that e(y,), n 1, 2, ..., converges to x. Let PO(e) be the set of all possible
outcomes.

It is easy to check that

r(a) inf t(x, y).
(x,y) cPO(a)

Now let z be any real number and let

A {1 e A(xo, Yo), ) >-_ z}.
We must show that Az is a closed set. Let {(k)} be a net in Az converging to
and let (x, y)e PO(c), i.e., let {y,} c Yr(Yo) be a sequence such that y, converges
to y and e(y,) converges to x. Suppose that t(x, y) z e for some e > 0. This
means that

(x(z- ), y(z- t:), z- e)e V.

Since lim.-)lly.- Yll 0 and lim.-ooll(y.)- xll--0, given r/> 0 there is
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N(rl) < oo sufficiently large such that

p{((y,)(z e), y.(z e), z ), F} < r

whenever n > N(rl). Now limk (k)(y,) z(y,). Hence for k sufficiently large,

p{((k)(y,)(z- e), y.(z- e), z- e), F} < 2,.

But then by condition (C), T(z(k)) <= z e + /(rl), where lim,_+o y(q) 0. It follows
that for all sufficiently large k, T((k)) < z which is a contradiction. Hence Az
is closed and so T() is upper semicontinuous. We can summarize our results as
a theorem.

THEOREM 11. Suppose that (1) and (2) satisfy the assumptions of 2 and also
suppose that condition (C) holds. Then there exist *e A(xo, Yo), fl*e B(xo, Yo)
such thatfor all e A(xo, Yo), fle B(xo, Yo),

sup t(x, y) <=
(x,y)eO(a,fl*)

sup t(x, y) T*
(x,y)O(t*,fl*)

inf t(x, y)
(x,y)O(*,fl*)

=< inf t(x, y).
(x,y)O(*,fl)

7. An example.
The system of equations is

x(0) y(0)= 0, final time T 1. x, y, u, v, are real numbers; x is the state of
player I, y is the state of player II. The payoff/t is just a function of the final states
x(1), y(1) and is given by"

[x(1)] for
(x,y)=

(1-1y(1)l)lx(1)l for

x(1)y(1) >__ O,

x(1)y(1) =< O.

Consider the strategy fl* for I1 given by fl(x) -x for all x e X1. Then

(x, fl*(x)) <= 1/4.
Let a*’Y - X be the strategy given by

y(t) for __< 1/2,

a*(y)(t)= y(1/2) + for >1/2
!

[y(1/2)- for t>1/2
Then for all y e Ya,

if y(1/2)_>_ O,

if y(1/2) < O.

u(*(y), y) ->_ 1/4.

p{(x, y, t), F} min {Ix 21 + lY .91 + It fl[(2, J?, )e F}.
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Evidently (*, fl*) are optimal. Furthermore, * is not continuous, although it
can be approximated by continuous strategies; moreover, every continuous
strategy is inferior to *.

8. Appendix. Proof of Theorem 2. Without loss of generality, we set T
so that 6T 6. Let 6 > 0 and let u* U be fixed. We construct the map FIx as
follows. For each x Xr choose an admissible control u such that"

(a) (t) f(x(t), ux(t), t) a.e.,
(b) if xl, X2 are in XT and xl(r) x2(r for 0 __< r <_ t, then uX’(r) uX2(r) for

O<r<_t.

Let u be the admissible control defined by
u* for 0__<r__<6,

u(z)=
uX(r-6) for 6 <z T.

Finally, for x e Xr let 1-IaX(x)e Xr be the solution of the differential equation
corresponding to the control u and the initial condition 1-IX(x)(0) x(0).

Evidently the map 1-I6x has properties (i) and (ii) of Theorem 2. The next
proposition shows that Hax also has property (iii).

PROPOSITION. For any admissible control u and > 0 let u be the admissible
control defined by u(r)= u* jbr O r <=6 and u(r-6) for < r <___ T. Let
x XT and z XT be defined by

2(t) f(x(t), u(t), t), x(O) Xo,

(t) f(z(t), ua(t), t), z(O) Xo.

Then x z[ converges to zero as c5 converges to 0 uniformly for all Xo Xo
and all admissible controls u.

Proof For >__ 6,

x(t) x() f(x(r), u(r), r) d’,

z(t)- z()= J
so that

Ix(t)- z(t)l =< Ix(b)- z(6)l + f
-<_ Ix()- z()l +

f(z(r), u(r 6), ) dr,

[f(x(r), u(r), r) f(z(r), u(r b), r)]dr

[f(x(r), u(r), r) f(x(r b), u(’c b), r

,5), u(r ,5), "c ,5) f(x(’c), u(’c 6), r)l dr

If(x(’r), u(r 6), "r) f(z(’r), u(r 3), r)l dr

11 + 12 -I- 13 q- 14, say.
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We now obtain an upper bound for Ij, 1 =< .j =< 3.
LEMMA A1. For t: > 0 there is a 6" > 0 such that for 6 < 6",

Ix(r)- z()l =< , 0 =< : < .
Proof Apply the Bellman-Gronwall lemma using the boundedness assump-

tion on f.
LMMA A2. For e > 0 there is a * > 0 such thatfor 6 < *,

12<=g.

Proof Clearly I <_ Ix(t) x(t 6)[ + Ix(a) x(O)l. Again use the Bellman-
Gronwall lemma.

Let B c R" be a ball of radius b such that x(t)e B for all xe Xr and all
t[0, T].

LEMMA A. Given t: > O, there exists a b* > 0 such that for ( < b* there is a
subset F [0, T] with measure (F) > T 2 6 and

I =< T + 2(M + Nb)f l(z) d,
O,T]cF,

where F is the complement ofF.
Proof. By an extension of a theorem due to Scorza-Dragoni [9], there exists
a closed set E [0, T] with measure (E) > T such thatf(x, u, t) is continuous
on B U E. Therefore there exists a b* > 0 such that for all di < b*,

[f(x(z 6), u(z 6), "c 6) -f(x(’c), u(’c (), z)] <

whenever e E, ( ) e E. Let Fa {] e E, ( ) e E} then measure (Fa) > T
2 . Also

13 <= ]f(x(z 6), U(Z 6), Z 6) f(x(z), U(Z (5), Z)l dr

=< f ]f(x(z 6), u(z 6), z 6) f(x(z), u(z 6), )1 dz
6, T]F6

+ 2 f (M + Nb)l(z)dz < ,T + 2(M + Nb)f l(z) dz.
6, T]cF, d O, TlcF$

ProofofProposition. Let t: > 0. Then from Lemmas A1-A3, there is a b* > 0
such that for b < (*, I + 12 + 13 =< 3. Therefore,

Ix(t)- z(t)] =< 3e + If(x(v), u(z 6), r,) f(z(z), u(z 6), )1 dz

<= 3e + k(z)lz(z)- x(z)ldz.

Hence by the Bellman-Gronwall lemma,

Ix(t) z(t)l -<_ 3e exp k(r) dr

The proposition follows.
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ON THE APPROXIMATION OF INTEGRALS
OF MULTIVALUED FUNCTIONS*

MARC Q. JACOBS"

1. Introduction. Let X denote a finite-dimensional real inner product space.
The inner product of two elements x, y e X is denoted by (x, y). A norm I1"11 on X
is defined by I[xll 2 (x, x) for x X. The metric (x, y)- ]Ix YlI, x, y X, will
be denoted by p. Following Michael [23], we denote the collection of nonempty
closed subsets of X by 2x. T denotes a compact metric space on which a positive
Radon measure kt is defined [5]. The collection of all integrable functions f: T - X
is denoted by 5(T, X,/0, or simply by when no confusion can arise. A measur-
able mapping [7], fl:T 2x is integrable if there is an f e such that f(t) (t)

for each e Z In this case we define fl dg to be the set

This is a slightly specialized version of the integral of a multivalued function which
is discussed by Aumann [1]. Aside from the applications in economics [11],
such integrals are related in a natural way (see Remark 6) to the so-called attainable
sets for linear control systems of the type studied in [24], [25], [26] and [19].

For integrable mappings fl’T 2x, we cannot in general infer that . dg

is closed (see [19, p. 50] and Example 1). In this paper we examine the problem of

"approximating" the closure of .}dp. If is majorized by a function

4 e (T, R, p) (R denotes the set of real numbers), and if T is nonatomic, then

d is and convex [1], [7]. In this situation (t) is for eachcompact compact

e T, and the results which we obtain differ only slightly from results already
obtained by Aumann [1], Castaing [7] and Debreu [11]. However, in the un-
bounded case, there does appear to be some novelty in our study of the integral

dg. If is a given point of X, the optimal final value control problem forXO

linear systems [2], [14] can be viewed as a special case of the problem of deter-
mining x e X and f e (T, X, g) satisfying

x =fTfdfTd,
Received by the editors February 22, 1968, and in final revised form December 2, 1968.
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where f(t)D(t)for each t T, and such that p(x0,x)= p Xo,Lt2d# (see

[4, Part 2, p. 149] for notation). Such a pair x, f will evidently exist if f. t2 d#

is closed. But whether _f f dp is closed or not, there is the "relaxed problem"

p/Xo, ffdp}, i.e., determining minimizing sequences {x,} andof estimating

We suggest one possible solution to this problem. Insofar as our results are related
to the optimal final value control problem our results could be considered to be
in the spirit of [6], [9], [10] and [17] in the sense that the method consists in deter-
mining a sequence of related but simpler optimization problems whose solutions
give the required minimizing sequence. However, other than this, our results
have little overlap with these papers.

Finally we mention the interesting problem of determining sets of sufficient

conditions for the set .t f d# to be closed. An answer to this has been known for

some time [24], [26] for certain classes of mappings f taking their values in the
space of compact subsets of X. Somewhat more general situations were discussed
in [19] and [27]. However, suitable criteria guaranteeing the closedness (and not at

the same time implying compactness) of _t f d/ for a reasonably generous class

of mappings f: T 2x seem still to be unavailable. In [19] we made a conjecture
concerning this problem which turned out to be precipitous in view of Examples
1, 2 and 3 of this paper. It appears that the approximation theorems of 3 will
be useful in attacking the above problem, and we shall pursue this matter in a
later paper.

2. Additional notation and definitions. Throughout this paper / denotes a
positive Radon measure defined on a compact metric space T(see [5]). In discussing
multivalued mappings we shall generally use the terminology of Michael [23].
We shall use (X) to denote the collection of nonempty subsets of X, and, as
stated in the introduction, 2x to denote the collection of nonempty closed subsets
of X. oK(X) will denote the collection of nonempty compact subsets of X. If
H: T (X) is a mapping, and if S is a subset of X, then we define H-S to be the
set {t TIH(t) S }. We say the multivalued mapping H is measurable if
H-F is measurable for every closed F = X. If d is any metric on X, then a is a
basis for the uniform structure [4, Part 1] determined by the metric d, where

Recent results of C. Olech [28], [29] do have applications to this question, and Professor Olech
has recently informed the author that he is preparing a further note on this subject.
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oa {J [e > O} and
Jf {(x, y)e x xl d(x, y) < }.

If V is a subset of X X, and A is a subset of X, then V[A] denotes the set

VIAl {y xlx A .(x, y) v}.

The uniform structure generated by oa determines a uniform structure on s’(X)
[23, pp. 153 and 167] which we denote by 2a. Let W(J) denote the set

{(A, B)e Y’(X) x z/(X)IJ[A] B and J[B] A}
for e > 0. A basis for the uniform structure 2 is simply {W(J)le > 0}. The topology
on 2’(X) determined by 2 is called the uniform topology on ,/(X) determined by d.
Also 2am (2x x 2x) (respectively 2n ((X) x (X))) is the relative uniform
structure on 2x (respectively (X)) determined by d, and by abuse of language
these two uniform spaces will be denoted by (2x, 2n) (respectively ((X),2a)).
The topology on 2x (respectively C(X)) determined by 2 is called the uniform
topology on 2x (respectively (X)) determined by d. The uniform space ((X), 2n)
is pseudo-metrizable, but in general it is not Hausdorffand therefore not metrizable.
We note that limits in ((X), 2a) are not unique, i.e., if a sequence {A,} in (X)
converges to A in (X), then the sequence also converges to el(A) (the closure of
A). The uniform space (2x, 2a) (and therefore also ((X), 2n)) is metrizable [23,
Proposition 4.1] with the Hausdorff metric [3] determined by d* d/(1 + d).
However, it will be more convenient and more effective computationally simply
to view these spaces as uniform spaces. We require two additional uniform struc-
tures on (X). The upper (respectively lower) semiunorm structure on (X)
determined by d has as basis the collection

{(A, B) (X) x (X)[J[A] B}, e > 0

(respectively {(A,B)e(X) x (X)]J[B] A}, > 0) (cf. [23, p. 181]). The
corresponding topologies are called the upper (respectively lower) semiuniform
topologies on ,(X) determined by d.

The symbol d(x, A), for x e X and A X, which has already been alluded to
in the Introduction, denotes inf {d(x, a)]a e A}.

A mapping H’T (X) is simple if there is a finite partition of T, say
{T, ..., T,}, such that H has a constant value on each of the T. If the sets T
are each measurable, then H is a measurable simple function, i.e., H- F is measurable
for every closed F X. If H(t) F for T, 1, 2, ..., n, then we shall denote
the simple function H by {T,..., ; Fa,..., F,}.

We shall require two metrics on X. One is Euclidean dislance, p(x, y)
llx y][, x, y e X, and the other is a metric which determines the topology of the

one-point compactification of X [4, Part 1, p. 92]. Specifically we choose the
metric p on X determined by p and stereographic projection on the Riemann
sphere, viz.,

p(x,y)
[1 + 11x11211/2[1 + lyll2] x/2, x, ye x.
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These two metrics define the same topology on X; however, they do not define
the same uniform structure on X. What is more important, the uniform topologies
on 2x (or (X)) determined by p and P are not equivalent [21]. The uniform
topologies on C(X) determined by p and P are equivalent [21]. The uniform
topology on 2x (or (X)) determined by poo is weaker than the uniform topology
on 2X(or (X)) determined by p (see [21, Remark (iii)]). The information we shall
need concerning Poo and 2 can be found in [21]. In many practical aspects
(cf. [21]) 2p is well-suited for discussing the convergence ofsequences ofunbounded
sets in X.

We shall frequently refer to the entourages Jf and jfoo, e > 0. For simplicity
we shall agree that when J is meant, p will be suppressed and we shall only write
J; when jfoo is meant we shall write jo.

We shall reserve the symbol co to denote the collection of positive integers.

3. Approximation theorems. The first theorem gives a criterion for the
integrability of a measurable mapping ’T- 2x (cf. [1, Theorem 2]). A simple
lemma is needed to prove the theorem.

LEMMA 1. Let F be a nonempty closed subset of X. Then for each x X there
exists fx F such that p(x, F) p(x, fx).

Remark 1. That the metric p has the useful property mentioned in Lemma
is well known. This situation does not obtain if the metric p is substituted in the
lemma. Indeed, let F denote the set {(0, y) R2[y >= O} c R2, and let x denote the
point (0,-n) R2, n > 1. Then for each f F we have the inequality p(x,f)
> 1/(1 + n2) /2. However, the infimum of the collection {p(x,f)]fF} is
evidently 1/(1 + n2) 1/2, and consequently there is no f F such that 9(x,f)

poo(x, F).
THEOREM 1. Let be a measurable mapping ’T 2x. In order that be

integrable it is necessary and sufficient for the mapping z" T- R to be integrable,
where is defined by the relation (t) p(O, O(t)), T (the zero element of X is

denoted by 0).
Proof This result in essence appears in [20]. We note that the set {t Tic(t)

< r}, r > 0, is equal to the set -Jr[0], which is measurable. Therefore is
measurable. If is integrable, then there exists f e of(T, X,/i) such that f(t) (t)
for each T. From the definition of it follows that 0 =< (t) __< Ilf(t)ll for each

T, and therefore is integrable. Conversely suppose c is integrable, and define
a mapping F’T c(X) by the relation

F(t) {x (t) x (t)},
That F(t) is nonempty for each e T follows from Lemma 1. The compactness of
each F(t) follows immediately from the fact that each Y(t) is closed. The mapping
F is measurable. The proofofthis is simple but tedious (all that is needed is Theorem
2.3 in [21]) and will not be given. Now let (Xg) be any basis for the vector spaceX.
For each e T define f(t) to be the lexicographical minimum of F(t) with respect
to the basis (see [27]). The mapping f(t), T, is integrable [21, Lemma 2.5],
and f(t) (t) for each e T.
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THEOREM 2. Let ’T- 2x and f’T- X be measurable mappings. Then the
mapping p(f(t), f(t)), t6 T, is measurable, and there exists a measurable
mapping g’T X such that" (i) g(t) f(t) for each T, and (ii) p(f(t), g(t))

p(f(t), f(t)).
Proof The mapping (t, x)- p(x, f(t)), (t, x) T X, fulfills the conditions

of Theorem 2.1 in [18, p. 623] (see [21] for the details). Thus given e > 0 there exists
T /2 and such that the mappinga compact set T c T such that #(T )<

(t, x) - p(x, (t)) restricted to T X is continuous. Since f" T X is measurable
there is also a compact T2 c T such that I(T\T2) < e/2 and such that f[T2 is
continuous. Thus if T denotes T c T2, then/(T\T) < e and both flT and the
restriction of (t,x)- p(x,f(t)) to T, x X are continuous. Consequently the
restriction of the mapping t p(f(t),f](t)) to T is continuous. The e > 0 is
arbitrary, and the measurability of t- p(f(t),f(t)), T, follows [5, p. 169].
That a mapping g’T - X exists satisfying (i) and (ii) is clear. That such a g can be
chosen which is also measurable follows from extensions of Filippov’s implicit
functions lemma (see [7], [21] or [22]).

Remark 2. If in Theorem 2 the mapping f takes its values in (X), then
Theorem 2 remains valid when p is replaced by p(cf. Remark 1).

LEMMA 2. Let A be a nonempty closed subset ofX. Let Kn, n 09, be an increasing
sequence ofcompact subsets ofX such that _)no Kn X. Then the sequence

A C Kn if A C Kn
Fn

{Xo} otherwise,

where Xo is an arbitrary point of X, has the property that F converges to A in
(2x, 2o).

Proof The metric space (A, Po) is precompact. Thus given e > 0 there exist
a l, a2,’." ak A such that [)k= 1jz[ai] A. There exists No o such that
al, a2, ".’, ak Kn whenever n _> No. Thus .for n _>_ No we find that

(1) J/z[Fn] A.

The dual inequality,

(2) J/2[A] Fn, n >_ No,

follows immediately from the definition of Fn. The two inequalities (1)and (2)
combine to complete the proof of the theorem.

Remark 3. In R the sequence of compact intervals Kn- [-n, hi, n
certainly does not converge to R in (2R, 2). But Kn does converge to R in
(2R, 2ooo).

THEOREM 3 (Egorov). Let n, n o, be a sequence of measurable mappings
from T into 2x such that )n(t) - (t) a.e. on T as n in (2x, 2), where is a
mapping )" T 2x. Then

(i) fl is measurable;
(ii) for every > 0 there exists a compact T T such that #(T\T) < e and

n(t) converges to f(t) in (2x, 2) uniformly on T.
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Proof By Theorem 2.4 in [21] the functions f,, n co, are measurable in the
Bourbaki sense [5] when treated as mappings of T into the metrizable space
(2x, 2). Thus Egorov’s theorem [5, p. 175] applies to give the desired conclusions.

The uniform topologies on oK(X) determined by p and P are identical
[23, Theorem 3.3]. Thus in the next theorem limits can be taken with respect to
either topology.

TrtEOREM 4 (Dominated convergence theorem). Let T be nonatomic. Let
f,, n co, be integrable mappings from T into oK(X) such that sup {llxll Ix ,(t)}
<= dp(t) for each n co and each e T, where 2’(T, R, #). oK(X) can have either
of the equivalent topologies determined by 20 or 2. If ,(t) f(t) as n c
a.e. on T, where f is a mapping f" T off(X), then

(i) f is integrable

(ii) .t_ f2 d# and .j f2, dl, n e oo, belong to cg(X);

Proof. The measurability of f results from Theorem 3. The convergence
f(t) f(t) a.e. on r also gives

(3) sup {llx Ix (t)} b(t) a.e. on T.

Since f* is measurable there is a measurable f" T --+ X such that f(t) e f(t) for each
e T [21, Lemma 2.5]. The functionfis also integrable by (3). Thus f is integrable.

For conclusion (ii) we refer to Castaing [7, Theorem 7.1].

For the final conclusion, we observe that the set function E c T

_
24 d,

E measurable, is absolutely continuous with respect to (see [12]). Thus given
e > 0 there is a fi(e) > 0 such that E c T, E measurable and fl(E) < 6(e) imply

0 j2d < e/2.

By Theorems 3 (Egorov’s theorem), there is a compact c T such that
#(T) < 2, where 2 min (6(e), e/(2(p(r) + 1))), and such that ,(t) (t)
as n m uniformly on T. Thus there exists no m such that n n0 implies

(4) J[n(t)] = (t) and Jz[gt(t)] .(t), e T.
Iff is an element of SO(T, X, #) such that f(t) f(t) for each e T, then for each
n e co there exists g, e q’( T, X, p) such g,(t)ef,(t), e T, and p(f(t),g,(t))

p(f(t), f,,(t)) for each e T (by Theorem 2). Hence by (4) we have that ]If(t)
g,(t)ll < 2 whenever n _>_ no and e T,. Therefore whenever n _>_ no it follows

that

fr (f g") dlt <= fr f g"ll d# + fr\T
< 2p(T) + e/2
<_ e/2 + e./2
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We thereby infer

(5) J f, d# f2d# whenever n >__ no.

The dual inequality

(5’) J[fTndl frf,dl whenever n _>_ no

is proved similarly with the aid of (4) and Theorem 2. We omit the details.
It is clear that if we only want (iii) in Theorem 4 to be true in (s’(X), 2),

then the assumption that T is nonatomic is unnecessary.
The main aspects of Theorem 4 were proved by Debreu [113 by using

Rdstrom’s imbedding theorem [30]. Indeed, the mappings Q,(t), n co, are
measurable by assumption, and thus co (f,(t)) (co(f,(t)) denotes the convex
hull of ,(t)), n e co, are measurable by Theorem 6.2 of [7]. Since the f,, n co,
are majorized by an integrable function, the same is true of the mappings

--, co (f,(t)), n co. Thus the conclusions of Theorem 4 could also be achieved
by combining Corollary 16 of [13, p. 151] with Propositions 6.5, 7.2 and inequality
(5.4) of [! 1]. The reader should bear in mind that we are in general using "in-
tegrable" in a different sense than Debreu, but for the situation in Theorem 4
the two notions of "integrability" agree.

THEOREM 5. Let K,, n co, be an increasing sequence of compact subsets ofX
such that _),, K, X. Let denote a measurable mapping f T 2x such that
for all sufficiently large n, (t) K, is nonempty for each T. Then

(i) f is integrable
(ii) if c K, denotes the mapping -. f(t) c K,, T, then for all sufficiently

large n, c K, is integrable, and

f c K, d# fT f d#

where the limit is taken in (s?(X), 2).

Proof We cannot infer that _I f d# is closed, and thus the limit must be

taken in (s’(X), 2P). However, once the theorem is established one also obtains
(if T is nonatomic)

limcK.d=cl fr.d#).
in (2x, 2p) (see [23]). That f is integrable follows from Theorem 1. There exists

m0 co such that n _>_ mo implies )(t) c K, 4: for each T. We assume in the
rest of the proof that n >__ mo. Then we have f c K, is integrable. Also we have,
for every e > 0,
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Thus it suffices for us to show that for each e > 0 there exists no e o such that
n _>_ no implies

(6’) J I fT C K. d1 fT dU.

In order to establish the inequality (6’) we first make the observation"

For each > 0 and each x | f d# there corresponds a n(, x) 09 and a

(7) "T

j,f K, d# such that [Ix y,,,)[[ < e.

Let x _( fd be given, with x _(g du and g(t) (t)for each t T. Letfbe a

measurable function f" T -, X such that f(t) f(t) c Kmo for each T. Such
an f exists [21, Lemma 2.5]. Then f is also integrable. We define a sequence
g, C(T, X,/t), n o9, by the relation

g(t) if g(t) 6 K.,
g,(t) =(f(t) if g(t) K,.

Then g,(t)e f(t)r K, for each e T. Also Ilg, gll is majorized on T by the
integrable function 2 sup (llfll, Itgll), and lim Ilg.(t) g(t)ll 0 for t T. Hence

lim fr g, dla fr g d and (7) results.

Now returning to the proof of (6’), we define A, =f c K,,d# and

A f’r f d#. The set A is precompact in (X, Poo). Thus given e > 0 there exist

a, ..., ae A such that

(s) t,.) J/ a] A.
i=1

We invoke (7) to determine Ym, A,,,, 1, 2, ..., k, such that

(9) P oo(Ym,, a,) _< I[Ym, a[I < e/2, 1, 2,-", k.

Let no denote the maximum of {mo, ml,m2,’", mk}. Then for n >= no,(6’) is
obtained.

As a corollary to Theorems 4 and 5 we obtain the following result.
COROLLARY 1. Let K,, n o9, be an increasing sequence of compact sets in X

such that _J.oK. X. Let f: T--, 2x be a mapping such that f(t) c K, va ,
T, n o, and such that the mappings f(t)c K,,

_
T, n 09, are continuous

mappings into (X) with the topology induced by 2p. Then there is a sequence of
measurable simplefunctions S, T cg(X), n 09, such that

(i) lira S,(t) f(t) in (2x, 2P) for each T, and

(ii) lira 1 S. d# 1- f dl in (,_(X), 2).
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Proof The mappings t- fl(t) K, are continuous on T, and therefore
uniformly continuous on T. Thus there is a sequence of measurable simple func-
tions H,m T-- (X), n, m co, such that H.m(t) converges to (t) K, as m v
uniformly on T for each n e co. By Theorems 4 and 5 there results

li.rnlimfH.d=fnd
in 6’(X), 2P). Hence S, can be taken to be H(,), for an appropriately chosen
sequence z(n)in co.

Let us denote by (respectively %) the topology on t(X) induced by the
lower (respectively upper) semiuniform structures on ’(X) determined by p.
Evidently a sequence A,, n e co, in ’(X) converging to A in both topologies , and
z also converges to A in the uniform topology determined by p.

COROLLARY 2. Let K,, n co, and be given as in the hypotheses of Theorem 5.
Let . T - 2x, n co, be a sequence of integrable functions such that for all suffici-
ently large rn co, ,(t) K,, - (t) c K,, a.e. on T as n v in (2x, 2P). Then
there results

in o(X)’with topology
Proof Let e > 0 be given. By Theorem 5 there exists m0 co such that

J,2 [ f ) m Km dt1 f t whenever m mo.

From Theorem 4 we can infer that there is an no co such that

J2[ fTf,,C Kmodktj fT m Kmo whenever n >= no.

Combining these two inclusion relationships it is determined that

jy I f d,] fr a. whenever n >= no

Therefore lim J nd# Jr dl in ’(X)with topology l.

COROLLARY 3. Let K,, n co, and be given as in the hypotheses of Theorem 5.
Let . T 2x, n , be a sequence of integrable functions such that for all suffici-
ently large m 6 , ,(t) Km (t) K a.e. on T as n in (2x,2E). Let

.f a, K= d -- .f , dg uniformly with respect to n as m -- m in ((X), 2v).

Then there results

lim fr.d= frDd
in ((X),
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Proofi In view of Corollary 2 it suffices to prove that

lim fr . d fr aU

in 0/(X) with topology %. Given , > 0 there exists mo co such that

By Theorem 5 there exists no e co such that

&/2 [ fT q2 C K,,o d] fT Y2, m Kmo d#, n >= no.

Upon combining these two inclusion relationships we obtain

J[ fTd] fT.d, n no,

thereby proving lim _I t2, d# ( f dt in at(X)with topology

THEOREM 6. If f" T ---* 2x is an integrable mapping, and !1" f," T --+ 2x, n co,
is a sequence of integrable functions such that lim f.(t) f(t) uniformly on T\N in
(2x, 2), where #(N) O, then

in (’(X), 2P).
Proofi We may assume that/z(T) :/: 0. Given > 0 there exists no co such

that

(10) Ja[f(t)] = f,(t) and J[f2,(t)] f(t)
for T\N, whenever n >= no, where 6 e/(21a(T)). We shall show that

(11) JI fT fT dl and J[ fT
whenever n > no. Suppose x e_I d/, with x _f. fd/t’ f e (T, X, #), and

f(t) f(t) for each e T. Then by Theorem 2 we have that corresponding to each
n e co there is a measurable function g," T -+ X such that p(f(t), g,(t)) p(f(t), ,(t))
for each e T. From (10) and the definition of
when e T\N and n >_ no. Thus we also have that Ilg,(t)ll < Ilf(t)l[ + 6 when

T\N and n _> no. We thereby obtain that the g,, n >= no, are integrable on T.
There results

x g,, d/t < [If- g,,[I
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whenever n _>_ no. Hence the second inclusion in (11) is true for n no. The proof
of the first inclusion in (11) is analogous with the aid of (10) and Theorem 2. We
omit the details.

Remark 4. In Theorem 6 we can also infer that lim cl fTta. d)-cl fT d)
in (2x, 2) (see [23]). We are interested primarily in approximations to f )d/,

and thus we would like to apply Theorem 6 to the situation in which the f, are
measurable simple functions. The determination of such measurable simple
can be a difficult problem. In fact there are very simple examples of integrable
f (as in Theorem 6) which cannot be approximated, even pointwise a.e. on T, in
(2x, 2) by any sequence of measurable simple functions. Consider the following
example given by Cesari [8, pp. 374-375], viz., T [0, 1],/ is Lebesgue measure,
X R2, with --, (t) 2RE given by the relation

ff(t)-- {(x, y)e RZlx _>_ 0 and 0 < y .<_= tx}
for e [0, 1]. As a mapping from Tinto 2R2 with the uniform topology determined
by p, f is discontinuous at each e [0, 1] (see [8]). Moreover, the discontinuities
occur in such a way that if t,, n e co, is any sequence in [0, 1] such that t, - to,
n e o), and such that t, --, to, then f(t,) will not converge to fl(to) in (2Rz, 2) (cf. [8]).
Thus if T is any compact subset of [0, 1] which has positive measure, the mapping
flT will be discontinuous at some points of T. Hence f as a mapping of Tinto
the metrizable space (2R2, 2) is not measurable in the Bourbaki sense [5]. Conse-
quently there is no sequence of measurable simple functions from Tinto 2x which
converges pointwise almost everywhere on Tto f in (2R2, 2). The mapping f is
measurable as a multivalued function from T into 2R2 (see 2 for definition).
Indeed, f as a mapping from Tinto the metrizable space (2R2, 2=) is continuous
(cf. [21]).

The question of approximating measurable mappings f’T---, 2x with
measurable simple functions is more readily resolved in (2x, 2=), as the next
theorem illustrates.

THEOREM 7. Let 2x have the uniform topology determined by P A necessary
and sufficient condition that a mapping f" T 2x be measurable is that there exists
a sequence S., n 09, of measurable simple functions S, "T 2x, n 09, such that
S,(t) (t) a.e. on Tas n .

Proof See [21, Corollary 2.5].
We next state some lemmas which are useful in calculating integrals of multi-

valued functions. These lemmas seem to be fairly well known.
LEMMA 3. Let Tbe nonatomic, let E be a measurable subset of T, let real Pi >= O,
1, 2, ..., n, be given such that = 1Pi 1. Then there is a measurable partition

{T1, -.., T,} of E such that l(Ti) pi#(E), 1, 2,..., n.
If A and B are subsets of X and if is a real number, then A + B

{a + bla A, be B} and aA {al A}. Also co (A) denotes the convex hull
of A.
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LEMMA 4. Let T be nonatomic, let f’T 2x be a constant mapping, i.e., f(t)
F . 2xfor each T, and let E be a measurable subset of T. Then

Proof The inclusion

f d# --/(E) co (F).

f d/ (E) co (F)

follows from the convexity theorem [6, Theorem 1, p. 203]. Suppose X has
dimension r, and suppose x /(E) co (F). Then there exist real Pi > 0 and f F,

1,2,..., r + l, such that
r+ r+

x=#(E) Z P,fi and Z P,=
i=1 i=1

(see [3]). By Lemma 3 there is a measurable partition {T1, .--, T+I} of E such
that #(T3 p(E),i 1,2,... ,r + 1. We define an integrable function
f:T F X by the relations f(t)= Ji if t T, 1, 2,..., r + 1. Then we
have

r+l

fEf d# Pi#(E)fi x f d
i--1

The desired equality results.
As an immediate consequence of Lemma 4 and induction we get the following

statement.
LEMMA 5. Let T be nonatomic, and let f:T 2x be a measurable simple

function T1, 7,; FI, F,}. Then there results

fT f dl
i=

#(T3co (F3.

There is also the following fundamental result.

LEMMA 6. lfT is nonatomic, and ifY" T 2x is integrable, then J, d# is convex.

This is in essence a special version of Theorem 1 in [1]. The lemma can also
be proved by a slight extension of Proposition 8.10 in [16] (cf. the remarks in [19]
and [20]).

The following two theorems together with Lemma 6 are basic to estimating

THO 8. Let A and A, n co, be nonempty, closed and convex subsets ofX
such that lim A A in (2x, 2). A sequence x’, e X, n o), is defined by the relation

(12) [Ix’,[[ min {llxll Ix e A,}, n 09,
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and we define x’ X by the relation

(13) I[x’[] min ]x]]xA}.
Then x’, is convergent and lim x.

Proof That the relations (12), (13) define x’,, n o, and x’ uniquely follows
from" a closed convex (nonempty) set in X contains a unique element of minimal
norm (see 12]). Let 6 > 0 be defined by the relation 6 (1 4- [x’l]2) 1/2. Then
there is an No o such that n >= No implies

(14) J/2I-A,,] A and JzA] A,.

As a result of (14) we have"

If for each n >= N we define 7, by the relation 7, po(x’,A,), then
(15) corresponding to each n >_ N there exists a point x.* A. such that

poo(x’, x.*) ,.
In order to prove this, we choose a "minimizing sequence" x,, e A,, e e co, such
that limp(x’,x,.)= y,, when n >= No. By (14) there exists y. eA, such that
7. =< poo(X’, y,) < 6/2 for n => N6. Therefore we may assume that p(x’, x,,) < 6/2,
e e o9, n __> N6. We let X X w } denote the one-point compactification of
X (see [4]). The set S {x,le e oo, n __> N6} is bounded in norm, i.e.,
n >_- N6} is a bounded set of real numbers. For if this were not the case, there
would be a sequence x, e S, e e co, such that lim x, oo in (Xoo, Poo). Consequently
we would have lim p oo(x’, x,) 6 < 6/2, a contradiction. The existence of the
required sequence x,*, n >_- N6, in (15) can now be evinced from the facts" the set
S is bounded in norm;A,, n => N6, is closed in X; Po is continuous. Now since S
was bounded in norm, the set {l{x,*[[ In => N6} is also bounded. Let us suppose
that IIx.*[I _-< M, n >= N, and let us define B > 0 to be the number 6/(1 + M2) /2.
Given e > 0 there is an No e co such that No >= N6 and such that n _>_ No implies

(16) J[A,] A and J[A] A,.

Hence for n >__ No we have that

IIx’-
,oo(x’,x*.)--(1 4-Ilx’[12)/2(1 / Ilx.* 12) 1/2 <

Be,

from whence we obtain that n _>_ No implies

Be
I]x’- x,*]] < Be,(1 + [X’]]2)1/2(i -] ]Xn*[[2) 1/2 g,

B

Consequently it is determined that if n _>_ No, then x,*]] < + Ix’]]. However,
since I{x.*]{->_ ]{x,]l, nco, there results

(17) x’, < 4- IIx’l, n >__ No.

The set H ]Ix’.]] In >= No} is bounded. Thus let D be chosen such that ]Ix’, -<_ D,
n e o2. Define 6* > 0 to be the number (1 + D2) /2. Choose Na. _>_ No, Na. co,
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such that

(18) d,/2[An] A and J,/2[A] A,,

whenever n >= N6,. From (18) we deduce the following result"

If for each n >__ N6, we define V’, by the relation ?’, poo(x’,,A), then
(19) corresponding to each n >__ N6, there exists a point xA such that

The proof of (19) is similar to the proof of (15). For each n => N6, we pick "mini-
mizing sequences" y, e A, e o, such that limp(x’,, y,) y’,. Because of {18)
we can assume that p(x,,, y,) < 3*/2, e o, n >= N6,. The set S’= {y,,lz e 09,

n >= No,} is bounded in norm. For if this did not obtain, then a sequence y e S’,
e o, would exist such that lira y ov in (X, po). In this event there would

result limpoo(x’,, y) (1 + [x’,][2) /2 =< ,5*/2, and since [[x’,[[ __< D, n e co, we
would have 6* __< */2, which is a contradiction. Thus S’ is bounded in norm, A is
closed, and Poo is continuous. The existence of the required x e A, n >__ Na,, in (19)
is now clear. Moreover, the set {[[x[[ In >= No,} is evidently bounded. Select C
such that [[x __< C, whenever n >__ Na,, and define b > 0 by the relation
b */(1 + C2) /2. Then there exists N eco such that for N N6, >- No >- N6,

(20) J[A,,] A and J[A] A,,

whenever n >= N a. From (19)we must have

x’. xpo(x,,x2)--(1 / Ilx;ll2)x/2(1 / Ilxll2) 1/2 < zb

whenever Jl >= N1, and consequently

b

whenever n _>_ N1. Hence we obtain the estimate

(21) Ilxll < / Ix,ll n _>_ N1.
Since, however, x A, it follows that IIx’ll _-< IIxll, n __> Nx, and this together
with (21) yields

(22) Ilx’ll < + IIx’.ll whenever n >= N1.
Now both (17) and (22) are true for n > N1, and therefore

(23)

It is also clear that

(24)

Thus we also have that

(24’)

lim IIx’ x’

lira x.-x.l =0.

lira
X / .X X / X

2 2
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Denoting (x’ + x)/2 by Xm we observe that x,, e A, because A is convex and
X X,nA.

Case 1. IIx’ll- 0. This is the trivial case. The conclusion of our theorem
follows immediately from (23).

Case 2. Ilx’ll > 0. Given e > 0 and small enough so that 2llx’ll > /(211x’ll / 1),
there exists no co (by (24’)) such that

(25) IIx, / x’ll / > 211x,,ll whenever n,m >=no,

with r/defined to be /(211x’ll / 1). However, x,, belongs to A and (13) reveals
that IIx,ll >_- Ilx’ll, and this together with (25) results in the inequality

(26) Ilx, / x’ll > 2llx’ll > 0, n, m >_ no.
The norm I" satisfies the parallelogram law, and thus from (26) we deduce that,
for n, m >= no,

x, x, 2 2 x, 2 / 2 x, 2 Xm r- X 2

=< 211x,ll 2 / 211x;,ll 2 -(211x’ll r/)2

(27) 2ffl x,ll 2 -IIx’ll 2] / 2UIIx;ll 2 -IIx’ll 2]

211x’ll 2
+

211x’ll / (2llx’ll + 1)2

From (27) we infer that x’,, n e co, is a Cauchy sequence and therefore converges
to some x e X. Since the x are in A, (24) implies that x is a limit point of A. But
A is closed, so x belongs to A. Relation (23) now yields

lim x’, x IIx’ II.
But x’ satisfying (13) is unique, so x x, and lim x’,

Remark 5. If in Theorem 8, the A. converge to A in (2x, 2P), then, of course,
the theorem still applies. However, in this case there is a much simpler proof. The
difficulties we encounter in proving Theorem 8 are partially explained by Remark 1
and by the following difficulty. The metric p enjoys the useful property that if C
is a nonempty convex set contained in X, then J,[C] is convex for each e > 0.
This does not in general obtain for the metric Po. Indeed, if C {(0, y) RZly R),
then J[C] is not convex for any e > 0.

The metric p is not invariant under translations, but nonetheless, the follow-
ing theorem is true.

THEOREM 9. If A and A,, n 09, are nonempty closed subsets of X such that
lim A, A in (2x, 2P(R)), and if {x,}, n 09, is a sequence in X such that x, --+ Xo as
n --+ oo, then lim (x, + A,) Xo + A in (2x, 2(R)).

Proof Given m e co there exists N,, e co such that

(28) J/m[An] A whenever n > N
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Also Xo + A is precompact in (X, Poo), and consequently given e > 0 there cor-
responds a l, ..., ak A such that

k

(29) [,_) J/[Xo +ai] Xo + A.

By (28) we have that given 1, 2,..-, k there exists ai,. A,, n >__ Nm, such
that p(R)(a, ai,,) < 1/m. Hence lim,,,.ai,,, ai, and consequently limm,,(x, + %,,)

Xo + a, 1, 2,-.., k. Therefore we conclude that there exists N o9 such
that for n, m >= N we have that

(30) P(Xo + ai, x, + aim,) < /2.

From (29) and (30) we obtain that

(31) J[[x. + A.] Xo + A whenever

To complete the proof we shall show that

n _>__ N.

(32) J[x + A] x, + A,

for all sufficiently large n. In order to establish (32) observe that for any subsequence
A,k of A, we have"

(33) If a., k e co, and if x, + a. P as k o, then P e Xo + A.

Suppose (32) is false. Then there is an e > 0, and there is a strictly increasing
sequence 2(n) in co, such that

(34) J[[Xo + A]

The result in (34) implies there is a P. (xat.) + Azt,))\J[xo + A] for n e o9. Now
P, has the form xz(.) + at.), axt,)e Axt,), and this implies that P. is norm-bounded
if and only if aa(,) is norm-bounded. Thus (33) reveals that P. is not norm-bounded,
and there is a subsequence of P, (still denoted by P.) such that P, converges to
in Xo X w }, the one-point compactification of X. Since A, A in (2x, 2),
and since ax(.) also converges to there is a sequence * *a,) A such that Xo +
converges to o. Consequently there is a Ko e o9 such that

p(xa(.) + aa{.),Xo + a{,)) < , k >= Ko,
which contradicts the fact that P, q J[[Xo + A] for every n e o9. This completes
the proof.

Remark 6. Let/ denote Lebesgue measure on the compact interval T [to, ].
Consider the standard linear control system

(35) 2 A(t)x + (u,t), t6 T,

with x Rv, u Rq, and A a continuous p x p matrix-valued function defined on T.
The mapping b :Rq x T Rp is such that b(., t) is continuous for each e T,
and such that (h(u, is integrable for each u e R. Let U denote a nonempty closed
subset of Rq such that b(U, t) is closed for each e T. Let X denote the fundamental
matrix satisfying the matrix differential equation 37 AX with the initial con-
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dition X(0) I, where I is the p x p identity matrix. Let oY- denote the set of all
measurable mappings u T-, U such that the mapping c/)(u(t), t), T, is
integrable. Then corresponding to any ueo- there exists a unique absolutely
continuous function x(., u): T Rp satisfying (35) a.e. on T and the initial condition

(36) X(to, u) Xo Rp,

where xo Rp is fixed. By variation of parameters this function is given by

(37) x(t, u) X(t) o + X-()4(u(), )d(

for e T. A point x R’ is attainable if there exists u such that x(tl, u) x.
The attainable set is the set

{x e Rp Ix is attainable}.
Now we observe that the mapping f’t X(tl)X-l(t)dp(U,t)e2R",te T, is

measurable. In order to prove this, consider the mapping qt --. 4(U, t) e 2Rp, T,
and observe that if F is a closed set in Rp, then f--F {t e T[’:(t)c- F 4: }

{t e TlO(t)c X(t)X-l(tl)F 4: }. Consequently it suffices to verify that q) is
measurable. Let e > 0 be given. Then by [18, Corollary 2.1 or Corollary 2.3] there
is a compact T c 7’ such that/(T\T) < e and such that O[Rp x 7 is continuous.
Let K,, n e 07, denote a sequence of compact sets in U such that .),o, K, U.
Let I) denote 1T, and let F be a closed set in Rp. Then we have that

The sets {t TlqS(K,,t)c F 4: }, n e co, are each closed. Therefore q)-F is
measurable. Since e > 0 ws arbitrary, q is measurable. Hence f is also measurable.
By our assumptions we have that if Uo is a fixed point in U, then 4(Uo, t) is
integrable. Consequently f is integrable. By implicit function theorems given in
[7], [22] or [21] we see that

X(t)Xo + f dp.
dT

This makes clear the relationship between the attainable set and integrals of the
type we have studied.

Example 1. When A(t) is skew for each e T, then X(t) is a rotation 15, p. 238],
and the problem of estimating N lends itself to geometric interpretations through
the results we have obtained. We illustrate with a very simple example. The control
system is given by

 01I:  l +I l
x(O, u) 0 x2(O, u).

This is the first order system corresponding to j) + y u. The set U is the set of
nonnegative integers {0, 1, 2,... }. The fundamental matrix X(t) is determined
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to be

whereas

cos sin 1X(t)
--sin cos

X-1(0
sint cos

Let f(t)= {(x 1,xz)lx =ucost, x2 =usint, uU} for tT= [0, rt/2]. The
mapping f(t)2R",t T, is continuous in (2R2,2P). However, f, is not
continuous in (2R2, 2P); the difficulties are essentially those mentioned in Cesari’s
example cited earlier in Remark 4. Consider the sequence of intervals"

2n
neco, k= 1,2,3,...,n- 1,

and

For brevity, denote the left and right endpoints of T,k by a.k and b, respectively,
n co, k 1, 2, -.., n. Denote by F, the element in 2R defined by

F, {(u cos t, u sin t)[u U, a, __< =< b,k},
nco, k= 1,2,...,n. Denote by S,, nco, the sequence of simple func-
tions {T,,T,2,..., T,,;F,1, F,2,-..,F,,},nO9. Then by Lemma 5 we

have that for each nco,.t S, dla {(xl, x2)lx>_ 0, x2>= 0}. If we let

K, {x (x , x2) Rz[ llxll _<- n}, then the mappings S,, n o9, fL and the sets
K,, n co, satisfy the hypotheses of Corollary 3, and we have that

lim ;r S, d# fr dla,

and therefore cl {ffdla}={(x,xZ)lx>=O, x2>__O}. Clearly (0, x2)and (x*, 0)

do not belong to f f d/ for x2 -’ 0, X :# 0, and hence the attainable set .f d#

is not closed. With the aid of Lemma 6 it is actually determined that

{(x,xZ)lx* > 0, x2 > 0} vo {(0, 0)}. Thus the conjecture in [19, p. 47] is false.
Note that the outcome of this example would be the same if f(t) were replaced
by co (f(t)).

Example 2. Let

F, {(x,y) e R2[y >= l/x, x > 0},
and let

Fe {(x, y) R21y > 1/x, x < 0}.
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Let # be Lebesgue measure on [0, 1] T. Let T1 [0, 1/2], and let T2 (1/2, 1]. If

is the simple function {T1, Tz;F, F2}, then j f d# 1/2F1 + 1/2Fz, which is not

closed.
Another interesting example which Professor Halkin showed to the author is

the following.
Example 3. # is Lebesgue measure on [0, 1] T. The mapping f is given by

g(t) {(x,y)eR2lx u, y -u2t2, o < u < o0}. The set j d/ is not

closed, since (1,0) _I. d#, but for each nee), (1,- 1/(3n)) _f.f, dlze
wheref,(t) (n,-n2t) on [0, 1 and f,(t)= (0,0)on (1/n, 1].
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TOWARD A THEORY OF MANY PLAYER
DIFFERENTIAL GAMES*

JAMES H. CASE

Abstract. We consider a differential game c between the players 1, 2,..., N whose state is
governed by the equation 2 f(t, x, u, ..., uN), where ui is a control vector belonging to player i, and
suppose that each player wishes to manipulate his ui in such a way as to maximize the functional

Ji gi(tf x(tf)) -- Li(t, x(t), ui(t), ..., uN(t)) dr.

Here to and s are, respectively, the times at which the game begins and ends. A strategy N-tuple
u cr’(t, x), ..., uu r](t, x) is called an equilibrium point for f# if the inequalities

hold for each 1, -.., N and for each admissible strategy ui ai(t, ’x) for player i. We seek methods
of finding equilibrium points for the game .

The principal results of the paper are three: a theorem to the effect that the "value functions" are
in a certain sense everywhere differentiable, a system of partial differential equations which they must
satisfy and a sufficiency result which guarantees that, under certain circumstances, the "Dynamic
Programming" method suggested by the preceding differential equations does indeed yield the equili-
brium points of the game. In the final two sections, a significant class of games is solved explicitly, and a

method of characteristics is given for the solution of the "Hamilton-Jacobi" partial differential
equations.

1. Introduction. A considerable body of literature has grown up in recent years
on the theory of zero-sum two player differential games, and significant applica-
tions of this theory have been made to problems of a military nature. However, for
applications to other fields, such as biology or economics, it is necessary to study
games which are not zero-sum and which may involve more than two players.
In this paper we shall develop a technique for solving such games. Our method will
reduce, in the case of zero-sum two player games, to that of Berkovitz [3], [4],
[5 and Isaacs [8] and to dynamic programming if the games involve only one
player. Our approach will be essentially that of Berkovitz [5] except that we shall
allow a slightly more inclusive class of strategies. The rest of this introductory
section will be devoted to the explanation of certain terms and notations to be
used throughout the paper.

Vector matrix notation will generally be used. Vectors and matrices will be
denoted by single letters. Supercripts will be used to denote the components of a
vector; a subscript on a vector will indicate the player with which that vector is
to be associated. Thus, for example, ui is the jth component of the control vector ui
belonging to player i. Vectors will be written as matrices consisting of either one
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row or one column. We shall not use a transpose symbol to distinguish between
the two usages, as it will be clear from the context which is meant. The transpose of
a matrix, however, will be indicated by a prime (’). The scalar product of two n-
dimensional vectors p and x will be written (p, x), and all scalars that occur will
be real. All vectors will have real components.

The functions that occur will depend on one or more of the variables
t, x, ul, "’", uN,pl, ,PN- If (t,x, ul, "’", uN,pl, "’", PN) is differentiable
in some region R, we shall denote by V,, the gradient of with respect to the varia-
ble Pi. If takes values in E,,, and pi is an element of E,, V,, is an m n matrix.
The element in the jth row and the kth column is the real-valued function
which is defined on R.

We consider a game between the players 1, ..., N and take the state of the
game to be represented by an element x of E,. Ordinarily, x will be constrained to
lie in a closed subset g of E,, and the motion ofx will be governed by the "kinematic
equation"

(1) & f(t, x, ul,

where each u is a control variable governed by player i. We assume that each
is constrained to lie in a closed subset U U(t, x) of E,,, and that f is defined on
an open subset A of EM (here M=n+ml+ +rnN+ 1) containing
E1 g U1 UN. The function f must be everywhere at least once
continuously differentiable in each of its M (scalar) arguments. Next let be
an open subset of E, containing g. We suppose that for each player there is a class
Zi of "strategies" a (which the reader should think of as piecewise smooth func-
tions of and x, at least until the precise definition is given in the next section),
defined on E1 , and taking values in U, such that for every element
a (a l, "", aN) of Z Z1 N, the differential equation

(2) f(t, x, al(t, x), aN(t, x))

has a unique solution x,(t;r, q) thru every initial point (r, r/) in E1 . We shall
say that the game "terminates" if the curve x,(t; , rl) ever strikes a certain smooth
manifold cg in E1 , and we shall denote by t ty(a;r, rl) the instant at which
this occurs. The manifold cg is called the "terminal surface" of the game.

Next we assume that L1, ..., LN are real-valued continuously differentiable
functions defined on A and that K1,..., KN are real-valued and twice con-
tinuously differentiable functions defined on E1 @. Then if a Z is such that the
solution x(t) x(t;, rl) of (2) strikes cg, we say that a is "playable" and define
the payoff functionals associated with the "play" x(t) x,(t; , rl) by the relations

Ji Ji(", r/; o1, "’’, aN) Ki(tf x(tf))
()

ft, (t, x(t)) aN(t, x(t)))+ L(t, x(t), a dt.

Ordinarily, we shall assume that cg is of dimension n.
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The object of the game is for each player to choose his strategy aie Zi in such a
way as to maximize his own payoff Ji.

There are many definitions of "solution" for games involving more than two
players, but in what follows, we shall consider only equilibrium points. A playable
strategy N-tuple a* (a]’, ..., a}) is called an equilibrium point for the game
previously described, if the inequality

(4)

holds for every O" Ei such that the left side of (4) is defined for each 1, ..., N.
We choose this solution concept not because there is any widespread agreement as
to its virtues, but merely for its apparent tractability. In the next section we address
ourselves to the problem of selecting an appropriate class of strategies, which is an
important one for differential games. In particular, we shall concern ourselves only
with pure strategies in what follows and with games which may be expected to
have pure strategy solutions. This will dictate, in particular, that all players have
"perfect information" throughout the course of play.

2. The strategies. We shall not pause either to motivate or to justify our choice
of the strategy sets El, ..., EN. Suffice it to say that most of the games in Isaacs’
book [8] do have solutions in the classes which we shall consider, and that our
choice will permit a rigorous development of the theory. A relatively extensive
discussion of the various properties which a class of strategies should possess is
available in [6, Chap. 1], and, in particular, it is pointed out there that in most
situations of interest, it is altogether nonsensical to consider strategies which
depend upon alone. A more readily available discussion of these matters will be
found in [8, pp. 36-40.

We shall begin by defining a "tactic" for player to be a continuously dif-
ferentiable function ag(t, x) defined on E1 x @ and taking values in Ui. A "switch-
ing strategy" will then be, in intuitive terms, a finite collection a(t, x), ..., a’(t, x)
of tactics together with a set of instructions for switching from one to another. 2

Let M], ..., MI’ be a collection of manifolds of dimension less than n + 1 in

Ea x g, andlet Ii(t x) be a function defined onE x d and taking values among the
numbers 1, 2,..., k. The manifolds MI, MI’ will be called the "switching
manifolds" belonging.to the strategy a, and I will be called its "indicator func-
tion." We require that Ii be constant along any curve F which never leaves or enters
any of the manifolds M{. That is, if P and Q are two points ofE x g which lie on
each of the manifolds M{, ..., M{ (and on no others), and if they can be joined
by a curve F which lies on just those manifolds, then we require that I(P) I(Q).
We now define the "switching strategy" ai to be the set {at,x),..., ak’(t, X),
M,..., MI’, I(t, x)} consisting of the k tactics a{(t, x), the l switching manifolds
M, and the indicator function Ii(t, x). A player "plays" such a strategy a simply
by setting hiscontrol u equal to a’(’)(t, x). It is evident from the requirements on

Henceforth, when we speak of a strategy, we shall always mean a switching strategy. No other
class of strategies will be either defined or discussed.
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the functions Ii, that the right-hand side of the differential equation

(5) 2 f(t, x, a’(t’x)(t, x), a’tt’x)(t, x))

is continuously differentiable along any curve F which neither leaves nor enters
any of the switching manifolds M{ belonging to the strategies ai of the players

1, ..., N. For convenience, we shall often write (5) in the abbreviated form

(6) 2 f(t, x, aa,...,

By the strategy set Ei we shall mean the set ofall the switching strategies ai previous-
ly defined.

In the next section, it will be convenient to speak not of individual strategies,
but of strategy N-tuples a (a l, ..., as) lying in the Cartesian product
Z E1 x x Es of the individual strategy sets. It is clear that we may represent
such a a in the form a {el, O"k, M1, M, I}, where each a is a con-
tinuously differentiable function from E1 x g to U1 x x Us, each M is a
switching manifold belonging to one of the strategies 6i and I is a function on

E1 x g taking values in the set {1, ..., kl} x x {1,..., ks}, which is con-
stant along any curve F which neither enters nor leaves a switching manifold Mi.
In the next section, we shall assume that an N-tuple
in such a way that the solutions of (5) do actually reach the terminal surface cg, at
least for those initial points (z, r/) which lie in a certain subset R of E1 x g, and show
that the resulting payoffs Ji(a, z, r/) to the various players depend in a highly regular
fashion upon the quantities z and

3. The value functions. Let us now suppose that each player has chosen a
strategy ai from his strategy set i, and let us denote by a the resulting strategy
N-tuple. Write a {al, ak, M1, M, I}. Let P P(z, r/) be the point in

E1 x g with coordinates (, t/), and let x(t; P) x,(t;z, rl) be a solution of (5)
satisfying the initial condition x(z;P)= r/, which is defined in a time interval
z =< =< z’. Then the function I(t, x(t; P)) will be constant in every subinterval
during which none of the players 1, ..., N change tactics. A point of discon-
tinuity for I(t, x(t; P)) will be called a "switching time for x(t; P)," or more simply,
a "switching." We denote by R the set of all initial points P in E1 x g such that (5)
has a solution x,(t; P) starting at P(z, t/) and terminating on after at most a finite
number of switchings.

For the construction which is to follow, we shall need certain assumptions
regarding the manner in which the field of trajectories x(t) generated by a (that is,
the field of solutions of (5)) covers R. Namely, we shall assume that

(i) if x,(t) and x*(t) are two solutions of (5) such that x,(z) r/= x*(t) at
some point (, rt) in R, then x(t) x*(t) for all > , and

(ii) if Zo > z is the first instant at which x(t; P) lies on some M, then the curve
segment x(t; P), z <_ =< zo, is not tangent to that M. In particular,
x(t P), z <= <= t, is not tangent to

The requirement (i) of uniqueness is somewhat restrictive, as bifurcating optimal
trajectories do occur in certain known examples. However, we have chosen not to
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treat such phenomena here on the grounds that pursuers and evaders do not
bifurcate. It is to be emphasized that the requirements (i) and (ii) each are imposed
in one time direction only. For we wish, in particular, to treat manifolds M where
trajectories may meet and then continue on together along M. Isaacs [8, p. 156]
has discovered several examples of such manifolds.

Since each point P(z, rl) in R is joined to by a unique solution x(t; P) of (5),
the payoffs Ji(a; z, r/) Ji(a; P) are well defined by (3). We shall show that the
functions J(a; P) so defined are (for fixed ) continuous in z along the curves x(t 1:’)
and continuously differentiable in a certain sense which we shall make precise
later.

The proof will be by induction on the number of switchings. Let us partition
R into the disjoint subsets R0 w R w R2 kd ..., where P is in R if and only if
the unique trajectory x(t; P) starting at P strikes cg after exactly a switchings.
Clearly, since the function I is constant along any curve F which never leaves nor
enters any of the manifolds M, M, these manifolds contain the boundaries
of the sets R,. We shall, by integrating backwards from cg along the trajectories
x(t;P), show that (3) defines functions Jl(a;.P), "", JN(a;P) throughout R0,
which have the desired regularity there. And starting at the interface cR0 c cR1,
the procedure may be repeated in order to extend the functions in a sufficiently
smooth fashion to all of R 1, and so forth.

It will be convenient to partition R in yet another way. Letj {Jl, "’", J,} be
some subset of the integers {1,..., l} which index the manifolds M1, M
belonging to a. We will say that P lies in Sj if it lies on each of the man-
ifolds Mr’, ..., MJ’, and on no others. In particular, we denote by S the set of all
those points P which do not lie on any of the manifolds M1, ..., M( Then every
point P in E1 d lies on some Sj. Now, for a given j, the set cg c Sj may be decom-
posed into its various arcwise connected components. And if c Sj is given its
relative topology, then each such component is an open set.

Let S be one of these components, say of dimension ft. It is clear that the solu-
tions of the ordinary differential equation

(7) 5c f(t, x, a’(t, x), av(t, x))

which pass through S form, at least in some neighborhood ofS, a manifold ofdimen-
sion fl + 1 for each #- (#1, "", #N) in the range of the indicator function I
belonging to . If S(#) is any such manifold, we shall form a subset S’(#) by deleting
from S(#) every point P which is not in R0, or for which there exists no neighbor-
hood N(P) in E1 x g such that I(t, x) is identically equal to # on N(P) c S(la).
It may now be the case that S(#) is empty for every #. If so, none of the trajectories
x(t;P) beginning in R terminate on S.

If S’(/) is not empty, it is a submanifold of S(#), whose boundary is composed
of certain portions of the manifolds MJ, ..., M and S and which is disjoint from
its boundary. And since I(P) t for every point P in S’(#), the solutions of (7)
which fill S’(/) and terminate on S are also solutions of (5). That is, they are among
the trajectories generated by a.
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Next let P be an arbitrary point of Ro. By assumption, a unique trajectory
x(t; P) joins P to cg. Let Q be the point at which x(t; P) strikes cg and denote by
(tf(P), sf(P)) the coordinates of Q on Q must lie in one of the sets Sj, since every
point in E1 does, and hence in one of the connected components S of that Sj.
Moreover, since P is in Ro, I(t,x(t;P)) must be constant on the interval
z <= <= ty(P). Thus, if we denote by the value which I assumes during this time,
x(t;P) must in fact be a solution of (7), and P must be a point of S’(#). If 5 were
another connected component of one of the sets Sj, and P lay on ’(v) as well,
then two different trajectories would start at P, contrary to our assumption (i) of
uniqueness. Hence each point P in Ro must lie on exactly one of the manifolds
S’(#). Next we observe that the functions Ji(tT;P) defined by (3) are of class C on
each such manifold S’(#).

To see that this is indeed the case, fix S’(#) and observe that the solutions
xu(t; P) of (7) starting there may not strike cg tangentially. For such curves are solu-
tions of (5) as well, and so are subject to condition (ii). Hence the quantities t and
s, previously defined must be continuously differentiable functions of P, in the
sense of differentiation on the manifold S’(#). And the function

(8) J(P) K,(t(P), sf(P))

must also be a continuously differentiable function of P, which is constant along
trajectories. Similarly the function

t$(P)

(9) J(e) Li(t, xu(t e), a’(t, xu(t e)), av"(t, xu(t e))) dt

k and xu(t’P all depend inis a C’ function of the point P, since the functions L, aj
a C’ fashion upon P and upon each other. Hence Ji(a;z, rl)= J(z, rl) + J](z, rl)
is also a C’ function of the point P in the manifold $’(#). Once again, it is to be
emphasized that the differentiation referred to here is only differentiation on the
manifold S’(#). The functions Ji need not even be continuous across a given
manifold. And since, as we observed, the manifolds S’(#) exhaust Ro, the desired
result has been obtained for this region. We shall call each S’(#) a "manifold of
regularity" for the functions J. Each point P in Ro lies on exactly one such man-
ifold.

Next, let us consider again a particular S’(#) and follow the solutions xu(t
of (7) backward through time. There are four possibilities. A curve may remain in
S’(#) for all < tf. Or there may be a first instant z beyond which the solution xu(t)
cannot be continued. Or there may be a first instant z beyond which xu(z may be
defined, but beyond which the solution x(t;z, xu(z)) with which it agrees cannot
be continued. In any of these three cases, xu(t is a complete solution of the system
(5), defined on the intervals -o < < tf and z < < tf respectively. The last
possibility is that there be a first instant z beyond which the curve x(t;z, xu(t))
may be continued (in one or more ways, since we are moving backward through
time), but not without a switching. In this case we shall call (z, xu(z)) an "end
point of S’(/t)" and the set of all such points the "end set" B(#) of S’(#). Clearly
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every end point of S’(#) must lie on one or more of the switching manifolds
M1, M belonging to a. That is, every end point (z, xu(z)) of S’(/) must lie in
some Sj. Moreover, every point of c3Ro cR1 must either lie in one of the sets
S’(#) or else be an end point of such a set.

Now let T be either S’(#) itself or else some subset of B(#) which is maximal
with respect to the property that I remains constant on T. In either case the
functions Ji(a; z, rl) are defined and of class C’ on T. We may continue the functions
Ji(a;z, rl) into R1 from R0 in exactly the same way that we continued them from

into R0. We merely take Tin place of S and form all the "manifolds ofregularity"
T’(/0 which are filled with solutions of (5) which begin in R1, pass through T and
strike cg at some point of S. Letting Tand/ take on all possible values, we generate
all of the trajectories which begin in R1 and end on S, and, by varying S as before,
we obtain all the trajectories which strike cg after only a single switching. Once
again, each point P in R1 lies on exactly one "manifold of regularity" T’(/), and
the functions Ji(a , rl) are of class cg, at P in the sense of differentiation within that
manifold. Continuing in this manner, we will eventually generate all the solutions
of (5) which begin in R and reach cg. Each point P in R will lie in exactly one R,,
and hence on exactly one manifold of regularity for the functions Ji(a; , rl).
These will again be of class cg, at P, in the sense of differentiation on the appropriate
manifold.

If, in particular, a a* should be an equilibrium point for our game, we define
the value functions V, ..., VN by

(10) V(z, q) Ji(a* , rl), 1, ..., N.

Thus the value functions are defined only at those points (, r/) from which the
terminal surface is reached after at most a finite number of switchings. But they are,
in the preceding sense, continuously differentiable at every such point. This fact
will enable us, in the next section, to write down a system of first order partial
differential equations, which the value functions must obey and whose solutions
will provide us with complete information about the equilibrium point a*, the
equilibrium strategies a(t, x), the equilibrium trajectories x*(t; z, rl) and, of course,
the value functions V(r, r/) themselves. These equations will reduce to Isaacs’
"main equation" in the case of a zero-sum two player game and to the so-called
"Bellman equation" if only one player is involved.

4. The Hamilton-Jacobi equations. Let us now consider a point P(z, q) in R,
and let S be the manifold of regularity for a* (and hence for the functions Vl(t, x),
.., VN(t, x)) upon which P lies. For ease of exposition, we shall assume that S may

be globally coordinatized by the quantities and y yl, "’", Ya. Since the indica-
tor function I*(t, x) is constant on every manifold of regularity, the equilibrium
strategies al’, ..., a for the several players, when restricted to S, are just the
tactics tTll’(P)(t, X), aln(e)(t, X), which may for our purposes be written a(t, y),
.., a(t, y). For, if all the players j 4: agree to utilize the strategies uj a
throughout the game, then they will utilize the tactics uj a(t, y) so long as the
state of the game remains in S. Suppose that they have agreed to do so, and let N(P)
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be a neighborhood ofP which intersects no switching manifold of a* save, perhaps,
S itself. Define the function K(t, y) on ON(P) S by

(11) K(t, y) V(t, y)

and consider the ordinary optimization problem:Find

max Ji(a; z, ) K(t, y(ts)
uiUi

(12)
f

+ Li(t, y(t),..., a.*,_ l(t, y(t)), ui, a.*,+ l(t, y(t)),’’ ")dt,

subject to

(13) 3) g(t, y, a.*,_ ,(t, y), ui, a.*,+ ,(t, y), .)

and

(14) y(z) , (ts, y(tf)) c3N(n),

where the function g(t, y, u x,..., us) is defined by

(15) f(t, x, u, us) g(t, y, Ul, .’., us)

for every point (t, x) (t, y) on S. By the definition of an equilibrium point, a’ is
an optimal strategy for the problem (12)-(14). Therefore, in particular, a.*,(t, y)
is optimal in the class of all those functions ui a(t, y) for which the solution of(13)
remains on S, at least until it strikes ON(P). Let T,yS denote the tangent space to
S at (t, y). It is clear that if the points (t, y) are interior to S and ai(t, y) is an element
of the set UA(t, y) defined by

(16) UAi(t,y {ui Ui:g(t,y, ..., a_l(t,y),ui, a’{+l(t,y), ...) Tt,rS
for each point (t, y) of N(P) c S, then the solution of (13) corresponding to ai(t, y)
does not escape from S before reaching ON(P). Finally, we note that ifui UAi(t, y),
there is a vector t, y,..., a.*,_ (t, y), ui, a.*,+ a(t, y),...) in Tt,yS which coincides
with g(t, y, ...). Since is in Tt,S, it has only fl components instead of n, and we can
form its inner product with other vectors of dimension ft.

We now observe that the optimal payoffs V/(z, ) Ji(a*’z, ) in the problem
(12)-(14) must satisfy Bellman’s equation

max (L q- (VcV/, ;))-- -VV/(z, )
uiUAi

(17) max {L(z, , ..-, a’_ 1(:, ), u, a’+(z, ),...)
uiUAi-- (VCV/(T, ), (T, , o/*._ I(T, ), b/i, o+ ,(T, ), .-.),

as is well known 3 in the event that S is of dimension n + and P isan interior point
of S. A careful derivation of this equation is to be found in the article [5] by Berko-

In order that (17) make sense, it is necessary that VCV and have fl components. The notation
g(t, y, T,S in (16) is an abuse of language.
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witz, where it is obtained for an arbitrary zero-sum two player game. But clearly it
holds as well for the one player game (12)-(14). The derivation in the more general
case of a lower dimensional manifold S and a point P, which may lie on the bound-
ary of S, requires only a trivial modification of Berkovitz’ proof, and we shall not
bother to reproduce it here. We remark in passing, that if S is of full dimension
and P is interior to S, then UAi, and in (17) may be replaced by Ui, r/and
f respectively.

Next, let us apply another often useful result of Berkovitz to the problem
(12)-(14). Let us suppose that Mi is a switching manifold for player i, separating
two manifolds S and S’ of regularity for the functions VI(t y),..., VN(t, y), each
of dimension/ + 1, and that if 4= j the function I](t, y) is continuous across Mi.
Also suppose that the optimal trajectories y*(t) neither enter nor leave Mi tangen-
tially. Then Mi is called a transition manifold for player i, and the functions

VxV and VtV are continuous across Mi. This result, too, is proved for two player
games, but holds equally well for the one player game (12)-(14).

We summarize the results of the preceding two sections in the following
theorem.

THEOREM 1. Suppose that the game described above has an equilibrium point
a* ,..., a} in the class of N-tuples of switching strategies. Then the subset
R ofpoints ofE1 x gfrom which termination is achieved after only afinite number
ofswitchings is partitioned into a collection of disjoint cg, manifolds on each ofwhich
the value functions VI, ..., VN are of class off,. On each such manifold, the equations
(17) hold for 1,..., N. IfM is a transition manifold for player i, then V,V and
VtVi are continuous across

In analogy with control theory and the theory of two player games, this
theorem suggests the following procedure. Let S be of dimension n, for the moment,
let p, ..., pu be N arbitrary vectors in E,, and define the N Hamiltonian functions
HI, .’., HN by

(18) Hi(t, x, ul un, Pi) Li(t, x, u u) + (Pi, f(t, x, Ul, UN)).

The equations (17), which we shall henceforth call the "main equations," after
Isaacs, may now be written"

(19) VtV/+ maxHi(t,x, ..., cr.*,_l(t,x),ui, cr.*,+(t,x), ..., VxV/)= 0.

Next fix t, x and p, ..., p, and consider the game over Euclidean space defined
by the payoff functions H1,..., HN and the strategy sets U1,..., U. If this

game has an equilibrium point U u(t,x,p), ..., u ufc(t, x, p), where

P (P l, "’", PN) is an element of E,, then

Hi(t, x, u(t, x, p), uv(t, x, p), Pi)
(20) max Hi(t, x, uf_ l(t, x, p), ui, u’+ l(t, x, p), Pi).

Therefore the substitutions ui u(t, x, VxVl(t, x), VxVu(t, X)) and aj(t, x)
uf(t, x, VxVl(t, x), VxVu(t, x)), j =/= into (19) yields
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(21)
VtVi(t, x) + Hi(t, x, u’(t, x, VxVl(t, x), VxVN(t, x)), "..,

u(t, x, VxV(t, x), ...., VxV(t, x)), VxVi(t, x)) 0

for each 1, ..., N. The system (21) consists of N first order partial differential
equations for the N unknown functions V1, ..., VN, and it is to be hoped that
solving (21), subject to the boundary condition that V(t, x) Ki(t, x) on W, and
substituting the gradients Vx V into the functions u(t, x, p) will yield the equilibrium
strategies a.*,(t, x). In the next section, we shall prove a theorem to the effect that
the analogy is apt, for under certain circumstances the preceding program may
indeed be carried out. And in the section after that, we shall study a class of games
for which the equations (21), hereinafter called the Hamilton-Jacobi equations,
may be solved explicitly. We remark that equations (21) hold as well on any man-
ifold S of regularity, except that they must be written in terms of the manifold
coordinates and y instead of the E, + coordinates t, x.

5. A sufficiency theorem.4 We shall begin this section by proving a lemma
which is due, in its original form, to Carath6odory. Our sufficiency test, which rep-
resents a slight strengthening of the necessary condition (19), will then emerge as a
direct consequence of the lemma. Let S be the closure of an open subset of E, x d
and let a* be an N-tuple of tactics (i.e., strategies whose indicator functions are
constant on S) which transfer every point (r, q) ofS to c in such a way that the trajec-
tories x*(t; r, r/) never leave S. Next we assume that the payoffs are purely integral
(that is, Ki 0 for i= 1,-.., N), that the integrands are of the special form
Li(t, x, ui) and that the functions Li have, at each point (t, x) in S, zero as a unique
absolute maximum in ui. Moreover, they assume their respective maxima at the
points ui a(t, x) in Ui. That is, we assume that

(22) Li(t, x, a.*, (t, x)) max Li(t, x, ui) O,
uiUi

the maximum being unique and absolute.
LEMMA. 0"* is an equilibrium point in the class of all those strategy N-tuples

which transfer points (, q) of S to in the required manner, and the value of each
point in S to the player is zero. That is,

(23)
J(a* "r, r/) O,

J(a; r, ) __< 0

.for any other strategy N-tuple cr (..., o-_ 1, oi, 0"+1,’" ") which transfers (z, r/)
to cg without leaving S.

4 Throughout this section, we shall restrict our attention to games without switchings. It is hoped
that the resulting loss in generality will be justified by the considerable simplification in exposition
which it permits.
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and

The proof of the lemma is immediate, for

Ji(o-* "c, r/) gi(t x*(t), c;i(t, x*(/))) dt 0

since the integrand Li is assumed nonpositive.
Now, let us single out a class of games in which the procedure described in the

previous section may be justified. Most games studied by Isaacs I8 and all games
studied by Pontryagin [101 are of the following class. Suppose that tt,..., Hu
are the Hamiltonian functions for a particular differential game , and suppose
that for each p in E,u and for each (t, x) in S there is a unique control u*(t, x, p)

u(t, x, p),..., u](t, x, p)in U Uu for which the inequalities

(24)
Hi(t, x, u__ ,(t, x, p), 13i, l"+ l(t, X, p), Pi)

< Hi(t, x, u(t, x, p), ..., u(t, x, p))

hold for every u =/= u.*,(t, x, p) in U and for each 1, ..., N. Then we shall say
that c5 is "normal relative to S" and that uT(t, x, p),..o, u](t, x, p) are the "nor-
malizing controls." In particular, if S is all of E d, we shall call c5 a normal game.
We may now state the following theorem.

THEOREM 2. Suppose that is normal relati)e to S, and that u(t, x, p),...,
u}(t, x, p)are the normalizing controls. Let a* be an N-tuple oftactics which transfers
every point (T., rl) in S to c in such a way that x*(t , rl) ne)er leaves S before striking
crY.. Also, let Vx(t, x), Vu(t, x) be solutions of the Itamilton-Jacobi equations (21)
such that

(25) V(t, x) 0

for all points (t, x) on cg and for each 1, N and such that

(26) a(t, x) u.*, (t, x, V.V,(t, x), VxVu(t, x))

for each (t, x) in S andfor 1, N. Then a* is an equilibrium point in the class

of all strategy N-tuples which transfer points (r, q) to c in the required manner, and

(27) Ji(a* z, tl) Vi(z, ri), 1,..., N.

Proof. Let us consider the fianctions p:(t,x) =-VxV(t,x), ..., pu(t,x)
V,V(t,x), the nN vector p(t,x) p.(t,x),..., p(t,x) and the new payoff func-

tion Li(t, x, ui) defined by

* (t x p(t x))Li(t, x, ui) V,V(t, x) + lti(t, x, u
(28)

ui, u.*,+ (t, x, p(t, x)), pi(t, x)).
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We claim that the f-,i’s satisfy the conditions of the Carath6odory lemma. To see
that this is so, note that

(29)
,(t, x, ,/’(t, x))

V, v +/-/(t, x, u(t, x, p(t, x)), .., u(t, x, p(t, x)), p(t, x)) o

because the functions Vl(t, x), ..., VN(t, x) satisfy the Hamilton-Jacobi equations
(21) and because of relation (26). Furthermore, we observe that

(30) L(t, x, a(t, x)) max Li(t, x, u) O,
uiUi

since a’(t, x) u.*,(t, x, p(t, x)), so that, by the lemma5

(31)

L(t. x*(t)..’(t, x*(t))) at o.

(t. x(t). r(t. x(t))) dt __< O.

where a is any other strategy N-tuple of the form a (..., a’_ 1, ai, a’+, ...)
which transfers points (z, q) of S to cg in the manner required in the theorem. But

Li(t X, Ui) VtVi(t x) q- Hi(t, x, u.*,_ (t, x, p(t, x)), ui,

u+ (t, x, p(t, x)), pi(t, x))

Vt Vi(t, x) + Li(t, x, ..., u_ (t, x, p(t, x)),

u’+x(t, x, p(t, x)),...)

+ (pi(t, x), fit, x,... u_ x(t, x, p(t, x)), ui,

uf+ (t, x, p(t, x)),...)).

L,t, x*t), a’(t, x*(t))) L,(t, x*(t), ,’(t, x*(t))), *", as(t, x*(t)))

d
+ v,(t, x*(t))

and that

Li(t, x(t), Ti(t xa(t))

d
Li(t, x(t),..., a_ (t, x(t)), ai(t, x(t)), a_ l(t, x(t)),...) + Vi(t x(t))

Here, t) is the instant at which x,(t) strikes . Notice that t’I need not equal tl in this argument.
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whenever a is of the class under discussion. Hence

(32)

Lg(t, x*(t), a.*,(t, x*(t)))dt J(a* z, rt) V(, rt) + V(t, x*(t)),

i
Li(t, x(t), ai(t, x(t))) dt Ji(a; z, q) Vi(z, rl) + Vii(t), x(t’f)).

But because of the hypothesis (25), Vi(tr, x*(tz)) and Vi(t’_r, x(t’_r)) are equal to zero,
so that we may conclude finally that

(33)
J;(r*" r, rt) v(r, rt) 0,

Ji(a z, rl) Vi(z, rl) <= 0

for any strategy N-tuple a of the type considered. Since was arbitrary, this com-
pletes the proof.

Before proceeding further, we should remark that Theorem 2 is proved under
the assumptions that S is of full dimension and that the payoff functionals Ji are
in integral form. This too is done for ease in exposition, and is in no way essential.
In particular, a game in which terminal payoffs are present may be reduced to one
with a purely integral payoff by the usual transformations of the variational cal-
culus. It should be remarked, also, that Theorem 2 bears a striking resemblance to
Isaacs’ "verification theorem." Like the latter, it is only a local sufficient condition,
because all the statements are relative to the subregion S of E1 x g. Indeed, the
principal difficulty in applying the theorem is often the finding ofa suitable region S
in which to apply it. In the following section, we discuss a class of games for which
this difficulty does not arise.

by
6. A class of differential games. In this section we consider a system governed

(34)
2(0 A(t)x(t) + B(t)u,(t) + + B(t)uu(t) + f(t),

Yl(t) C(t)x(t), ..., y(t) C,(t)x(t).

Here x(t) is called the state of the system and yl(t), "", y,(t) are called its outputs.
We shall suppose that certain "output schedules" zl(t),..., z,(t) are given and
that each player wishes to keep his output yi(t) "close" to his assigned output
schedule zi(t), over the (fixed) time interval [0, T] during which the game is played.
Rather than impose "hard" constraints on the variables ul, ..’, us and x, we shall
assume that U 1, UN and g are the entire spaces E,,,, ..., E,,,, and E,, respect-
ively, and introduce a penalty term for excessive "control effort" into the cost
integrand, in order to keep the players from employing excessively large values of
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the control variables u l, ..., u,. That is, we shall assume that each player seeks to
minimize an integral of the form

Ji {1/2((z,(t)- yi(t)), Qi(t)(zi(t)- yi(t)))
(35)

"k- 1/2(ui(t), Ri(t)ui(t)) } dt,

where the matrix Q(t) is a positive semidefinite symmetric matrix and is not the
zero-matrix, while R(t) is positive definite. If Qg(t) were zero, the optimal policy
for would be ui O.

We shall solve the game by the use of Theorem 2. To this end we write down
the ith Hamiltonian function

Hi(t x, u l, uv, Pi)

(36) 1/2((z(t)- Ci(t)x), Qi(t)(z(t)- Ci(t)x)) q- 1/2(ui, Ri(t)ui)

+ (f(t), Pi) + (A(t)x, pi) + (B(t)ul,Pi) + + (BN(t)u, Pi)

and observe that the normalizing control u.*,(t, x, p) will be that ui for which the
sum

(37) 1/2(ui, Ri(t)ui) + (Bi(t)ui, Pi)

takes on the least value (since we are trying to minimize Ji, we minimize Hi instead
of maximizing it). Since the gradient of (37) is just

(38) Ri(t)u + B’i(t)pi,

and the gradient of (38) is the positive definite matrix Ri(t), it is clear that u.*,(t, x, p)
renders (37) a minimum if and only if it renders (38) equal to zero. Hence

(39) u.*, (t, x, p) R a(t)S’i(t)p

and the Hamilton-Jacobi equations (21) may be written

VtV q- 1/2((Zi(t Ci(t)x), Qi(t)(zi(t) Ci(t)x))1/2(Si(t)VxVi, VxVi)

(40) + (f(t), VV) + (A(t)x, VVi)

(s,(t)vv/, vv/) (s(t)vv, vvi) o,
where Si(t) Bi(t)Rf-(t)B’i(t), 1,..., N. Motivated by the results of Kalman
[9], we shall try to solve the system (40) by separating variables. That is, we shall
substitute the trial solutions

(41) V/(t, x) 1/2(x, Ki(t)x) (gi(t), x) d- i(t)

into (40) in the hope that the problem will reduce to one of ordinary differential
equations. If we assume that the matrices Ki(t)are symmetric and differentiate (41)
with respect to x and t, we obtain

VtVi(t, x) 1/2(x, Ki(t)x) (,i(t), x) -+- (I)i(t)
(42)

V,V/(t, x)= Ki(t)x gi(t),
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1, -.., N; and substitution of these expressions into (40) yields

1/2(x, i(t)x) (i(t), x) + i(t) + 1/2((zi(t)- Ci(t)x), Qi(t)(zi(t)- Ci(t)x))

+ 1/2(Si(t)(Ki(t)x gi(t)), (Ki(t)x gi(t))) + (A(t)x, (Ki(t)x gi(t)))
(43)

(Si(t)(Ki(t)x gi(t)), (Ki(t)x gi(t)))

(Ss(t)(Ks(t)x gs(t)), Ki(t)x gi(t))) + (f(t), (Ki(t)x gi(t))) 0.

After some relatively tedious manipulations, (43) may be put in the form

(x, (f(i(t) + C(t)Qi(t)Ci(t + Ki(t)Si(t)Ki(t + 2A’(t)Ki(t)

2Kx(t)Sl(t)Ki(t 2Ks(t)Ss(t)Ki(t))x

(x, (2gi(t) + 2C’i(t)Qi(t)zi(t Ki(t)Si(t)gi(t)2A’(t)gi(t

(44) 2Ki(t)Sx(t)gl(t 2Kl(t)Sl(t)gi(t

2Ki(t)Ss(t)gs(t)- 2Ks(t)Ss(t)gi(t + Ki(t)f(t)))

+ 2Oi(t) + (zi(t),- Qi(t)zi(t)) (gi(t), Si(t)gi(t))

2(Sl(t)g(t), gi(t)) 2(Ss(t)gs(t), gi(t)) (f(t), gi(t)) O.

Now the first term in (44) is a quadratic form (x, :/(t)x) and is unchanged if we
replace ’(t) by its symmetrization 1/2(’(t) + "(t)). Hence if we demand that the
matrices Kl(t), ..., Ks(t) satisfy the equations

Ii(t) K(t)Sl(t)Ki(t) + Ki(t)Sl(t)Kl(t + + Kc(t)Sv(t)Ki(t

(45) + Ki(t)Ss(t)Ks(t)

-A’(t)Ki(t)- Ki(t)A(t)- Ki(t)Si(t)Ki(t)- Ci(t)Qi(t)Ci(t),

1,..., N, the first term in (44) will vanish identically. Similarly, if we require
that

,i(t) Ki(t)Sl(t)gl(t + Kl(t)Sl(t)gi(t)

(46) +... + Ki(t)SN(t)gs(t + KN(t)Ss(t)gi(t

-1/2Ki(t)Si(t)gi(t)- A’(t)gi(t) Ci(t)Qi(t)zi(t) + Ki(t)f(t)

and

(47)
i(t) (Sl(t)gl(t),gi(t)) + + (Su(t)gs(t),gi(t))

1/2(gi(t), Si(t)gi(t)) 1/2(zi(t),- Qi(t)zi(t)) (f(t), gi(t)),

then the last two terms in (44) will also vanish identically, so that the functions (41)
are indeed solutions of (40). Moreover, if we demand that K(T), gl(T), I(T), .-.,
Ku(T),gu(T),s(T) all vanish, Vx(t,x), ..., Vs(t, x) satisfy the boundary con-
ditions (25) of Theorem 2 on the terminal manifold cg given by T. In order to
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compute the functions (41), we begin by solving the system of-}Nn(n + 1) ordinary
differential equations (45), subject to the initial conditions KI(T)= 0

Ks(T), on some interval (a, T]. When this has been done, the coefficients of the
nN linear equations (46) are known so that these too may be solved in (a, T] subject
to gl(T) 0 gu(T). Then the functions l(t), .", N(t) in (47) may be
obtained by simple quadrature.

Once this has been accomplished, the value functions (41) are known in the
region (a, T) x E, of E,+ 1. If we define strategies a(t, x), ..., a}(t, x) by

(48) a(t, x) u(t, x, VxVi(t, x)) R: 1B’i(t)(Ki(t)x gi(t)),

condition (26) of Theorem 2 is satisfied, and a* a]’, ..., av must indeed be an
equilibrium point for our game. The equilibrium trajectories x*(t) are the solu-
tions of

(49)
c*(t) A(t)x*(t)- Bl(t)Rx-l(t)B’a(t)(Kl(t)x*(t)- gi(t))

UN(t)R a(t)B’u(t)(Ks(t)x*(t)- gu(t)) + f(t).

In short, the solution of the game has been reduced to the solution of the three
systems (45), (46) and (47) of ordinary differential equations. These systems always
have solutions in an interval (a, T], but since (45) is nonlinear, one cannot be
certain that the number a may be chosen to be arbitrarily small. For N 1, this
difficulty does not arise (see [9]) but we were unable to prove a similar result for
arbitrary N.

It is not clear whether or not the class of games solved previously will ever
find practical application, though certainly the results for N 1 are widely used.
Also, Y. C. Ho and his co-workers have obtained significant results from a zero-
sum version of these games. But the principal value of the preceding is to demon-
strate that N-player differential games can have solutions and that the procedure
described at the end of 4 can be used to calculate them, at least in certain special
cases. In the next section we shall develop a "method of characteristics," which
will sometimes be useful for the solution of the Hamilton-Jacobi equation.

7. A method of characteristics. In order to discover an appropriate technique
for obtaining the solutions of the Hamilton-Jacobi equations, let us recall for a
moment the process by which the players governed the system (34) of the previous
example. To begin with, they each calculated the solutions Vl(t, x), ..., Vn(t, x)
of (40), together with their respective gradient directions pl(t, x) VxVl(t, x), ...,
pn(t,x) VxVN(t,x). Then at each point (t,x) of E,+ 1, they substituted the ap-’
propriate gradients Pl,’",Pn into their respective "normalizing strategies"
u’(t, x, p),..., u(t, x, p) in order to obtain the optimal controls. Thus if we wish
to calculate a particular equilibrium trajectory x*(t) x*(t;z, rl), we must be able
simultaneously to calculate the values of p(t,x*(t)),...,pn(t,x*(t)) needed to
generate the optimal "control histories" u’*(t) u(t, x*(t), p(t, x*(t))) associated
therewith. As in control theory, this may be done by solving a system of ordinary
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differentialequations for the functions p(t) p(t, x*(t)) p t, x*(t)), pl(t, x*(t)).
To derive the appropriate equations, let S be a particular manifold of regularity in
the subset R of E associated with the given strategy N-tuple a* (a]’, ...,
a]). Assume, as before, that S may be globally coordinatized by the quantities
and y. Then write the Hamilton-Jacobi equations in the form

(50) V, Vi(t, y) + H,(t, y, a(t, y), a}(t, u), VV/(t, y)) 0,

1, ..., N, obtained by substituting a(t, y) u(t, y, p(t, y)) into (21). We now
apply the operator V to either side of (50). In order to do this, we shall need to
assume the functions V(t, y),..., V(t, y) to be not once, but twice, continuously
differentiable on S. Obvious modifications of the construction of 3 yield such
functions V (cf. Berkovitz [4]).

Since the calculations are somewhat lengthy, we introduce the notations
a*(t, y) af(t, y), ar(t, y) and a**(t) a*(t, y*(t)). Then

VrVtV/(t, y) + VrHi(t, y, a*(t, y), VrV(t, y))

VrVtV/(t, y) + Vr(VrV/(t, y), g(t, y, a*(t, y)))

+ VyLi(t, y, a*(t, y)) + VuLi(t, y, a*(t, y))Vya*(t, y)

(51) VtVrV(t, y) + VrVrV(t, y)g(t, y, a*(t, y))

+ VrLi(t, y, a*(t, y)) + VuLi(t, y, a*(t, y))Vya*(t, y)

+ VrV(t, y)Vyg(t, y, a*(t, y)) + VrV(t, y)V,g(t, y, a*(t, y))Vytr*(t, y) O.

But, also, we know that

d
-ttVrV(t, y*(t)) VyVyV(t, y*(t))*(t) + VtVyV(t, y*(t))

(52)
VyVyVi(t, y*(t))g(t, y*(t), a**(t)) + VtVyV(t, y*(t)),

which isjust the fourth line of(51) evaluated along y*(t). Thus, ifpi(t) VrV(t, y*(t)),
we have for each 1, ..., N"

d
[gi(t VV/(t, y*(t))

VLi(t, y*(t), a**(t)) VV/(t, y*(t))Vg(t, y*(t), a**(t))

(53) VL(t, y*(t), a**(t))Vya*(t, x*(t))

VV/(t, y*(t))Vg(t, y*(t), a**(t))Va*(t, y*(t))

VUi(t, y*(t), a**(t), pi(t)) V,Hi(t, y*(t), a**(t), pi(t))Va*(t, y*(t)).

These equations reduce, in the case of a two person zero-sum game, to the second
of equations (5.17) obtained by Berkovitz [5], and, together with

(54) 3 g(t, y, a(t, y), av(t, y)),
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they make up a system of characteristics for the equations (50). In particular, if S
is of full dimension, we may replace y by x and g by fin (53) and (54). In order to
obtain appropriate initial data for solving equations (53), we use once again the
fact that V(t, y) is the solution of the single player game (12)-(14). Hence the
"costate vector" pi(t) VrV(t, y*(t)) must satisfy the well-known "transversality
condition" (cf. Athans and Falb [1, p. 303] or Hestenes [7, p. 344])

(55) p,(t)- VK,(t, y*(tz))= k,V,h(y*(tz)),
where is given by {y’h(y) 0} and tz is the time at which y*(t) meets c (or some
other manifold playing a like role). These results may be summed up in the form
of the following maximum principle.

THEOREM 3. Let * r, ..., be an equilibrium point in switching strategies

for c, and let x*(t) be the corresponding trajectory having the properties x*()
and x*(t) cg, where (r, r/) is some point of R. Then x*(t), z <= <= tz, is contained
in some finite number of manifolds S of regularity, on each of which the functions
Vx, Vu are ofclass C2, and on each such manifold we have

(M)

(M2)

where

(M3)
VrHi + Vu,HiVrrT(t, y) nt- nt- Vu,HiVrav(t, y),

pi(ty) k,Vrh(y*(ty)) + VrKi(ty, y*(ty)),
and if the kinematic equations (1) are autonomous,

(M) Hi(t, y*(t), a]’*(t), crv*(t), pi(t)) =- O.

Here, as always, and y refer to coordinates on the manifold S. If S is of full
dimension, y may be replaced by x in statements (M 1) to (M4) and the set UAi may
be taken to be all of Ui. Also, it should be noted that the transversality condition
(M3) may be applied at a point y*(t,), where y*(t) passes from R, into R+ (once
V is known in R,) simply by taking Ki(t, y) V(t, y) on c3R c3R+ 1.

At this point, the principal difference between two player zero-sum games and
our many player problems becomes apparent. For Isaacs’ constructive procedure
for solving differential games is simply t- integrate the characteristics (M2)
backward in time from the terminal surface . And the principal reason he is so
often able to do so is that, in most cases of interest, he is able to show c3Hi/cy

VyHi. However, for many player games, this is the case only in isolated instances,6

and one is generally unable to eliminate the appearances of a(t, y), ..., a(t, y)

For instance, it is not true of the linear-quadratic games discussed in the previous section.
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in the right side of the equations for P l, "’", PN. And while this is not always an
insurmountable difficulty, it does add materially to the complexity of the problem.
It is our own belief that, while the study of two person zero-sum differential games
may concern itself with ordinary differential equations, the many player theory
must, in general, deal directly with the Cauchy problem for the Hamilton-Jacobi
partial differential equations.
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BOUNDARY CONTROLLABILITY OF NONLINEAR
HYPERBOLIC SYSTEMS*

MARCO CIRINA

1. Introduction. This paper is concerned with the existence of boundary
controls for quasilinear systems of hyperbolic partial differential equations in two
independent variables. Specificially, we consider the boundary control problem

(1.1) z, + A(x,t,Z)Zx f(x,t,z), (x, t)s 9(1, T),

(1.2) z(x, O) dp(x), x [0, 1],

(1.3) (0, t) fi(t), z(1, t) _u(t), [0, T],

(1.4) z(x T) O, x [0, 1],

where 9t(1, T)= [0, 1] x [0, T], A, f, b are given functions, A is matrix-valued,
f, 4 vector-valued and , z is an appropriate partition of the components of the
vector z. The data and the coefficients of (1.1) will always be assumed to possess
continuous first derivatives and so the solution will be a C function satisfying the
equation everywhere on its domain of definition.

Our main object is to find conditions on A, f, th which insure that there is a
real number T > 0 and functions if, _u on [0, T] so that the solution z z(x, t)
ofthe mixed boundary problem (1.1) to (1.3) exists and satisfies (1.4). The analogous
boundary control problem for the 2 by 2 linear system reformulating the wave
equation w, c(x)wxx has been solved by Russell in [12]; results on the boundary
controllability of linear equations are also given in [1] for the simplest wave
equation and in [5] for general equations including the case ofmany space variables.
See also [9], [3]. In [12] the construction of the controls makes explicit use of the
characteristics of the equation, and the controls are eventually obtained by solving
appropriate characteristic initial value (or Goursat) problems. Such a method,
however, does not appear to be adequate if the number of characteristic fields is
not small and the equation is not linear. On the other hand, as it will be seen, these
difficulties disappear if the construction of the controls is carried out without
ever considering Goursat problems. Indeed ifA does not depend on z, the existence
of the boundary control is an almost immediate consequence of the standard
existence and uniqueness theorem for mixed boundary problems, provided that
(1.1) is hyperbolic and A(x, t) invertible.

An important difference between linear and nonlinear differential equations
is that conditions insuring the existence of a local solution are not sufficient, in

* Received by the editors November 14, 1968, and in revised form February 10, 1969.

" Department of Mathematics, New York University, New York, New York 10012. This research
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general, to guarantee the existence of a solution of the latter equations on a set of
preassigned size. On the other hand, in a hyperbolic initial value problem the data
determine the solution completely on a certain domain. Hence, in the nonlinear
case, for the existence of boundary controls it is necessary that the solution of the
relevant hyperbolic problem can be extended to sets of given size. Some such exten-
sions have been studied in [2] and the conditions found there, strengthened so as to
make the time-like and the space-like variables interchangeable, will be seen to be
sufficient for the existence of boundary controls in the nonlinear case. It will be
also proved that, if T > 0 is not too small, in an appropriate Banach space there
is an open set of initial data which can be brought to zero in time T.

2. Definitions, zero controllability. Let m > 0, n > 0 be integers; R,
R,, , are, respectively, the real numbers, the m-dimensional Euclidean space and
the space of real matrices with m rows and n columns.

2.1. Norms. Throughout this paper, ]. denotes sup norms; so [h] absolute
value of h if h e R, lh] max {lhi] "i 1,... ,m} ifh (hi)R,n,]h[ max {Z=I
i= 1,..., m} if h (h0eRm, and [h[ sup {[h(x)l’xeX} if h is a function
defined on a set X and taking values in either R, R,, or R,,

From now on N, _m denote positive integers. Fix rn N + _m if h (h) e R,
h and _h are the points ofR, Rm whose components are defined by

hi, 1, ..., ; hi hi+m, 1, ..., m_

analogously if h (hij)e R,. 1 is the submatrix of h formed by the first N rows
of b, and b that formed by the last _m rows; if h is a function taking values in R,, or
R,,,,, and _h are defined similarly. If e is a positive real number and 9 c R2,
9t, is the set defined by

t {(x, t, w)’(x, t) e 91, w e R,., lw] <-_ };

if a, T6 (0, c], 9 (a, T) is the set

{(x, t)’0 <= x <= a,x 4:,0 <= <= T,t :/: };

so if a, T are real, 9t and 9, are compact. If a, T e (0, ), z z(a, T) is the triangle

r, x,t)’O <__ <= T,O <__ x <= a--t
2.2. The class ,(9, m, ). Fix m + _m, > 0 real, 9t c R2 Write

A 2(9, m, ) if and only if the following holds"
A A(x, t, w) is a C function from 9, to R,,,,, in short A C1(9,, R,,,,),

and there is S C 1(9t,, Rm ,,) such that for some 6 > 0
(i) [det S(x, t, w)l > 6, all (x, t, w);
(i’) D(x, t, w) S(x, t, w)A(x, t, w)S- l(x, t, w) is a diagonal matrix for every

(x,t, w);
(ii) the diagonal elements di of D satisfy d(x,t, w)> 6, i= 1, ..., ,

di(x t, w) < -6, 4- 1,..., m, for all (x, t, w);
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(ii’) the submatrices of S(x, t, w) defined by

S(x, t,W) [Vl(X,t,w),V2(x ,t,W)l
_S(x, t, w) [Vl(x t, w), Az(X, t, w)],

V(x, t, w) e R, ,,
A2(x t, w) e R,,,

satisfy Idet V x(x, t, w)l > 6, Idet A2(x, t, w)l > 6 for all (x, t, w);
(iii) S, D (hence, by (i), S-1 and A) are bounded together with all their first

partial derivatives.
In (iii) and throughout this paper S-1 is the map (x, t, w) --, (S(x, t, w))-1, where
the last object is the inverse of S(x, t, w) in R A- and D- are defined anal-
ogously. Note that (i), (i’) amount to the definition of"the system (1.1) is hyperbolic
on 9," and (ii), (ii’) are usual conditions in dealing with hyperbolic mixed boundary
problems; also if 9t is compact, (iii) is redundant and it suffices that (i), (ii) and
(ii’) hold for 6 0.

2.3. The class CI(X, Y). We write z Cl(X Y) as an abbreviation of "z is a
continuously differentiable Y-valued function on X"; in absence of ambiguity
the range space Ywill be omitted. IfX is an interval, CI(X, Rm) is given the following
more special meaning. Let I = R be a compact interval; C(I, Rm) is the set of Rm-
valued continuous functions b on I possessing a continuous derivative on I,
normed by

I111 I1 + I’1,

where 4/is the derivative of 4. C Co([0, 1], Rm)iS the subspace ofC C1([0, 1],
Rm) defined by

c {4 e c, (o) ’(o) o}.

So C 1, C are both Banach spaces.

2.4. Zero controllability. Put 9 9 (1, ); suppose A A(x,t, w) and
f f(x, t, w) are functions defined on 9,, A is Rm m-valued, f is Rm-valued and
m + _m. We say that the system (1) is zero controllable with one boundary
control if there is an open set C([0, 1], R) such that for each 4 there
exist a real number T > 0 and a function _u u(t) from [0, T] to R so that the
solution z z(x, t) of(1.1), (1.2), (1.3), with _u 0, exists and satisfies (1.4).

Analogously, we say that (1.1) is zero controllable with two boundary controls if
there is an open set C1([0, 1],Rm) such that for each4 there exist a real
number T > 0 and functions fi fi(t), u _u(t) from [0, T] to R,a and Rm, respec-
tively, so that the solution of (1.1) to (1.3) exists and satisfies (1.4).

3. The main result. If A is of class E then (3.1) is zero controllable with one
boundary control. This assertion is a particular case of our main result, Theorem
3.1, which will be seen to follow mainly from the fact that if A E then the solution
of (3.1) to (3.3) below exists on a preassigned rectangle whenever the data b, , _u
are conveniently restricted.
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For m + _m consider the following mixed boundary problem"

(3.1) z, + A(x, t, z)zx O, (x, t) e 9(a, T),

(3.2) z(x, O) d(x), x e [0, a],

(3.3) (0, t) (t), z_(a, t) u_(t), e [0, T],
where

(3.4) 4 e C([0, a], R,,), e C’([0, T], R,), _u e Cl([0, T], Rm)

and b, , u satisfy the compatibility conditions
(i) 0(0)- (0), ’(0) + .(0, 0, 4(0))’(0)-- 0,
(ii) _u(0) (a), u’(0) _A(a, 0, ck(a))ch’(a) O.
Remark 3.1. Suppose z satisfies (3.1), 0 =< < T, and for i= 1,-.., let
(s) be defined by

d
ds

i(s) di(i(s), s, z(i(s), s)), s >-- t, i(t) O,

where d is the ith diagonal element of D SAS-x. If dg > 0, then at s the
curve (i(s), s), s >_ t, called the ith characteristic of (3.1) through (0, t), enters the
rectangle R R(a, T). So if A 6 .(R, m, a), the first of (3.3) amounts to fixing
on the boundary x 0 of 9t exactly those components of z which correspond to
characteristics entering R there.

The following continuation result is known (see [2, Theorems 5.II! and 5.I]).
LEMMA 3.1. Fix 0 < Co < a, 0 < T < all real, rn + m_, 0 < < b <= ,

9 9(b, ) and A S-XDS . (9, m, ). Conclusion" there are real numbers
c > O, N > 0 such that if a R c [e, b], dp, , u_ satisfy (3.4), [b[ <= Co and max(lb’[,
I’1, lu_’l) <= c, then on 9(a, T) there is a (unique) function z of class C which satisfies
(3.1) to (3.3), and IZxl <- N(lb’l / 1/’[ / I_u’[); moreover for 0 < Ta <= min(T, a/[_D[)
the restriction ofz to the triangle z(a, Ta) is independent ofthe choice ofu.

Lemma 3.1 is the main tool for proving the following theorem.
THEOREM 3.1. Put 9 9(1, ); fix m + m_, A S-aDS 72(9, m, ),

0 < Co < and C1([0, ], R) with bounded support. Conclusion" there is a real
c > 0 such that if c Ca(J0, 1], R,,), dp, f satisfy (3.4)(i), Id?l <- Co and max(lb’l,
I’1) <= c, then there exist 0 < T < o, u eCa([0, T], R,,) so that the solution
z z(x, t) of(3.1) to (3.3) with a 1 exists in C1(9(1, T), I,,), is unique there and,
moreover, satisfies

z(x, T) O, all x e [O, 1] Izl=< min(a,2Co).

Proof. Fix ca, c2, to real so that

(3.6) Co < ca < c2 < min(0, 2Co); fi(t) 0 all >_ to >= 0;

and define

(3.7) To ’,Ol- a, Ta D_l

note that To and Ta are real, positive and To =< Ta.
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For each real 6 > 0, fix a real number A A(6) such that if h satisfies

(3.8) h Cl([0, T1] R), [h(T1)[ =< cl,

then h has a C extension H to [0, ) satisfying

IHI _-< c / ,5, IH’I-< ,5, H(t)--0,

Ih’(Tx)l ,5,

all t_>_ T +A.

(e3.1) Consider the mixed boundary problem

(3.9) Zx + A- (x, t, z)z, O,

(3.10) z(0, t) 0(t),

(3.11) (x, 0) (x), _z(x, T) 0,

As it is easily checked A- e ,(9t, m, e); hence by Lemma 3.1 there is 62,

(3.12) 0 < 62 =< min

such that if

C1 CO

(3.13)

To T < o, e C([0, T], Rm) t(T) ’(T) O,

(o) ;(o), ,’(o) + X=;(o, o, 0(o))’(o)= o,

(x, t) R(1, T),

tE0, T],

xE0, 1].

I01 :< c2 and max(lO’l,l’l) :< 62,

there is a (unique) z C(9(1, T)) satisfying (3.9) to (3.11) and

(3.14) Izl =< min(, 2Co).

(3.2) For _v v(t) satisfying

(3.15) v e C’([0, Tx],Rm), v(0) (1), v’(0) + _A(1,0, b(1))b’(1)= 0

consider the mixed boundary problem

(3.16) w, + A(x, t, w)w, O, (x, t) R(1, T),

(3.17) w(x, O) dp(x), x e E0, 1],

(3.18) (0, t) fi(t), _w(1, t) _v(t), 0, T1].

Since A ,(9t, m, a), Lemma 3.1 implies that there is > 0 such that, whenever
b, fi, _v satisfy (3.4) for a 1, T T1, (3.15), [b[ __< Co and max(lb’[, [fi’[, Iv’l) =< 1,
there is a function w C(9t(1, T), Rm) satisfying (3.16), (3.17), (3.18) and

(3.19) Iw,I 62, Iwl =< c x.

Hence there is c, 0 < c =< 62, so that if b, are as in the hypotheses of the theorem,
there is v satisfying (3.15) and a (unique) w s C(9(1, T), Rm) satisfying (3.16) to
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(3.19). Indeed c can be taken to be any number satisfying

0<c__<min(62,61), IAIc <= 61,

and v any function satisfying (3.15) and I__v’l =< c, for instance,

:(t) _0(1) + tA_(1, O, qS(1))b’(1).

It will now be proved that for this c the conclusion of the theorem holds. To this
end, let b, fi be as in the hypotheses; fix _v as said in (a3.2) and let w be the function
satisfying (3.16) to (3.19). Define

T2 T + A(b2), h(t) w(O, t), [0, T1]
in view of (3.12) and the definition of A(b2), h has a C extension H to [0, ] with
IHI _-< c2, IH’I =< 62 and H(t) 0 for all _>_ T2. Let

Tz max(T2, to),

and define the function ff if(t) by

T Tz + I(D-1)],

/(t) f(t),

_
(t) H(t), [0, T];

then if(t) 0 for T =< =< T and ff satisfies (3.13). So let z* z*(x, t) be the only
function in C1(9(1, T),R,) satisfying (3.9), (3.10), (3.11)and (3.14). It will now be
shown that z* satisfies also

(3.20) z*(x, T) 0, all x [0, 1],

(3.21) z*(x, 0) b(x), all x [0, 1].

To this end let ro c 9(1, T) be the triangle

:o {(x, t)’O <_ x <= 1, T’2 + (T’2.- T)x _< T}

and consider the mixed boundary problem

(3.22) z + A- (x, t, z)zt O,

(3.23) z(0, t) 0,

(3.24) z_(x, T) O, x [0, 1

the zero function on :o and the restriction of z* to % both satisfy (3.22) on :o,

(3.23) and (3.24); also since T- T --I(D-)I, the last assertion in Lemma 3.1
implies that on ro there is at most one function in C(ro, Rm) which satisfies (3.22)
to (3.23); hence (3.20) holds since

z*(x, t) 0, all (x, t) :o.
Analogously, let

r= {(x,t)’0<=xN 1,O N N T1- Tx}
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and consider the mixed boundary problem

(3.25) zt + A- l(x, t, z)zx 0

(3.26) z(0, t) (t), tEO, T-l,

(3.27) (x, O) (x), x e [0, i].
In view of the definitions of , w, z*, it is easily seen that the restrictions wl and z*l
both belong to Cl(z, Rm) and satisfy (3.25) on z, (3.26) and (3.27) since T1 I(O- 1)1,
on z uniqueness prevails, and hence

wl- z*l
this proves (3.21).

Define
u(t) z*(1, t), [0,

then u Cl(E0, T], R_m). Since z z* satisfies (3.9) to (3.11), (3.14), (3.20) and (3.21)
from the definition of ff and _u, it follows that z* is the solution of (3.1) to (3.3) with
a and satisfies (3.5). This completes the proof.

Let us note that if A does not depend on z, Theorem 3.1 holds in a stronger
form since no assumption on the smallness of the data need be made (see the ending
of 5).

4. Controllability of zt + A(x, t, z)z,, 0. Let us first note that the existence

proof of the boundary control _u, as given in Theorem 3.1, is constructive and, as it

will be indicated later in this section, it is well suited as a basis for the numerical
computation of such control. Some consequences of the main result will now be
made explicit. The special case of Theorem 3.1 for 0 follows.

THEOREM 4.1. Suppose tt 9t(1, ), m + _m and A (9t, m, ). Then

zt + A(x, t, z)z 0 is zero controllable with one boundary control.
Fix m and Co as in Theorem 3.1 and let c > 0 be as given there for fi 0; put

C C1([0, 1], Rm) and define o fo(Co, c) by

no {q5"4 e c, (o) 0, II Co, I’I c}.
Then fo contains nontrivial open sets of C([0, 1], R,,), and from the proof of
Theorem 3.1 it is clear that the real number T > 0 produced there does not depend
on the choice of b in fo, i.e., any q5 in f can be brought to zero in time T; further-
more Tcannot be too small. This is formalized in the following corollary.

COROLLARY 4.1. Suppose the hypotheses of Theorem 4.1 hold andfix 0 < co < .
Then

(i) there are real numbers c > 0 and T > 0 such that if qb fo(Co, c) there
exist u_ 6 C1([0, T],R,.) and z e C1(9t(1, T),R,,) satisfying

(a) z + A(x, t, z)z, O, (x, t) 6 9t(1, T),

(b) z(x, O) 4)(x), x [0, 1,

(c) (0, t) O, _z(l, t) _u(t), e EO, T],

(d) z(x, T) O, x e E0, 1];
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(ii) if c, T is any such pair, then T >= IDI- 1.

(iii) if Co is sufficiently small, there are c and T having the properties in (i) and, in

addition,

T =< ](D-)I / 1 / ](D-

Proof (i) has already been seen; (iii) follows immediately from the proof of
Theorem 3.1 for fi 0; and to establish (ii) it suffices to notice that in glo(Co, c)
there are initial data (for instance --0, --Co/2) for which on the triangle
(1, I_DI- ) the solution of (a), (b} and the first part of(c)is a nonzero constant.

Remark 4.1. For a given q El(Co, c) the control function _u is by no means
unique. This is due to the fact that in the construction ofu, see proofofTheorem 3.1,
one can choose _v among infinitely many functions and extend h(t)-- _w(0, t) in
infinitely many ways. For instance, it is easily seen that h can be usefully extended
by using any function in some closed convex set contained in C([T, Tz], R,,)
and containing more than one element, hence infinitely many; also in the proof
of Theorem 3.1 it is shown that to each such extension H of h there correspond
_u 6 C([0, T], Rm) such that (a) to (d) in Corollary 4.1 hold; on the other hand from
the uniqueness of solution of the mixed boundary problem (a) to (c) in Corollary
4.1 it follows that the map H u is one to one; whence there are infinitely many u
which bring the given b to zero in finite time.

It will now be shown that the hyperbolic system studied so far is also zero
controllable with two boundary controls. This is a consequence of Lemma 3.1
and the proof of Theorem 3.1. For Co > 0, c > 0 real and C= C([0, 1],R,,)
define gl El(co, c), a subset of C with nontrivial interior, by

fl {4’4 C,14l __< Co, 14’1 _-<

THEOREM 4.2. Put 9t 9t(1, oo), fix m t + m_, 0 < co < o < oo and
suppose A S-1DS (9t, m, a). Conclusion" there is a real c > 0 such that if
d? fl(Co, c) there are 0 < T < oo, C1([0, T], R,), _u e C1([0, T], R) so that the
solution z z(x, t) of(3.1) to (3.3) with a exists in C1(9t(1, T),R,,) and satisfies

z(x, T) O, all x [0, 1; Iz[ -<_ min(a, 2Co).(4.1)

Thus z + A(x, t, z)z 0 is zero controllable ith to boundary controls.
Proof. Fix Co < c < c2 < min(, 2Co)and define

(4.2) To , T --,
2 2

where, it is recalled, D- is the map (x, t, )- (D(x, t, v))- so To, T1 are real
and To =< T. For each real > 0, fix a real number A A() such that, if h satisfies

(4.3) h C([0, T], Rm) [hi =< c, [h’[ =< 6,

then h has a C extension H to [0, oo] satisfying

IHI c + , IHI , H(t)= 0, all => T + A.
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(4.1) Consider the pair of mixed boundary problems

(4.4)

(4.5)

(4.6)

(4.4’)

(4.5’) z(1/2, t)

(4.6’) 5(x, 0)= 4(x), _z(x, T) 0,

Since A- e Z(9t, m, z), Lemma 3.1 implies that there is a 62,

Z "+- A- l(x, t, z)z 0, (X, t) N- [0, 1/2] X [0, T],

z(1/2, t) 0(0, e [o, r,
_z(x, 0) 4(x), (x, T) 0, x e [0,

z + A-(x, t, z)zt 0, (x, t) e It + [1/2, 1] x [0, r],

tel0, r,

such that if

C CO

(4.8)

T [To, o), 0 C’([0, T],Rm), p C’([0, 1],R.,),
and q5 satisfy the compatibility conditions O(T) O’(T) 0,

(0) b(1/2), 4/(1/2) + A-1(1/2, 0, b(1/2))O’(0) O, and
[l _-< c2, max(l’l,lqS’l) =< 62,

then there is a unique pair of functions z_ e C1(9t -, R,,) satisfying (4.4) to (4.6),
z+ e C1(0t+, R,,) satisfying (4.4’) to (4.6’) and, moreover,

(4.9)

(e4.2) For , v satisfying

]z-I, ]z+] =< min(e, 2Co).

(4.10)
(o) 4(o),

_(o) _4,(),
’(0) + A(0, 0, b(0))4)’(0) 0,-

_v’(0) + _A(1,0, b(1))4/(1) 0,

consider the mixed boundary problem

(4.11) w, + A(x,t,Z)Wx 0, (x, t)eOt(1, Y1),

(4.12) w(x, O) qS(x), x [0, 1],

(4.13) (0, t) (t), _w(1, t) _v(t),

since A e 2(9t, m, e), Lemma 3.1, in view of the reasoning made in (e3.2), implies
that there is a c, 0 < c < 62, such that if b e f(co, c) there exist , _v satisfying (4.10)
and w eC(9t(1, T),R) satisfying (4.11), (4.12), (4.13) and

(4.14) Iw,[ _-< 62, Iwl _-< c.
To see that for this c the conclusion of the theorem holds, let b e f(Co, c), fix , _v
so that what has been said in (e4.2) holds, and let w be the function satisfying (4.11)

(4.7) 0 < 2 min
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tO (4.14). Define

T2 T + A(62) T= T2 +

h(t) w(1/2, O, [o, 7]].

Since h satisfies (4.3), from the definition of A(fi2) and (4.7) it follows that we can
fix a function e C1([0, T], Rm] which extends h and satisfies Iql _-< c2, I6’] <= 32
and 6(t) 0 if e [T2, T]. So T, , b satisfy (4.8); let z_, z+ be the solutions of
(4.4) to 4.6) and (4.4’) to (4.6’) respectively. Define

(t) _(0, t), u _z+(0, t), e [0,

then C1([0, T],Ra) and u eCl([0, T],R,). By using the same uniqueness
arguments already used in the proof of Theorem 3.1, it follows that z_ is the
solution of

zt + A(x, t, Z)Zx O,

z(x, o) 4)(x),

(o, t) (t), _z(1/2, t) ,(t),

and satisfies

z_(x,r) =0, x[0,1/2],

analogously, z/ is the solution of

and satisfies

Iz-I min(e, 2Co);

z, + A(x, t, z)zx O,

z(x, o) 4)(x),

(1/2, t) (t), _z(1, t) _u(t),

z+(x, T) O, xe[1/2,1], Iz+l <= min(0, 2c0).

(x, t) e 9-,

x e [o,

e [0, T],

(x, t)e 9t +,

te[O, r],

Define z to be z_ on 9t-, z+ on 9t+ then, z e C(9t(1 T), Rm), and a moment
of reflection shows that z is the solution of (3.1) to (3.3) and satisfies (4.1). The
theorem is thus established.

The two boundary controls fi and _u are not unique; this depends, as before,
on the fact that there are many useful choices of and _v and many useful extensions
of w(1/2,. ). Incidentally this lack of uniqueness is most interesting since it leaves
open the possibility of choosing the boundary controls and _u so as to minimize
T or, for fixed T, to minimize some functional of , _u and z.

The next corollary is the analogue of Corollary 4.1 and follows immediately
from Theorem 4.2. It asserts in particular that if the initial data q5 have sufficiently
small derivatives and the real number T > 0 is not too small then b can be brought
to zero in time T.
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COROLLARY 4.2. Let Co and A be as in the hypotheses of Theorem 4.2. Then
(i) there are real numbers c > O, T > 0 such that for each f(Co, c) there

exist CI([0, T, R), _u 6 CX([0, T], R,) and z CI(tt(1, T), R,,) satis-

fying
z, + A(x, t, z)z O, (x, t) 9(1, T),

z(x, O) d(x), x [0, 1],

(0, t) fi(t), _z(1, t) u(t), [0, T3,

z(x, T) O, x 6 [0, 13;

(ii) if c, T is any such pair, then T >= ]D]- 1/2"
(iii) if Co is sufficiently small, there are c, T having the properties (i) and, in

addition,
T <__ ID-Xl + 1.

As for the numerical determination ofboundary controls it is useful to observe
that the proofs of the existence Theorems 3.1 and 4.2 give a general method of
computation. Indeed, in the case of one boundary control _u _u(t), the comput-
ation of _u is reduced by Theorem 3.1 to the numerical solution of two mixed
boundary problems, namely (3.16) to (3.18) and (3.9) to (3.11). Analogously, in the
case of two boundary controls, computation of fi and _u is reduced by Theorem 4.2
to the numerical solution of three mixed boundary problems. Therefore any
numerical scheme for solving hyperbolic mixed boundary problems, such as,
for instance, those in [7], [8] and [13], gives a scheme for computing boundary
controls.

5. Controllability of zt + A(x, t, z)z, f(t, z). It will be seen that sufficient
conditions for the hyperbolic system

z + A(x, t, z)z, f(x, t, z)

to be zero controllable are the usual conditions on A,f for solving the mixed
boundary problem, augmented by

(A- if) 0, fx 0,
If(x, t, z)l

0 as z 0.
Izl

These additional requirements are used to guarantee that for some class of data
the two relevant mixed problems analogous to (3.9) to (3.11) and (3.16) to (3.18)
have solutions on preassigned rectangles. Since the system studied in 4 satisfies
the preceding additional conditions, the results in this section generalize those
already ottained however, in a sense, they are also more special because the set
of initial data b brought to zero in finite time will be smaller, for not only Ib’l but
also Iq] will be required to be small.

For a and T, positive real, define

B {w’w6R,,lw[ <= }.



BOUNDARY CONTROLLABILITY 209

Suppose

(a) f= f(t, w) is a C function from [0, T] B, to R and for each =< [0, T],

If(t, w)[/lw[ --. 0 as w --, O; consider the mixed boundary problem

(5.1) zt + A(x, t, z)z, f(t, z), (x, t)e gt(a, T),

(5.2) z(x, O) ok(x), x [0, a,
(5.3) (0, t) fi(t), _z(0, t) _u(t), [0, T],

where

05 e C’([0, a], R,,), fie C1([0, T], Ra), u e Cl(0, T], R_m),
(5.4) (i) fi(0) ((0), ’(0) + (0, 0, (0))4’(0) f(0, O(0)),

(ii) u(0) (a), u’(0) + d(a, 0, 4(a))4’(a) f(O, 4(a)).
The following analogue of Lemma 3.1 is known (see 2, Theorems 5.II and 5.I]).

LEMMA 5.1. Fix m + , 0 < T < , 0 < b , A S-1DS E (,
m, ), where (b, T) with f satisfying (a), 0 < < b and N > 0 real.
Conclusion" there are real numbers Co > O, c > 0 such that ifa R [e, b], , fi and
u satisfy (5.4), Il Co and max(l’l, ]o’l, lu’l) c, then there is a unique z C(N(a,
T), R) which satisfies (5.1) to (5.3), and, moreover,

[z[ _<_ 2c0, [z,[ _<_ N;

also if 0 < T1 _-< min(T, a/[_D[), the restriction of z to the triangle z(a, T) does not

depend on the choice of u.
DEFINITION. Suppose 0 < T =< oo, 0 < b =< oo and t 9t(b, T); write

(A,f) 2(R, m, oO if and only if A A(x, t, w) ,(9t, m, ), f f(t, w) satisfies
(a) with [0, T] replaced by [0, T] R, and (A-if) O.

Remark 5.1. If the partial derivative of (A-lf) with respect to vanishes
everywhere on 9t,, which is trivially true if A andfare independent of t, then

A- X(x, t, w)f(t, w) A- (x, , w)f(’, w), all (x, t, w), (x,

Hence if (A,f) (9t, m, o0, A- If can be identified with the map f f(x, w)
defined by

f(x, w) A- (x, O, w)f(O, w), (x, w)e ([0, b] c R) x B,

andf satisfies the analogue of (a), i.e.,fis of class C and for each xe [0, b] c R,
If(x, w)l/Iwl 0 as w --, 0. So, if (A,f)e2(9t, m, o0, A andfsatisfy the hypotheses
of Lemma 5.1 and A- and fsatisfy the hypotheses of Lemma 5.1 with x playing
the role of t; hence Lemma 5.1, rewritten with the obvious change in notation,
holds for the mixed boundary problem

z + A- l(x, t, z)z, f(x, z), (x, t) e 9t(a, T),

z(O, t) O(t), [0, T],

5(x, 0) (x), _z(x, T) _v(x), x e [0,
The next theorem is analogous to Theorem 3.1; it follows from Lemma 5.1
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and the preceding remark in essentially the same way in which Theorem 3.1
follows from Lemma 3.1 its proof is omitted since it is very similar to that of
Theorem 3.1.

THEOREM 5.1. Put 9t t(1, oo); fix m + m_, (A,f) (9t, m,) and
fi 6 C([0, oo], R,) with bounded support. Conclusion" there are Co > O, c > 0 real
such that if dp C([0, 1], R,,,), b and fi satisfy (5.4i), max([b[, [u[) __< Co and max([b’],
[fi’[) <= c, then there exist 0 < T< oo and u CX([0, T], R,) so that the solution
z z(x, t) of(5.1) to (5.3) with a 1 exists in C(9t(1, T), R,), is unique there and,
moreover, satisfies

z(x, T) O, all x [O, 1] ]z[_-< 2Co.
By taking 0 in Theorem 5.1 one obtains the following corollary.
COROLLARY 5.1. Suppose R 9t(1, oo), rn + _m and (A,f) Y(9t, m, ).

Then z + A(x, t, z)zx f(t, z) is zero controllable with one boundary control.
The next theorem follows from Lemma 5.1 and Theorem 5.1; its proof is

omitted because it can be obtained by making minor modifications in that of
Theorem 4.2.

THEOREM 5.2. Suppose 9t 9t(1, oo), m + m_ and (A, f) ,(9t, m, ). Con-
clusion: there are Co > O, c > 0 real such that if qb f(Co, c) there are 0
fi 6 C([0, T], Rm), u_ C([0, T], R,) so that the solution z z(x, t) of (5.1) to (5.3)
with a 1 exists in C(9t(1, T), R,,) and satisfies z(x, t)= 0 all x [0, 1. Thus
zt + A(x, t, z)G =.fit, z) is zero controllable with two boundary controls.

We shall now consider briefly the semilinear problem

(5.5) zt + A(x, t)z, f(x, t, z), (x, t) 6 9t(1, T),

(5.6) z(x, O) qb(x), x [0, 1],

(5.7) (0, t) fi(t), _z(1, t) u_(t), e [0, TI.

Let m N + __m, 9t 9t(1, oo) and suppose, in obvious notation, that A A(x, t)
belongs to Z(9t, m),fis a C function from [0, 1] x [0, oo) x R,, to Rm bounded
as are its first derivatives, and b, , _u are given compatible C functions. Under
these hypotheses it is well known that (5.5) to (5.7) has a (unique) C solution z,
for any T> 0. By using this fact in the proof of Theorem 3.1 one obtains the
following corollary

COROLLARY 5.2. Suppose A, f, are given as above and has compact sup-
port. Then there are a real number T > 0 and, .[’or each given el), a function
u C([O, T], Ra) so that the solution z of(5.5) to (5.7) exists and satisfies z(x, T) 0
for all x [0, 1].

Therefore if T> 0 is not too small, any b C([0, 1], R,,) can be brought to
zero at time T with one boundary control and, a fortiori, any
in the case of two boundary controls.

6. Example" the wave equation. Consider the following boundary control
problem" find T > 0 and real-valued functions

u_ =u_(t) on[O,T1, w= w(x,t) on91 [0,1] x [0, T
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such that

(6.1) w, c2(Ux)Wxx, (x, t) 9t,

(6.2) w(x, O) f(x), w,(x, O) h(x), x [0, 1,

(6.3) w(0, t) 0, wx(1, t) _u(t), 6 I0, T],

(6.4) w(x, T) O, x [0, 1],

where c, f and h are given real-valued functions ofa real variable and fand h satisfy
appropriate compatibility conditions at x 0.

If c is specialized to

qR,
+

where E > 0 is a certain constant (Young’s modulus), it is shown in [6, Chap. 3]
that a function w satisfying (6.1) describes the transverse planar vibration of an
elastic string. If, moreover, u is given, then the initial value problem (6.1) to (6.3)
can be thought of as approximating the transverse planar vibration of a string with
given initial state f, h, one end clamped at x 0, and the other end free to move
at x 1, along the straight line orthogonal to the x-axis contained in the plane
of motion and subject to the external action fi fi(t).

If z Rz, let , _z be, respectively, the first and the second component of z;
it is easily seen that the transformation

reduces (6.1), ..., (6.4) to

where

A(z)

Wt Z_ W

z, + A(z)z O,

z(x, o) 4,(x),

5(0, t) 0, _z(1, t) _u(t),

z(x, T) O,

-1
qS= _qS:h.

(x, t) e 9t,

xe[0, 1],

t[0, T],

xe[0, 1],

Also the eigenvalues of A(z) are +_ c(5); so if

(6.6) O < a < c Cl([-a, a], R), c(O) v O,

then A satisfies all the hypotheses of Corollary 4.1. Therefore as a particular case
one obtains the following proposition.

PROPOSITION. Suppose c satisfies (6.6). Then the wave equation (6.1) is zero
controllable with one boundary control.
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Thus whenever f and h are conveniently restricted there are T, u and w satis-
fying (6.1) to (6.4). It is clear that if (6.6) holds then (6.1) is also controllable with two
boundary controls.
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INTEGER PROGRAMMING OVER A FINITE ADDITIVE GROUP*

FRED GLOVER"

Abstract. An algorithm is given for solving an integer program over an additive group. Computa-
tion times appear to grow more favorably with increases in the number of variables and group elements
than with the dynamic programming approach proposed by Gomory. A new property satisfied by
optimal solutions to the group problem is established by reference to the structure of the algorithm.
Extension of the algorithm to the general integer programming problem is developed in a sequel.

(I)

1. Introduction. In this paper we give an algorithm for solving the problem"

Minimize cx

subject to ex e, x__> 0 and integer, j 1,-.., n,

where the cj are nonnegative scalar constants, and 0 and the j,j 1,-.., n,
are elements of a finite additive group. We sometimes also refer to

__
cixj

in matrix notation as cx, where c--(cl, c2, ..-, Cn) and x
An example of (I) is the problem:

(I’) Minimize 3xl + 7X2 + 4X3
subject to 8xl + 3x2 + 5x3 6 (mod 11),

x, x2, x3 >= 0 and integer.

Alternatively, consider the linear integer programming problem:

(II) Minimize cixi
j=l

subject to ax.i + y b, 1,..., m,
j=l

x, Y’i ->- 0 and integer for all i, j,

where c, ai and bi are integer constants.
Applying the simplex method to (II) without the integer restriction on the

x/and y yields an equivalent representation .1

(II’) Minimize cjx
j=l

subject to ai.ix.i + y b, 1,..., m,
j=l

* Received by the editors November 16, 1966, and in final revised form December 4, 1968.- Department of Statistics and Operations Research, The University of Texas at Austin, Austin,
Texas 78712. This research was supported in part by the U.S. Office of Naval Research under Contract
NONR 760(24) NR 047-048.

It is assumed an optimal continuous solution exists.
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where the cj, aij and bi are rational, the xj and y are obtained by renaming the

x.i and Y’i (e.g., x Y2, x2 x4, etc.) and cj >= O, bi _>_ 0 for all and j. Problem (II’)
then becomes an instance of (I) by dropping the restriction y 0, giving:2

(III) Minimize cjxj
j=l

subject to aijxj bi(mod 1), 1,..., m.
j=l

The significance of (I) lies in the fact that under certain conditions, its solution
gives an optimal solution to (II) (see 7).

It frequently happens that all of the constraints

aijxj=bi(modl), i= 1,...
j=l

can be replaced by a single constraint

jxj -= eo (mod O),
j=l

m,

where D, o and the a.i are integer constants, so that (III) becomes equivalent to the
class of problems whose form is illustrated by (I’).

A variety of such problems containing from 50 to 1500 variables and from
100 to 4500 group elements have been solved with the algorithm of this paper.
Computational results are reported in 8.

2. Methods for solving (I). Two methods have been proposed for solving (I)
other than the method of this paper. The first, due to Ralph Gomory [4], is based
upon a dynamic programming recursion for the knapsack problem developed by
Gilmore and Gomory [1]. Refinements in this approach have also been suggested
by W. W. White I8]. Computation time is estimated to be proportional to riD,
where n is the number of variables and D the order of the additive group.

The second method, due to Jeremy Shapiro [6], is based on a dynamic pro-
gramming recursion for the knapsack problem developed by Shapiro and Wagner
[7]. No estimates of computation time are available for this method, although
the method appears intuitively to be quite promising.

The method of this paper takes a different approach that departs from the
dynamic programming framework. An appeal to the structure of the algorithm
establishes a new property satisfied by optimal solutions to (I) (see 7). Computa-
tion times for the method, as reported in 8, appear to depend somewhat more
favorably on n and D than a direct proportionality to riD.

This method can be considered a dual method, in that optimal solutions are
generated for a sequence of right-hand sides, until a feasible solution is found.

That (III) is in fact an instance of (I) derives from the elegant theory developed by Gomory in
[33, [4].
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3. Simplified version of the algorithm. We describe three versions of the
algorithm in this and the next two sections, beginning with the simple and working
toward the more complex (and more efficient). Formal justification of the principal
ideas and claims is deferred to 6.

To begin with, we eliminate degeneracy by assuming c > 0. If c >= 0 is
rational, this can be ensured as follows: multiply c by a positive integer large
enough to make all components integer in the resulting new c. Then replace all

c 0 by c.i 1/P, where P is a number such that .:o x =<_. P l. Thus any
feasible adjustments of {xjlcj was zero} cannot change the objective as much as a
unit change in any xj. In particular, it suffices to let P D (see 7). 3

The algorithm generates a sequence of solutions (vectors of nonnegative
x,).Associatedintegers) x(1), x(2), x(i), where x(i) is the vector (Xl, x2,

with x(i)is the "cost" c(i)= 2"=1 CjX} and the group element e(i)= =1 jX.
If e(i) Co, then x(i)is a feasible solution to (I). Each x(i) is generated from an
earlier solution x(p), called the predecessor of x(i), by incrementing one of the
components of x(p) by one. Thus if xf is the component of x(p) that is incremented
to give x(i), then we may write x(i) x(p) + er, where er denotes the vector with 1
in the rth component and O’s elsewhere. We observe that c(i) c(p) + c and
(i) (p) + .

We construct the sequence of solutions to satisfy the following conditions:

(i) If p 4= q, then x(p) :/= x(q).
(ii) Ifp < q, then c(p) <= c(q).

(iii) x(i) is an optimal solution to (I) when o is replaced by (i).
(iv) The solution sequence is finite, and e(i) eo for some x(i) if and only if

problem (I) has a feasible solution.
If we alternately interpret the j as ordinary column vectors, our strategy in

generating the x(i) may be seen to correspond quite closely to the strategy of the
dual simplex method in solving the ordinary linear programming problem. In
fact, the successive basic solutions determined by the pivot rules of the dual simplex
method satisfy exactly the same four conditions.

We shall introduce several of the fundamental ideas of the algorithm (in a
simplified form) by means of an example. Consider the problem:

Minimize 3xl -k- 7x2 + 4x3

subject to 8xl + 3x. + 5x3 -= 6(rnod 11)
given in as an instance of (I).

Table shows a sequence of solutions x(i) generated by the algorithm.4

Included in the table are the costs c(i), group elements e(i), and the indices Pi
and ri from which one may verify the relations

x(i) x(p) + e,

c(i) c(p) + c,

(i) (p) + czr
Here (as earlier), and throughout the paper, we let D denote the number of elements in the

additive group.
4 The specific rules of the algorithm follow the example.
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for p p, and r r,, where p, names the predecessor of solution i, and ri names
the variable which was incremented to get x(i) from

Note that the starting solution, x(1), is the 0-vector. Because x(1) has no
predecessor, r and P have not been assigned values.

TABLE

4 6 9 10 I1 12 13 14 15 16 17 18 19

c(i) 0 3 4 6 7 7 8
a(i) 0 8 5 5 2 3 10

3 2 3

Pl 2 3 3

9 10 10 11 11 12 12 13 13 14 14 14
2 10 0 7 8 10 4 7 8 4 5 6

2 3 2
4 5 6 7 3 8 7 9 10 11 12 6

0 0 2 0 0 3 2 0 4 0 3 2 2 1,, 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 2 0 0 2 0 3 0 2 0

x X X X * * X *

To identify the contribution of each variable xj to the generation of Table 1,
we define a transition index tj which names the next solution from which x will
be incremented. That is, if x(1), x(2), ..., x(k 1) denote the solutions currently
generated, then x(k) will be one of the solutions x(tl) + el, x(t2) + e2, "-, x(tn)
+ en. That is, t will be the predecessor the next time x gets incremented. All of
the t are initially set equal to 1, so that x(2) will be one of the solutions
el,e2, ’’’, en.

As soon as xj is incremented, i.e., when x(t) + e x(k), then the predecessor
name is changed. The next time x gets incremented, its predecessor will be i
instead of tj, where5

min {i’i > tj and r, _>_ j}.
All that remains for the determination of x(k) is the selection of the particular

index r for which x(k) x(tr) + er. To do this we define a next costN c(t) + c
for each j. N is the cost c(k) when x(k) is generated from the predecessor x(tj), i.e.,
when

x(k) x(tj) + ej.

Then we select the index r by

N min {N1, N2,..., N,}
and set x(k)= x(tr) + e.

We summarize our foregoing remarks in the following description of the
procedure as developed to this point.

The reason for the stipulation ri ->_ j is to avoid duplications. For example, without this restriction
the solution x(5) el + e3 in Table could be generated both as x(2) + e and x(3) + el, since
x(3) e3.
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SIMPLIFIED ALGORITHM.
1. Begin with x(1) 0 and t 1 for j 1, ..., n. Designate the solutions

currently generated by x(i), 1, ..., k 1.
2. To generate the next solution x(k), select r to be one ofthej’s,j 1, ..., n,

by the rule N, rain (Nj). If more than one index j is a candidate for r by this
criterion, let r be the smallest of these indices. Then let x(k) x(t,) + e,.

3. Update t by setting it equal to its next value (note g, < k) and repeat the
foregoing process.

The reader may verify that this algorithm generates the sequence of columns
of Table 1. To facilitate this verification, Table 2 supplies the successive values
assumed by the tj and the Nj.

The entries for portions of the table left blank are the same as the nearest
preceding entries in the same column. The value of r (N, min {Nj}) at each stage

TABLE 2

j 2 3

c 3 7 4

t
N 3

t 2

N 6

tj

N

t 3

N 7

tj 4

N 9

tj

tj

tj

tj

5

10

6

10

3

11

7 4

7

12

r=l

r=3

r=l

r=l

r=2

r=3

r=l

r=l

r=l

10

12

13

14

16

17

18

j 2 3

c 3 7 4

tj 7

N 11

t 8

N 12

tj

tj

tj

tj

tj

r=l

6

14

9

13

r=2

r=l

r=3

14

16
r=l

10

13
r=l

11

14
r=l

12

14

13

15

r=l
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is indicated to the right of the appropriate portion of Table 2. It may be noted that
the amount of computation required in going from one iteration to the next is very
small.

This simplified procedure generates solutions that are unnecessary for solving
(I), and a glance at Table 1 discloses a variety of them: x(4), x(8), x(9), x(10), x(12),
x(13), x(15), x(16), x(17) and x(18). These solutions are dominated in the sense that
other solutions generated earlier in the table give the same (i) with as good or
better values for c(i). Since these solutions are superfluous, they can be dropped.

There is of course no gain in dropping the dominated solutions at this stage,
since the work devoted to generating them has already been done. However, if
each solution is checked to see if it is dominated before it is added to the table,
then the outcome is somewhat different. The x’s and *’s beneath Table 1 show the
columns that would never have entered the table. The x’s are attached to columns
that would have been checked for inclusion in the table, but rejected, and the *’s
are attached to columns that never would have been checked or generated at all
since they are descendants of other dropped columns.

It is not evident that solutions can be dropped legitimately at the point at
which they are discovered to be dominated, unless they are dominated by a solu-
tion with a strictly lower cost. In fact, it can be shown that dropping dominated
solutions can cause the method never to generate a feasible solution to (I), let
alone an optimal one, if an improper tie-breaking rule is used in the choice of r at
instruction 2.

A disguised complexity in the process of dropping solutions arises from the
fact that some of the tj’s can thereby become "undefined." On the other hand,
from an ability to drop solutions also comes an ability to impose bounds on
variables, thereby further limiting the number of solutions examined.

The procedural details for accommodating these facts are given in the next
section.

4. Procedures for handling dominated solutions and upper bounds. To supple-
ment our previous remarks we define a list G(k), k 1, 2, ..., D, where G(k) 0
if none of the x(i) currently generated gives (i) gk (gk denotes the kth group
element). Otherwise, if (p) gk for some p, then G(k) p. G(k) names the solution
index (or "iteration") p for which the right-hand-side element, (p), is gk.

The use of the G-list in dropping dominated solutions is as follows. When
preparing to generate the solution x(k) x(tr) + er, identify the group element gh

such that gh (tr)+ . Then x(t)+ e is permitted to be generated as x(k)
only if G(h) 0, whereupon G(h)is set equal to k. Otherwise, if G(h) >= 1, then
x(tr) + er is dominated by the previously generated solution x(i) for i= G(h),
and thus is not recorded in the table. Note that xr might eventually be incremented
even if x(t) + er is dominated at iteration k. Therefore, whether or not it is domi-
nated, the next step is to find the next value ir for t,. We now define

rain {i :i > t,r <__ ri and G(q) 0,

where gq denotes the group element (i) + }.
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As already intimated, there may not be a next value for tr that satisfies this
definition. Thus, we introduce the set T {j:tj is defined}. Initially, T contains
all the j, j 1, ..., n (since tj 1 for all j). Thereafter, the composition of T can
vary. But from the results of 6, T cannot become empty unless (I) has no solution.

We now summarize these remarks by describing an algorithm for (I) that
accommodates dominated solutions.

To begin, let T {j:j 1, ..., n}, tj 1 for allje T, G(h) 0 for h 1, ...,
D and G(D) 1, where go is the "0" group element, generated by the starting
solution x(1) 0. If ao 0, the problem is trivially solved by x(1).

Otherwise, we denote the solutions generated at the current stage of the
method by x(1), ..., x(k 1)and the next step is to generate x(k).

ALGORITHM FOR (1).
1. If Tis empty, problem (I) has no solution. Otherwise, identify the index r

such that

Nr min {N}.
jet

If more than one j qualifies to be r, let r be the smallest of the qualifying indices.

2. Let gh denote the group element given by gh (t) + .
(i) If G(h) >= 1, do nothing at instruction 2. Go to instruction 3.
(ii) If G(h)= 0, indicating that gh has not previously been generated,

generate the solution x(k) x(t) + e and let G(h) k. If (k) o,
x(k) is optimal for (I) and the method stops.

3. Update tr to its next value (using the expanded definition of this section).
If the updated value of t does not exist, remove r from T.

4. If a new solution x(k) was not generated at instruction 2, then return to step
to pick up the next smallest Nj. But if a new x(k) was generated, check whether any
of the j Tcan be returned to T; i.e., whether j __< rk and G(h) 0 for gh given by
gh Z(k) -t- Zj. Let tj k for all such j added back to T, and then return to step
to generate x(k) for the next larger value of k.

We illustrate the algorithm above by applying it to the problem:

Minimize 3Xl + 4x2 + 5x3 + 7x4
subject to 5X + 9X2 + 3X3 -+- 4x4 (mod 10).

Table 3 gives the sequence of solutions generated by the algorithm.

c(i)
(i)

pi

Xr

TABLE 3

4 5 -6 10

0 3 4 5 7 8 9 10 12 13
0 5 9 3 4 8 2 6 7

2 3 2 3
3 4 4 4 7 8

0 2
0 2 2 2 2 3 3
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Notice that in place of recording the vector x(i) for each column, as in the
and the value of the single variableearlier example, we have instead recorded xj

(for r ri). The formula for determining these values is as follows. Let x(p)Xr
denote the predecessor of x(i), i.e., x(i)= x(p) + er. Then xj Z x + 1, and

1 otherwise.xp+ lifrp randxr=Xl
The successive iterations of the algorithm that produced the columns of this

table are summarized in Table 4. As before, entries for portions left blank are the
same as the nearest preceding entries in the same column.

TABLE 4

j 2 3 4

cj 3 4 5 7
ej 5 9 3 4

tj

(tj) + j

tj

tj

tj
4 Nj

(tj) + j

tj
5 Nj

o( j) -t-

tj

o(tj) q- Oj

tj

O(tj) h- Oj

tj

O(tj) + oj

tj

3 4
5 9

3 3
7 8
4 8

7
12
7

8
13

7
13

5 7
3 4

4
10
6

r=l

r=2

r=3

r=l

r=4

r=2

r=3

r=l

r=l
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The steps of the algorithm can be traced from the tables as follows. From step 1
of Table 4, r 1, producing column 2 of Table 3. Thereupon, the next value for tl
would ordinarily be 2, except that (2) + 01 10 _= 0, and 0 has already been
generated ((1) 0). Consequently, since there are no other possible values for
l, it becomes undefined, as indicated by the asterisks in step 2.

At step 2, r 2, producing column 3 of Table 3. t becomes defined again
(t 3) and the next value of 2 is determined (t2 3), as shown in step 3 ofTable 4.

Step 4 of Table 4 is generated routinely. At step 5, however, r 4 is indicated,
except that 0(1) + 4 4 has by now been generated ((5) 4), and hence the
next permissible value is sought for t4. There is none, and so t4 becomes undefined
(as indicated by the asterisks). The actual value of r at step 5 is therefore r 1.

At step 6, r 2 is indicated, but cz(3) + (X2 8 has been generated ((6) 8).
Thus, the next value of 2 is determined, giving t2 4. In this case, N2 is still
minimum, and so r 2 gives the correct value of r. Steps 7, 8 and 9 of Table 4 are
determined similarly.

The optimal x-vector can be recovered as follows. Begin with x 0 and the
index of the optimal (last) column of Table 3.

Let xr x + xer (for r ri) and identify the group element gh 0(i) Xr(Zr
From the G-list (or simply by scanning back through the table) locate the column
for which gh (i) (i.e., set i= G(h)), and then repeat this procedure until

The foregoing also works by replacing x with at each step, so that the x
values need not have been recorded for this purpose. Using either procedure, we
see that an optimal solution is given by x (1 0 2 0).

values are not needed to recover the optimal solution, but canand xrThe x,
be used to serve another more fruitful purpose. Specifically, whenever a solution
x(t) + e, is rejected as the next x(k) at instruction 2, postpone this rejection,

it follows that6temporarily designating x(k)= x(t) + e,. Then if xr xj,
x(k) x,e,. Moreover, since x(k) is dominated, one may reasonably guess that x

in all undominated solutions’this is shown to be true inwill satisfy x N x,
Lemma 5, 6.

We denote the upper bound so determined for x by U. After checking for
such a bound, we discard, without being recorded, the dominated solution tem-
porarily designated x(k), and the process continues.

Similarly, one may check to establish an upper bound for x at instruction 3
when seeking the updated value , for t, since the chance to identify dominated
solutions also arises there.

To make use of the upper bounds Uj thus determined, one expands the
definition of j to

(i) + }j min {i’i > tj,j r, xj < U and G(h) 0, where gh

A slightly quicker way to check whether x(k) xer is to record a flag for each x(k) which takes

the value 0 if x(k) xer and otherwise. The flag for a successor x(q) of x(k) is the same as for x(k)
ifrq rk, and is ifG rk.
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The stipulationV xj < U is easily checked after checking for j _<_ ri, since

xi 0 ifj < re, and xi is precisely the value recorded in the table as r ifj r.
Had such upper bounds been computed in generating Tables 3 and 4, U1

would have been determined at step 2 of Table 4, U4 0 at step 5 and U3 2 at
step 8. Also, accounting for U1 would have avoided two attempts to determine
a next value for tl in going from step 5 to 6, and accounting for U4 0 would
have avoided repeated checks to see whether t should become defined once again
after step 5.

5. An accelerated version ofthe algorithm. We now show how to solve problem
(I) by generating only a subset of the x(i) produced by the algorithm in 4.

First note that the algorithm in 4 generates optimal solutions x(i) in order
of increasing cost, stopping when a solution with the desired right-hand side is
reached. Let x* be the optimal x-vector which is to be generated by the algorithm.
Consider two nonnegative integer vectors x" and x such that x* x + x and
Icx cxa] min Icx" cx’], where x’ and x" range over all pairs of nonnegative
integer x that sum to x*. We prove in 6 (Lemmas 6 and 7) that vectors qualifying
to be x and x will be generated by the algorithm. Consequently, we hereafter
denote these solutions by x(a) and x(b), where, say, a < b.

Since c(a) and c(b) are either equal or nearly so, it may be expected that x(a)
and x(b) will be generated somewhat before x*. But since x* x(a)+ x(b), it
would be possible to stop immediately after generating x(b), eliminating the
generation of all subsequent solutions.

Let c(k) c(p), where k and p are candidates for b and a, so that x(k)
+ x(p) x*’7 is >= 0 because k > p. The accelerated algorithm will generate
candidates for x(a) and x(b) in order of increasing (or nondecreasing) 7- The trick
is to know when the optimal x(k) and x(p), namely x(a) and x(b), have been
generated.

Clearly, the first step is to check each time a new x(k) is generated at instruction
2 to determine whether G(q) >= 1, where gq is the group element eo e(k). If so,
x(k) + x(p) is a feasible solution to (I), where p G(q) (<= k). However, x(p)
+ x(k) may not be optimal, and, in general, several feasible solutions to (I) may be
found by repeating this check for successive x(k).

Let x’ denote the best of these solutions. Now, if x’ is not optimal, then
c(b) + c(a) < cx’. Furthermore, until x(b) is finally generated, it must be true that
c(b) >= Nr, because candidates for x(b) are generated in order of increasing cost.
Consequently, c(a) < cx’ N, and an upper bound for c(s) is found by identifying
the largest c(i) (call it c(a’)) such that c(i) < cx’ Nr. Since c(b) Nr and c(a)
<= c(a’), it must be that c(b) c(a) >= N c(a’). Moreover, since c(b) and c(a)
are as nearly the same as possible, it is also evident that c(b) c(a) <= Cm, where
c,, max {cj). Thus once N- c(a’)> Cm becomes satisfied, x(b) has tlready
been generated and x’ is the optimal solution.

The handling of the U can alternately be accommodated by requiring "j _<_ di" instead of
"j =< ri and x < Uj" in the definition of the [, where di r if x Ur (r ri), and d r other-
wise.



INTEGER PROGRAMMING 223

Frequently, a smaller value can be given for Cm than max {cj}, thereby per-
mitting earlier termination of the algorithm. To see this, let c(b)- c(a).
Then if x’ is not optimal, 2c(a) + 6 < cx’, and hence < cx’- 2c(a). Suppose
each ej is scanned before starting the algorithm and if ej o, the solution x ej
is admitted as a candidate for x’. This implies that if x’ is not optimal, it is also true
that x(a) O, and hence c(a) > c(1). Thus 6 < cx’ 2 c(1), and c,, may alternately
be given by Cm max {cj:cj < cx’ 2 c(1)}.

The cutoff level thus determined will generally succeed in stopping the algo-
rithm considerably in advance of generating x*. However, the whole process
becomes more effective by dropping solutions that would ordinarily be retained.
Specifically, when x(p) + x(k) is found to be feasible for (I), both x(p) and x(k) and
all their successors can be eliminated from further consideration (Lemma 7, 6).
This is easily accomplished for x(k) simply by not recording it in the table (although
G(h) is assigned some positive value to permit solutions dominated by x(k) to be
dropped). To prevent additional successors from being generated it suffices to set

r 0 (or r rp in case it is desired to recover the value of rp later). Similarly,
one may locate successors x(i) of x(p) that are already generated, and set r 0
(or r r) to assure that no more of their successors will be generated. Clearly
this process can be carried out for as many generations of descendants of x(p) as
desired. However, the chances offinding a descendant of x(p) beyond an immediate
successor are probably remote.

The main content of the foregoing discussion can be summarized by pre-
scribing the following changes in the constructions of the algorithm as stated in
4.

Change in instruction 1. If no feasible solution for (I) has previously been
found, the instruction remains unchanged. Otherwise, let x’ denote the best solution
found. Identify N, (as before), let c(a’)= max {c(i) c(i) < cx’-N}, and let
Cm max {cj} (or c. max {c:cj < cx’- 2c(1)} if the solutions x ej,
j 1, ..., n, have been included as candidates for x’). If one of the following
conditions holds, then x’ is optimal for (I) and the method stops:

(i) Tis empty;
(ii) c(a’) or Cm does not exist;

(iii) Nr- c(a’) > Cm.
Change in instruction 2. If 2(i) is applicable, the instruction is unchanged. If

instruction 2(ii) is applicable, set G(h) k (as before) but postpone all other work
involved in recording x(k,). Identify the group element gq o (k) and the index
p G(q). If p 0, the generation of x(k) is recorded, as before, and nothing further
is done. But if p _> 1, then x(p) + x(k) is feasible for (I) and is designated the
new x’ if c(p) + c(k) < cx’ (letting cx’= o if x’ does not exist). Furthermore,
the generation of x(k) is not recorded, and if p 4: k, rp is set equal to 0 (or to
--rp) to prevent generating new successors of x(p). (One may also replace ri
by ri for successors x(i) of x(p) already generated, and similarly for their succes-
sors, etc.)

Except for these changes, the algorithm remains the same as before. Note
that the dropping of x(k) and x(p) specified by the changed instruction 2 may



224 FRED GLOVER

provide upper bounds for some of the xj in the manner described in the latter part
of4.

We trace the course taken by the accelerated version of the algorithm by
examining Table 3. Since the accelerated version is the same as the original except
for checking for new solutions x(k)+ x(p) and dropping their successors, we
confine ourselves to determining the effect of these operations on the columns of
the table.

The first candidates found for x(a) and x(b) are x(4) and x(6)--e(4) + e(6)
11 1--yielding cx’= c(4)+ c(6)= 13. We shall now verify that this is

optimal. First, no successors of x(4) or x(6) need be generated. Thus, changing
from 3 to 0 and masking over the column for x(6) (which. is not actually generated
by the accelerated method) insures that x(7) will be bypassed. Also, x(8) need not
be generated, since it is also a successor of x(4). However, to avoid its generation
would ordinarily require checking the current tj and updating 3 which is found to
equal 4. But the method stops without generating x(8) by checking the relation
N, c(a’) > cm. Specifically, upon preparing to generate x(8), Nr 10; hence
c(a’) < 13 10, giving c(a’) 0. Also, c,, 7, and the .relation becomes 10 0
> 7, which is true, thus signaling optimality and directing the method to stop.

The optimality of x(4) + x(6) can also be verified more quickly if the pre-
liminary scanning is used to admit each e as a candidate for x’ (none of the e
qualify).

Then c,, < cx’-2c(1)= 13- 6, giving c,, c3 5. Before updating N,
from 9 to 10, the relation N c(a’) > c is 9 3 > 5, the validity of which again.
signals optimality.

6. Theorems and proofs. We refer to the simplified (incomplete) form of the
algorithm given in 3 by stipulating that no solutions are dropped, and the
complete form of the algorithm (including the use of upper bound restrictions) by
stipulating that solutions are dropped.

LEMMA 1. Ifno solutions are droped and the algorithm is not permitted to stop
upon generating So, then the method will generate every x-vector having finite com-
ponents.

Proof. Note that c > 0 implies every j,j 1, ..., n, will be selected as r at
finite intervals. Suppose x x’ is not generated. Then neither would the method
generate x(i) x’ eu, where u is the first nonzero component of x’. For clearly
u <= ri, which means tu must eventually be set equal to ri and hence x’ generated.
Repeating this argument implies that 0 is not generated; contrary to x(1) 0.

LEMMA 2. No solution is generated twice, whether or not some solutions are
dropped.

Proof. Let x(q) be the first solution that duplicates a previous one, say x(p).
Then for some h < q and k < p, x(q) was generated as x(h) + er and x(p) was
generated as x(k) + e, where r is the first nonzero component of x(q) and x(p).
Thus x(k) x(h), and since x(q) is the first duplicating solution, h k. When
x(p) was generated t h, and then t, was increased, never to be decreased. Con-
sequently, x(q) could not have been generated from x(h), contrary to assumption.



INTEGER PROGRAMMING 225

LEMMA 3. If no solutions are dropped, p < q implies8

(i) c(p) < c(q) or

(ii) c(p) c(q)and x(p) > x(q).
Proof. Note that either (i) or (ii) is satisfied for q 2 and p < q (hence p 1).

Suppose the lemma is true for all q < k and p < q. We prove it true for q k and
p h < k. Write x(k) =. x(k’) + e,, x(h) x(h’) + e,. When x(h) was generated,
c(h) Nv and either Nv < N, or N N, and v < u. If t, (and N,) are the same
when x(k) is generated as when x(h) was generated, then the proof is immediate.
If t, and N, change, then let N’, be the new N, when generating x(k). We have
N’, c(t’,) + c, and Nu c(t,) + c,. But t, < t’u < k and, by hypothesis, (i) or (ii)
holds relative to p t, and q t’,. It follows immediately that (i) or (ii) must also
hold relative to p h and q k.

LEMMA 4. Let S denote the sequence of solutions generated by the simplified
algorithm and suppose this algorithm is modified so that occasionally solutions are
not generated but bypassed (according to any rule whatsoever). The resulting
sequence of solutions S’ is a subsequence ofS (i.e., contains a subset of the solutions
of S in the same relative order).

Proof It is evident from Lemma that S and S’ are well-defined. Denote those
x(i) in S by xl(i) and those x(i) in S’ by x2(i). Let be the subsequence of S obtained
by deleting from S eachxl(i) such that x(i) 4= x2(k) S’. We note by Lemmas 2
and 3 that the components of must be a permutation ofthose ofS’. Thus, designate
the smallest such that xa(i) by , the next smallest by , and so on. Then we
wish to prove that x(i)= x2(i) for all x2(i) GS’. Suppose otherwise, and let
p min {i’xl() - x2(i)}. Also identify the indices q and r such that x(/5) xZ(q)
and x2(p) xl(?). It is assured by Lemma 2 that q, r > p. Since g if and only
if s for all and s, we have xl(.) x() + e, for some u and some h < p, and
x2(p) x2(k) + eo for some v and some k < p. Now, x(/3) was generated before
xl(?), but xl(?) x2(p) implies x(?) x() + e. Since k < p, this means that
when x 1(/3) was generated, t, (=/) was well-defined (v T). Thus there was a choice
to make between generating x(/) and x(?). Similarly, x2(p) was generated before
x2(q), but xZ(q) x2(h) -+- eu, SO that, by analogous reasoning, there was a choice
to make between generating x2(p) and x2(q) when x2(p) was generated in S’. But
/ < ? thus implies q < p, providing a contradiction.

Remark. Lemma 4 establishes the validity of Lemma 3 for the case when solu-
tions are dropped.

LEMMA 5. Ifa solution x’ is dropped at instructions 2 or 3 of the complete algo-
rithm, then there is no vector x* >- x’ that is a lexicographically largest optimal
solution.

Proof. Suppose this lemma is false, and let x’ be the first solution dropped
that has a lexicographically largest optimal descendant, x’ is dropped because
there is a solution x(i) already generated such that c(i) <= cx’ and (i) jx. Let

8A vector y is defined to be lexicographically larger than a vector z, written y : z, if the first
nonzero component of y z is positive.
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x* x’ + x" be the lexicographically largest optimal solution. Since (i) x
and c(i) <= cx’ it must be true that x(i) + x" is also optimal. Moreover, c(i) cx’.
But then x(i) is lexicographically larger than x’ (since x’ would have been generated
later than x(i)) and in turn x(i)+ x" is lexicographically larger than x’ + x",
contrary to assumption.

Lemmas 1 to 5 immediately imply the next theorem.
THEOREM 1. The algorithm of 4 yields an optimal solution to (I) or verifies

that no feasible solution exists, after generating at most D solutions x(i), each of
which is optimalfor (I) with o replaced by a(i).

The succeeding results refer to the accelerated algorithm of 5.
LEMMA 6. Let x(a) and x(b), a < b, be two solutions such that x(a) + x(b) is

optimal for (I), and, moreover, let b be the least index (b >= a)for which two such
x" > 0solutions can be found. Then c(b)- c(a) <= cx’ .-cx" for all solutions x,

such that x’ + x" is optimalfor (I) and cx’ >_ cx".
Proof. Let x and xp be two solutions qualifying as x’ and x" and minimizing

cx’ cx". Thus the lemma asserts c(b) -c(a) cx cxp. The lemma is trivially
true for cxp 0; hence suppose cxp > O.

Let a %xpj and aq ax, where xp3 and x are the jth components
ofxp and xq. Define problem (I) to be the same as (I) with a replacing ao and (I) to
be the same as (I) with a replacing a0. Since cxp, cx < c(x + x), it follows from
Theorem 1 and Lemma 3 that there exist x(p) and x(q) generated in the process of
solving (I) such that x(p) is optimal for (Iv) and x(q) is optimal for (I). Suppose p =< q.
By assumption b =< q, and hence c(b) <__ c(q). But since c(q) + c(p)= c(a) + c(b),
it follows that c(a)>= c(p) and hence c(q)- c(p)--c(b)- c(a), proving the
lemma.

LEMMA 7. Let x(a) and x(b) be as in Lemma 6, and suppose there are solutions
x(h) and x(k), h < k < b, such that x(h) + x(k) is feasible for (I). Then there is no
vector z >= 0 that satisfies one or more of thefollowingfour conditions"

(i) x(h) + z x(a),
(ii) x(h) + z x(b),
(iii) x(k) + z x(a),
(iv) x(k) + z x(b).
Proof. Since k < b, x(h) + x(k) is not optimal, and hence c(h) + c(k) > c(a)

+ c(b). Condition (i) implies x(h) + z + x(b) is optimal, hence there exists x(v) such
that x(v) + x(h)is optimal and c(v) < c(k). Consequently v < k, and x(v) and x(k)
qualify to be x(a) and x(b), contrary to k < b. Conditions (ii), (iii) and (iv) lead to
similar contradictions.

Lemmas 6 and 7 establish the next theorem.
THEOREM 2. The accelerated algorithm willfind an optimal solution ifone exists

and, in particular, will generate x(a) and x(b) ofLemma 6.

7. Properties of optimal solutions. The characteristics of the solution sequence
x(1), x(2), ..., generated by the algorithm, make several properties of optimal
solutions to (I) immediately evident. For example, let nj denote the order of the
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subgroup generated by all multiples of j. Then, since njej is the 0-element, the
solution njej is dominated by x(1), and x) <= nj 1 holds for every x(i) generated.
The existence of optimal solutions with this property is proved by Gomory in [4].

Moreover, there are at most D of the x(i) (including x(1) 0), and the sum of
the variables in each is only one more than in its predecessor. Thus it is evident that

< D for all x(i). The existence of optimal solutions with this property is
also proved by Gomory in [4].

We see that solutions satisfying both of the two foregoing properties exist
and, in fact, are the only solutions generated by the algorithm.

More recently Gomory has proved that optimal solutions may be found that
satisfy91-l= (Xj -[" 1) =< D. It may be observed that this property is somewhat

i<Dstronger than xj
We shall prove a different property that is also considerably stronger than
< D by a direct appeal to the structure of the algorithm.Xj

THEOREM 3. Let (I i) denote problem (I) with o replaced by gi for 1,..., D.
Then there exists a set ofoptimal solutions xl for (I1), xZfor (I2), xDfor (ID), such
that max {x,x2, x} + max {x,x,..., x} + + max {x,x,,...,
D-1.

Proof. Label the group elements to correspond to the a(i) generated by the
algorithm; i.e., gl a(1), g2 (2), ’’’, gD (D), where a0 go. Then the
solutions xi specified by the theorem are precisely the x(i) generated by the algo-

2rithm of 4. To see this, let Uj max {x),xj,., x} for j 1,..., n. The
theorem asserts U D 1. Beginning with j 1, delete each x(i) which is
derived from its predecessor by incrementing only x. No solution x(k) is deleted

k differs from the correspondingin which any of the components x,x,--., x,
component of the predecessor of x(k). Consequently, x2, x3, ..., x, attain their
maximum values in the undeleted solutions. There are at least U of the x(i) to be
deleted, leaving at most D- U solutions behind (one of which is x(1)= 0).

is only one larger than in one of theMoreover, in each remaining x(k), =2 xj

preceding x(k). Thus since there are at most D U solutions other than
x(1) 0, ,j=zXJk =< D- 1- U. We repeat this process for j 2, n.

k < D j Uj Finally, we obtain 0 < D 1At each step r, j=+ xj =" Uj or " Uj < D as claimedj=l j=l

The Uj in the proof ofthe preceding theorem constitute upper bounds for the xj
that apply regardless of which group element o happens to be. One way to deter-
mine such a set of Uj is to apply the algorithm until every g is generated, and then
compute max {x),..., xy} for each j. There is also a second much faster way. Sup-
pose the definition of [j is simplified so that, when x(tj) + ej is generated as the solu-
tion x(k), j is set equal to k. Further suppose the method is stopped only when T
becomes empty. This "modified" version ofthe algorithm has the following features.

(i) Only solutions of the form lej, 2ej, 3ej, are generated for each j.

(ii) As soon as a solution hej is dropped (checked but not generated), j is
removed from Tand never returns. At this point Uj can be recorded as h 1.

Reported by W. W. White in [8].
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It may be observed that the foregoing method will usually generate fewer (and
never more) than the D solutions required to determine the Uj with the unmodified
algorithm. Moreover, all comparison operations in determining the next value
j of tj are eliminated. No upper bounds are checked for the variables, since a
variable drops from T as soon as its upper bound is attained and verified. Because
of this, T also tends to shrink more rapidly than with the unmodified algorithm,
reducing the number of effective problem variables. Finally, there is no need to
check those j T to see if they should be put back into T.

By Lemma 4, the sequence of solutions generated is a subsequence of that
generated if no solutions are dropped. (Here some of the solutions are "dropped"
by the restrictive definition of j.) Solutions bypassed due to dominance considera-
tions are therefore truly dominated and would not be generated in any case.
Consequently, the U.i are valid (although possibly not as restrictive as those
obtained from the sequence of x(i) generated by the unmodified algorithm) and
satisfy U < D 1 by the proof of Theorem 3.

$. Computational experience. Roughly five hundred problems have been
solved with the algorithm, containing from 50 to 1500 variables and from 100 to
4500 group elements. The problems all have the form

Minimize CjXj
j=l

subject to jxj o (mod D),
j=l

x >= 0 and integer,

where the cj and j are positive integers.
The c were randomly generated to lie within a specified interval, and several

different intervals were tested to.determine the effect on computation times.
The zj were generated by selecting 1 randomly from the set S 1, 2, .-.,

D 1}, 2 randomly from thesetS {1}, 03 randomly from theset S {1, 2},
and so on. Thus, p q for p 4: q was avoided, although one might expect this
situation to arise in practice, thereby making it possible to reduce the number of
problem variables.

Representative tables of computation times follow. All times reported are in
seconds of central processing time on the CDC 6600.1 The ci were arranged in
ascending order before starting the algorithm but the time for this preliminary
ordering is not included.

The tables are headed with the symbols n, D, Total, Av., Fast and Ratio.
"Total" gives the time for the algorithm of 4 to solve problem (I) for every value
of o. That is, the algorithm is permitted to continue until (1), (2), ..., (D) are
all generated. Since, in practice, one will often be interested in solving (I) for a

The code was written in FOWIRAN IV.
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particular value of Co, the times to solve (I) for 11 o e(D/5), e(2D/5), , z(D)
were averaged to give an idea of expected computation time, and this average
appears in the column headed "Av."

The "Fast" column gives the computation time for solving problem (I) with
the accelerated version of the algorithm. The accelerated version was applied to (I)
with eo (D) (thus requiring more computation than with eo at any other value).

The "Ratio" column gives the ratio of the "Fast" column to the "Total"
column, indicating the relative efficiency of the accelerated version to the version
of the algorithm of 4.

From Tables 5, 6 and 7 it may be seen that computation times tend to become
longer as the relative difference between the largest and smallest cj decreases. 12

In Tables 5 and 6 the effect of holding n constant and increasing D is an almost
exactly proportional increase in the "Total" times. The increase in "Total" times
in Table 7 for n and D => 1000 is somewhat less than proportional to increases in D.

TABLE 5

_<c _<400

500

1000

1500

501 .148
1002 .270
1503

1000
2002
3003

1501
3002
4503

.421

.245

.452

.680

.439

.888
1.274

A Fast
.096 0981
.175 .197!
.274 .334

.176 .154

.307 .382

.479 .577

.288 .333

.559 .555

.838 .855

Ratio

.662

.730

.793

.629

.845

.849

.759

.625

.671

D

50O

1000

150O

501
1002
[503

1001
’.002
3003

1501
3002
,503

TABLE 6

301 =< cj =<. 700

Total

.739
1.326
2.297

2.537
4.388
6.663

4.481
8.790
13.916

.507

.843
1.237

1.858
2.996
3.972

3.485
5.565
7.996

Fast

.376

.409

.645

1.092
1.294
2.081

1.724
2.252
3.717

Ratio

.509

.308

.281

.430

.295

.312

.385

.256

.267

11 The numbers D/5, 2D/5, were of course replaced with their nearest integers.
12 This may be due in part to a less than optimal computer subroutine for determining Nr at

each iteration.
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TABLE 7

5OO

6Ol cj <_ 1000

1000

1500

Total mv,

501 1.226 1.017
1002 2.041 1.508
1503 3.146 2.060

4.749 3.999
6.373 5.194
9.592 6.738

8.240
12.006 10.286
15.471 12.201

1001
2002
3003

1501
3002
4503

Fast

.445

.509
1.207

5.393
1.532
2.567

Ratio

.363

.249

.384

1.136"
.240
.268

.129

.199

.294

5O

100

5O

100

5O

TABLE 8

D Total Fast

100 .050 .020

150 .061 .024

Ratio

.400

.393

200 .081 .035 .436

100 .056 .029 .516

150 .072 .033 .458

200 .153 .035 .228

100 .065 .013 .200

150 .088 .019 .215

100 200 164 .044 .268

__< cj =< 40

31 __< cj __< 70

61 =< c =< 100

Also, for the ranges of cj in which the computation times are longer (Tables
6 and 7), the "Av." and "Fast" times become increasingly favorable relative to the
"Total" times. The superiority of the accelerated version of the algorithm is quite
evident from the fact that the "Fast" times in Tables 6 and 7 are not only better
than the "Total" times, but are also considerably better than the "Av." times. An
exception occurs for n-- 1000 and D- 1001 in Table 7, as indicated by the
asterisk beside the "Ratio" entry. The reason for this exceptional divergence from
the pattern evident in the other entries is not known.

While computation times appear to increase roughly in proportion to increases
in D, they do not increase in proportion to increases in n. For example, in Table 5,
a proportional increase in computation time would lead one to expect the "Total"
and "Fast" times for n 1500 and D 1501 to be roughly 1.2 and .99 seconds
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(multiplying the times for n 500 and D 1503 by three). In contrast, they are
actually .439 and .333 seconds.

More dramatic examples arise by comparing the times 13 of Table 8 to those
of Tables 5, 6 and 7. At first glance the Table 8 times are very small, since most of
the "Total" times are under .09 seconds and most of the "Fast" times are under
.04 seconds. However, if the computational time were to increase in proportion
to nD, as in the group algorithm of [4], the times for "corresponding" ranges of cj
would be greater by a factor of from 4 to 40 than the times appearing in Tables
5, 6 and 7. For example, extrapolating from n 50 and D 150 for 1 N cj =< 40
would give a "Total" time of 54.900 seconds for n 1500, D 4503 in Table 5,
as compared to 1.274 seconds.

Such comparisons do not yield a precise formula linking computation times
and increases in n and D, both because of the effect of different ranges of cj and
because of probable shortcomings of the computer code in determining Nr

min {cj} and in determining the current composition ofthe set T. 14 Nevertheless,
without attempting to be definitive, the tables do establish definite patterns in the
performance of the algorithm: in particular, that the accelerated version of the
algorithm is distinctly superior to the version of 4 and that computation times
for both versions increase at a considerably more favorable rate than nD.

Acknowledgment. I am indebted to Sam Ginsburg of the University of
California, Berkeley, and to Professor Stanley Zionts of the State University of
New York at Buffalo for suggestions that have improved the exposition of this
paper.
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GENERALIZED KUHN-TUCKER CONDITIONS FOR
MATHEMATICAL PROGRAMMING PROBLEMS IN

A BANACH SPACEs

MONIQUE GUIGNARD"

Abstract. Generalized Kuhn-Tucker conditions stated in this paper correspond to the optimality
conditions for mathenatical programming problems in a Banach space. Constraint qualifications
given before can be regarded as special cases of the present constraint qualification introduced to prove
the necessity. Pseudoconvexity of the constraint set rather than convexity is required for sufficiency.
In case this hypothesis fails to be satisfied, second order optimality conditions are sufficient for an
isolated local optimum.

1. Introduction. Optimality conditions are given for a generalized mathe-
matical programming problem. The constraint set, defined in a Banach space similar
to that in [1], was considered in a Euclidean space in [23 and is different from that
in [3]. First order necessary optimality conditions stated in the first part ofTheorem
2 generalize the Kuhn-Tucker conditions [4.], while the constraint qualification is
a substitute for all the constraint qualifications of Kuhn-Tucker [4], of Arrow,
Hurwicz and Uzawa [5 and of Abadie [6. Sufficiency is proved for objective
functions either pseudoconcave [7] or quasi-concave [8], the constraint set being
now taken as pseudoconvex. In case even these weakened convexity conditions
fail to be satisfied, second order optimality conditions may be sufficient for an
isolated local optimum. Results similar to those in [9], [10] and [11] are stated for
a more general program and in a form related to first order conditions.

2. Preliminaries. For any two topological spaces S and T, L(S, T) denotes
the set of all continuous linear mappings from S into T. For all s e S and for all

L(S, T), (l, s) is l(s), i.e., the value of the continuous linear mapping at s.
We consider X, a locally convex real linear topological space, and X*, its

topological dual, i.e., for E, a one-dimensional Euclidean space, X* L(X, E).
X* is given the uniform topology. Let M be a subset in X (respectively X*); M
denotes the closure of M and {M} is the smallest convex subset in X (respectively
in X*) containing .M. -M is {- x" x M}. Let N be another subset of X; then
MkN= {xX" xeM, xdfN}.

1.1. Cones. The following definitions are given.
DEFINITION 1. C X (respectively C* = X*) is a cone if for x e C (respec-

tively x* e C*), x e C (respectively x* C*) for all 0.
DEFINITION 2a. For a cone C = X, we define

C- {u X* (u, x) _<_: 0 for all x C},
C+ {u e X* (u, x) 0forallxeC}.
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DEFINITION 2b. For a cone C* = X*, we define

C*- {x e X" (u, x) __< 0 for all u t C*},
C*+ {xtX" (u,x) >__ 0 for all utC*}.

Remark. C- and C/ (respectively C*- and C*+) are closed convex cones in X*
(respectively in X).

The following properties are given for the defined cones. Proofs can be found
in [12] for a Euclidean space or in [13] for a locally convex linear topological space.

PROPERTY C1. Let C be a cone; then C-- {C}. In particular, if C is closed
and convex, C-- C.

PROPERTY C2. Let C be a cone; then C- { C}-.
PROPERTY C3. Let C1 and C2 be closed convex cones; then (C1 C2)-

c? + c.

1.2. Cones tangent and pseudotangent to a set. We consider X, a real
Banach space, M, a nonempty set in X, 2 t M, y t X. The following definitions
are given.

DEFINITION 3 (cf. [6]). The vector y is tangent to M at 2 if there exist a sequence
{Xk} contained in M and converging to 2 and a sequence {2k} of nonnegative
numbers such that the sequence {2k(Xk 2)} converges to y.

DEFINITION 4 (cf. [6]). The set T(M, 2) of all the vectors tangent to M at 2 is
called the cone tangent to M at 2.

DEFINITION 5 (cf. [3]). The set P(M, 2), the closure of the convex hull of
T(M, 2), is called the cone pseudotangent to M at 2.

Let I be a set of indices, not necessarily finite, Ai c X, t I. Let A ("i Ai
-: , 2 t A and )if Ai. The defined cones have the following properties.

PROPERTY T1 (cf. [3]). T(A, 2) =(T(A,, 2) and P(A, 2) : (P(A, 2).
Proof. For all t I, A Ai implies T(A, 2) T(Ai, 2). Therefore T(A, 2)

("i T(Ai, 2) ("i, P(Ai, 2). Since the intersection ofperhaps infinitely many
closed convex cones is a cloged convex cone, ("iP(Ai, 2) contains P(A, 2) which
is the smallest closed convex cone containing T(A, 2).

PROPERTY T2. QJi, T(Ai, 2) T(., 2) and QJii P(A, 2) n(., 2).
Proof. For all it I, A . implies T(Ai,) T(.,2) which implies that

(..Jt T(A,, 2) r(, 2). Moreover, T(A, 2) T(,, ) P(, 2). Since n(/, )
is a closed convex cone, it contains P(Ai, 2) which is the smallest closed convex
cone containing T(Ai, 2) for all t I. Then ,_)ii P(Ai, 2) P(, 2).

1.3. Pseudoconvexity and pseudoconcavity.
DEFINITION 6 (cf. [3]). M is pseudoconvex at 2 if for all x t M, x 2 t P(M, 2).
DEFINITION 7. M is convex if for all x and y t M and for all 2, 0 < 2 < l,

2x+(1-2)ytM.
Convex and pseudoconvex sets have the following properties.
PROPERTY PC1. If all A, it I, are pseudoconvex at 2, then A is pseudoconvex

at x.



234 MONIQUE GUIGNARD

Proof. For all it I, A is pseudoconvex at 2, so that x- 2 P(Ai,2)
c )ii P(Ai, 2) for all x Ai. Then by Property T2, x 2 P(A, 2).

Remark 1. The intersection of several pseudoconvex sets is not necessarily
pseudoconvex, as shown by the following example. E will denote a one-dimensional
Euclidean space. Let A1 {x E’x 1/n, ne N} and A2 {x E" x or
x n/n, ne N}. Then A A A2 {x E’x or x--0} is not pseudo-
convex at 2 0, although A and A2 are. Here, and also later when needed, N
stands for the set of all nonnegative integers.

PROPERTY PC2 (cf. [3]). IfM is convex, M is pseudoconvex at 2 for all 2 M.
Proof. Let x e M, and let {2k} be a sequence of positive numbers, 0 < 2 __< 1,

converging to 0. Then there exist a sequence {Ik} of nonnegative numbers Pk
1/2k and a sequence {xk} contained in M and converging to 2" xk 2 + 2k(x
2), such that the sequence lak(Xk 2) Pk 2k(X 2) X 2 converges to

x 2. Hence, x 2 is a vector tangent to M at 2, x 2 T(M, 2) P(M, 2) for
all x M, and M is pseudoconvex at 2.

Remark 2. From Property PC1 and Property PC2, the union of several convex
sets the intersection of which is not empty is pseudoconvex at any point of this
intersection. This is an example of a pseudoconvex set which is not necessarily
convex.

Let ,(x) be a real function of x e X.
DEFINITION 8 (cf. [8]). 0 is quasi-concave if for all 2 e E, {x X" 0(x) _-> 2} is

convex.
Quasi-concave differentiable functions have the following property. V will

denote the differential operator.
PROPERTY PC3. If is quasi-concave and FrOchet-differentiable at 2, then

(V0(2), x 2) < 0 implies O(x) 0(2) < O.
The proof of this statement can be found in [8].
DEFINITION 9 (cf. [3] and [7]).0 is pseudoconcave over M at 2 if , is Fr6chet-

differentiabl at 2 and if x M, (V0(2), x 25 _-< 0 implies 0(x) (2) =< 0.

3. First order optimality conditions. Let X be a real Banach space, A a
nonempty subset in X, 2 A and (x) a real-valued function of x X, Fr6chet-
differentiabl at 2. Consider the problem’maximize (x)’x A}.

THEOREM 1. A necessary condition for 2 to maximize over A is that Vt(ff)
P-(A, 2). It is also sufficient !f is pseudoconcave over A at 2 and A is pseudo-

convex at x.

Proof. We first give the necessity proof. Let y T(A, 2). Then there exist a
sequence {xk}, xk e A for all k, limk_oo xk 2, and a sequence {2k}, 2k > 0 for
all k, such that limk_, 2k(Xk X) y. If ff maximizes 0 over A, 0(xk) 0(2) N 0
for all k. Moreover, 0(xk) 0(2) (V0(2), xk 25 + o( xk 2 I). Then

(v0(x), ,(x x)) __< -o( x- xl[)
Xk 2

Let k go to infinity; then (VO(2), y) __< 0. y 0. Therefore, V,(2)6 T-(A,2)
P- (A, 2) by Property C2.
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The sufficiency proof is as follows. Let x A. Since A is pseudoconvex at
we have x P(A,) and (Vff(ff), x if) _<_ 0. But since ff is pseudoconcave
over A at if, this yields if(x) ff() __< 0, and ff maximizes ff over A. This completes
the proof.

Let Y be another real Banach space and a’X --, Y a map. Let B and C be
nonempty subsets in Yand X, respectively, and assume that A {x C’a(x) B}
is not void. We may rewrite the problem" maximize {(x)"x C, a(x) B}. Suppose
that a(x)is Fr6chet-differentiable at ff A. Let K {y X’(Va(Y), y) P[B, a(ff)]},
H {h e X* "h u. Va(), u P-[B, a()]}.

THEOREM 2 (The generalized Kuhn-Tucker conditions). IfH is closed and G
is a closed convex cone in X such that K G P(A, Y,) and K- + G- is closed,
then a necessary condition for to maximize over A is that there exists u P+ [B,
a() such that VO()+ u .Va()e G-. This condition is also sufficient if O is

continuous, and ![ G is a closed convex cone in X such that x ff G for all x A,
ifA or A {x X" a(x) B} is pseudoconvex at , and ifeither is pseudoconcave
over A at if, or quasi-concave with VO(ff) :/= 0.

Remark 3. A sufficient condition for H to be closed is that the map
Va(f)’X Y have closed range (cf. [13]).

Proof. Necessity. If maximizes over A, by Theorem we have
VO() e P-(A, ). Since K- + G- is closed, by Property C3 we have P-(A,
K- + G-. Then there exists k K+ such that VO(ff) + keG-. Let veil-

then (u. Va(ff), v) =< 0 for all u P-[B, a(X)]. Suppose that Va(X)(v) q P[B, a()].
By the strong separation theorem, and since P[B, a(ff)] is a cone, there exists y e Y*
such that (y, Va(X)(v)) > 0 > (y, w) for all w P[B, a(ff)]. Therefore, y P-[B,
a(ff)] and y. Va(ff)e H, which contradicts (y. Va(X), v) (y, Va(X)(v)) > 0.
Then Va(ff) (v) P[B, a(ff)], i.e., v e K for all v e H-. Since H and K are closed convex
cones, H- c K yields H K-. Therefore, there exists u P+[B, a(ff)] such that
VO(ff) + u. Va(ff)e G-.

For sufficiency, we first prove the following lemma.
LZMMA. IfG is a closed convex cone such that x ff G for all x A, ifeither

A or A is pseudoconvex at if, if there exists u P+[B, a(ff)] such that
+ u. Va(ff) G-, then for all x A, (VO(ff), x if) =< 0.

Proof. For all x e A, x ff e G. Therefore,

() (v0(), x ) __< (- u .Va(), x

If A is pseudoconvex at , x ff P(A, ) for all x A c A. If A is pseudoconvex
at , x P(A, ) P(A, :) for all x A. In both cases, (Va(ff), y) T[B, a()]
for all y T(A, if). By continuity and convexity, since Va(ff) is a continuous linear
map, (Va(ff), y) P[B, a()] for all y P(A, if), and, in particular, for all x A.
Moreover, u P+ [B, a(ff)], so that (-u- Va(ff), x if) N 0 for all x e A, and
by (1), (VO(.), x if) __< 0 for all x A. This completes the proof.

Sufficiency. If is pseudoconcave over A at , by the lemma, for all x A,
<VO(), x > =< 0; that is, O(x) () =< 0.

If VO(ff) 4: 0, there exists x e X such that (VO(ff), x ) < 0. Suppose
indeed that (VO(ff), x ) _> 0 for all x e X. Then let x’ X and x" 2 x’.



236 MONIQUE GUIGNARD

Then 0 __< (V(ff), x"- x’) -(V(ff), x’- if) __< 0, which implies (V(ff),
x’ ) 0 for all x’ X, i.e., V(ff) 0. Let x A. We define

x(O) x + O(x x),

(0) + O(x )

for all 0 > 0, (VO(ff), if(0) if) 0(VO(2), X > < 0. For all 0 e [0, 1],
(VO(ff), x(O) if(0)) (1 0)(VO(ff), x if) __< 0 by the lemma. Then for all 0,
0 < 0 __< 1, (VO(ff), x(O) if) < 0. By the quasi-concavity of the function
we have (cf. Property PC3) O(x(O)) < 0(if), and 0 0 implies O(x) < 0(if) for
all x A.

4. Second order optimality conditions. Let us now consider the second
order optimality conditions. First, additional notations required for the discussion
will be introduced. If l:X--, Y is Fr6chet-differentiable at X, (Vl(),x)
denotes the value of the mapping Vl() at x. If is twice co.ntinuously differentiable
at , V2/() is an element of L(X, L(X, Y)) which can be identified with L(X2, Y)
[14, p. 1743. We shall denote by (V2/(), (x, y)) or ((V21(),x), y) the value of
the mapping V2/() at (x, y)e X x X.

We suppose now that X is finite-dimensional Finite-dimensionality is a
necessary and sufficient condition that the unit sphere {x e X Ilxll _-< 1} be compact
in a Banach space (cf. [15, p. 853). The second order conditions given next are
sufficient for an isolated local optimum.

THEOREM 3. If(i) ff and a are twice continuously differentiable at , (ii) G is a
closed convex cone in X, (iii) in a neighborhood of, x A implies x G, (iv)
in a neighborhood of a(ff), y B implies y- a() P[B, a(ff)], then a sufficient
condition that be an isolated local optimum .[’or d/ over A is that there exists
u P+[B, a()] such that V() + u. Va() G- and for all nontrivial h X such
that (VO(ff), h) 0 and (Va(ff), h) e P[B, a(ff)] P[B, a(ff)] it follows that
(Va0(ff) + u. VZa(ff), (h, h)) < 0.

Proof. Suppose that ff is not an isolated local maximum for O over A. Then
there exists a sequence {xk}, xk e A, x ff for all k, such that lim-.oo x ff and
0(x) O() for all k. Moreover, since the unit sphere is compact, we may assume
that

lim xk-x =h:/:0.
-oo IIx 11

Note, then, that h T(A,). In a neighborhood of if, x A implies Xk -- G.
Then Vd/() + u. Va() G- yields (V() + u. Va(), Xk- ) O. Therefore,
(V() + u Va(), h) <= O. Since h T(A, ) T(A, ), (Va() h) P[B, a(ff)].
We have two cases to consider"

(i) Suppose that (Vff(), h) < 0. Then there exists a positive number N
such that for all K >= N, (Xk) if(if) < 0. Since this is a contradiction,
(VO(), h) >__ O.



KUHN--TUCKER CONDITIONS IN A BANACH SPACE 237

(ii) Suppose that

(Va(2), h> e P[B, a(Y)]\-P[B, a(2)].

Then (VO(2), h) __< --(u. Va(2), h) < 0 since u e .P+[B, a(2)]. By (i)
this is an impossibility. Therefore, (Va(2), h)
i.e., (u. Va(ff), h) 0 and (VO(ff), h) 0.

Let us define (x) O(x) + u.a(x). Then (V2(ff), (h, h)) < 0. Since
(v(), x- 5 __< 0,

(Xk) (2) (V(’), xk 2) --{- 1/2(V2(2), (xk 2, xk )) -{- (oilxk 2112).

We have that

lim
.(Xk)- ()

and there exists a positive integer N’ such that for all k _>_ N’, (xk) (2) < 0.
But in a neighborhood of a(2), a(x,)e B implies a(x,)- a(2)e P[B, a(2)]. Then
-(u, a(x,)- a(ff)) <= 0 and O(x,) + u. a(x,) < ,(ff) + u. a(ff), i.e., ,(x,) <
-(u,a(x,)- a(ff)) <_ (2), which is impossible. Hence, such a sequence {x}
does not exist and 2 is an isolated local maximum for , over A.

It is hoped that one can apply these results to the theory of optimal control.
Constraint qualification introduced here ensures that the "multiplier" associated
with the objective function, which is encountered in most of the earlier papers
dealing with a maximum principle, is positive. It is more general than the ones in

or 13] which are the same as in [5] for a more general problem in a more general
space. In the following section, it is shown how these optimality conditions apply
to mathematical programming problems.

5. Application to mathematical programming. Let X be an n-dimensional
Euclidean space E" and Y an m-dimensional Euclidean space E". U+ will denote
{x e E"’x 0}, r m, n. Two examples will be discussed.

Example 1. If B E’, the problem becomes" maximize {O(x)’ai(x) >= O,
1, m, x e C}. If2 e A {x e C "a(x) >= 0}, let I and i be such that as( 0

for all j e I and aj(2) > 0 for all j e i. Then

P[B, a(ff)] {u e (Era)* "u _>_ 0, u. a(ff) 0} {u e (E")* "u >__ 0,j e I, u 0,

j el},
K {y e E"" (Va,(ff), y) >_ 0,j e I},
H {he(E")*’h= us.Vas(if),uj=>0,jeI}.

jel

Notice that both K and H are closed convex cones. G must be a closed convex
cone such that K c G P(A,) and K- + G- is closed. We shall call this
hypothesis, imposed upon G, the hypothesis H(G).

If C E" (respectively E_), and if this hypothesis H(G) is satisfied
with G P(C,2), we obtain the usual Kuhn-Tucker conditions, since
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P-(En,) {0} c (E’)* and P-(En,YO {ye(En)*:y __< 0, (y,) 0}. In both
cases, since K and G are polyhedral cones, K- + G- is closed [16, p. 388, so that
H(G) reduces to K P(C, ) P(A, ), and this constraint qualification is actually
weaker than those in [4, [5 and [6].

Kuhn and Tucker [4] defined

C(A, ):: {yEn’3’E+ En, (0)--= , ’(---0)-- y,(O)A VO [0, 1]},
and their constraint qualification was K P(C, ) C(A, ,).

Arrow, Hurwicz and Uzawa [5] weakened this assumption, noting that the
left-hand side was always closed and convex, and their constraint qualification was
1; c, P(C, x) C(A,

Abadie [6] weakened the Kuhn-Tucker constraint qualification in a dif-
ferent way, assuming that K

These authors did not refer to P(C, if) explicitly, however; when necessary
they introduced the constraints x _>_ 0 as components of a(x) >= O. (See Table 1.)

TABLE

Case C E" Case C E
Problem Optimality conditions Problem Optimality conditions

max O(x)
a(x) >= 0
x E

3u _>__ O, u E")*
VO() + u. Va() 0
u. a(X) 0

max

a(x) > 0
x>O

:tu => 0, u 6 (E’)
W= VO(ff) + u.Va(ff) < 0
(w,> =0
u. a(X) 0

Suppose now that H(G) is not satis_ed for G P(C, ), but is satisfied for a
certain closed convex cone G. We then obtain optimality conditions that could
not have been written otherwise, as is shown by the following well-known example.
Consider the problem" maximize {O(xl, Xz)’X3 x2 >= O, x2 >- 0}. Suppose
ff =(0,0). Then G= E+ x E is such that KG= P(A, ff)= {(Yl,Yz)’YI

0, Y2 0}. If (0, 0) maximizes over A, there exists u __> 0 such that VO(ff)
+ u. Va() G- that is,

cO(ff ca()
--+u.__<0,
X X1

?(ff) c3a(ff)--+ u’-- =0
t0X2 0X2

and u. a() 0.
In the following, Z will denote the set of all integers and N the set of all non-

negative integers.
If C Z" or Nn, the hypothesis H(G) is satisfied with G K-, i.e., the subset

in E" which is isomorphic to K-=(E")*. Then KG=KK-= {0}
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P(A, 2). Suppose, indeed, that x K c K- then x e K- implies that (x, y) __< 0
for all y e K, and, in particular, for x; therefore (x, x) 0, i.e., x 0. Then, since
/ is the subset in (E")* which is isomorphic to K E", we obtain the optimality
conditions given in Table 2.

TABLE 2

Problem Optimality conditions

max 0(x)
a(x) >_ 0
x e Z" or N"

:tu>O
Vk(2) + u. Va(X)e/-
u.a() 0

Example 2. If B {0} x Er, where {0} c E"-r, let J {1,..., m r} and
,] {m- r + 1, ,m}. Then the problem becomes" maximize{O(x)’aj(x)

O, j6J, aj(x) >= O, jeJ, xeC}. Let 2eA {xeC’aj(2)= O, j6J, aj(2) >= O,
j e } then P[B, a(2)] (E"-")* x (E%)*, and we obtain the optimality conditions
given in Table 3.

TABLE 3

Problem Optimality conditions

max O(x)
aj(x) >__ O, j e 3
aj(x) O, j e J
xC

3u > O,j e J
3uj, j J
vq,(x) + uj. Vaj(x)e G-

jeJuJ

Note that even if the aj,j J, are nonlinear, these conditions may be sufficient,
since A or A need only be pseudoconvex at 2. But sufficiency may be derived in
another way.

If sgn (u) is an element of (E")* such that

ifui>O, iJwY,

[sgn(u)]i= -1 ifui<0, ieJ,

0,1 or -1 ifu=0, ieJw

then let D {xe E"" [sgn (u)]. ai(x) >- 0, i6 J w J} A. If C D c 2 + G, if
either C D or D is pseudoconvex at 2, if either is pseudoconcave over C c D
at 2 or quasi-concave with VO(ff) - 0, then ff maximizes 0 over C D, and a
fortiori over A.

Remark 4. A sufficient, but not necessary, condition that D be pseudoconvex
at ff is that [sgn (u)] ai(x) is quasi-convex for all J w Y.

Remark 5. We may point out another consequence of this statement. If the
previous hypothesis is satisfied with [sgn (u)] 0, e L c J w J, L {i’u 0}
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constraints play no role for sufficiency of optimality conditions. However, they
may be used in order to make D or D C pseudoconvex at .

The second order optimality conditions are given in Table 4.

TABLE 4

Problem Second order optimality conditions

max q(x)
aj(x) >_ O, j J
aj(x) =0, j J
xC
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ON THE x-DECOMPOSITION METHOD OF STABILITY ANALYSIS
FOI. RETARDED DYNAMICAL SYSTEMS*

MUO S. LEE" AND C. S. HSU:

Abstract. This paper deals with a method of studying the effects of the amount of time delay
on the stability of dynamical systems. The method of analysis involves first decomposing the positive
time delay axis into many intervals within each of which the stability character remains unchanged.
For the change of stability character from interval to interval the result is expressed geometrically
in terms of leaving or entering of a unit circle by a curve which is determined by a rational function.
The paper extends the work of Krall and extends and modifies the earlier work of Sokolov and
Miasnikov.

1. Introduction. When one studies the stability of dynamical systems in-
volving time lags [1], [2], [3], one faces, in practice, a variety of different types
of problems. For instance, sometimes one may be merely interested in determining
the stability of a specific system with given time lags and with given values for all
the system parameters. Other times one may wish to study a family of systems
with the time lags specifically given but with some of the system parameters
undetermined, and one wants to investigate the dependence of the stability
character of the systems upon these parameters. There is yet another class of
problems which has to do with investigating the dependence of the stability
character of a system upon the magnitudes of the time lags while all other system
parameters are taken to be fixed. In this paper we shall deal with some problems
in this class. The work is motivated by that of Sokolov and Miasnikov [4] and
that of Krall [5.

Of various methods of stability analysis available for dynamical systems with
time lags, the one due to Pontryagin [6] is probably one of the most general.
However, when one must obtain specific criteria of stability or instability for
practical purposes, the theorems of Pontryagin are very difficult to apply. Except
for very simple systems [7], [8] the method has not found wide applications.
For the class of problems we are interested in here, the direct application of a
generalized Nyquist criterion is also not practical because numerous diagrams
must be constructed. A more interesting method is one due to Sokolov and
Miasnikov discussed in [4, pp. 421-426] and referred to in [5]. This method may
be appropriately called a z-decomposition method. It involves first decomposing
the time lag z-axis into intervals such that within each interval the same stability
character prevails, and then investigating the change of stability character of the
system as the boundary points of the intervals are crossed. The method is a
highly practical one. The treatment given in [4] is, however, very incomplete and
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contains some explicit assertions which can be shown to be not valid in general
and never valid for very large time lag r. It is the purpose of this paper to carry
out a more complete analysis of the v-decomposition method by which a simple
geometrical criterion is established and the deficiencies in the discussions given
in [4] are removed. The development still follows the approach of Sokolov and
Miasnikov, but the complete analysis will also cover cases which can be en-
countered in applying the r-decomposition method but have not been treated
previously.

2. The exponential polynomial. Consider an nth order dynamical system with
a constant time retardation z for which the governing equation may be written
in the form

dix(t) dix(t- r)
(1) ai dt + E b, 0

i=o i=o dti

where ai and bi are constants and a, 0. The dynamical system is assumed to be
of retarded type [2] hence, n > m and r nonnegative. The characteristic equation
of(l) is

(2)

where

qg(z) _a g(z)e + h(z) O,

(3) g(z) aizi, h(z) Z bizi"
i=o i=o

The function qg(z) of (2) will be called an exponential polynomial in this paper,
although it is also called a characteristic quasi-polynomial in the literature.

For systems (1) the following theorems of stability are known [1], [2].
THEOREM 1. U’all zeros ofqg(z) have negative real parts, then the trivial solution

of(l) is asymptotically stable.
THEOREM 2. Ifat least one zero of q(z) has a positive real part, then the trivial

solution of (1) is unstable.
THEOREM 3. If qg(z) has simple purely imaginary zeros and the remaining zeros

have negative real parts, then the trivial solution of(l) is stable.
THEOREM 4. If there is a multiple zero among the purely imaginary zeros, then

the trivial solution of(l) is unstable.
From these theorems one sees that the test of negativeness of the real parts of

all the zeros of q(z) is all important in studying the stability of systems (1) via
characteristic equations.

Before proceeding further, some nonessential restrictions will be placed upon
qg(z), q(z) may be classified into three categories, namely"

Category I. g(z) and h(z) have common purely imaginary zeros.
Category II. z 0 is a zero of
Category III. g(z) and h(z) have no common purely imaginary zeros and

z 0 is not a zero of
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For Category I, the following procedure of analysis may be followed. (i) If
the common purely imaginary zero is a simple one, let us denote it by iy*. The
exponential polynomial qg(z) may then be written as

qg(z) (z iy*)q91(z).

If iy* is the only common purely imaginary zero, then one can take q91(z) as a
new characteristic exponential polynomial and proceed as in Category III.
(ii) if iy* is a multiple common zero, then the system is unstable by Theorem 4
and there is no need to proceed any further. (iii) If, besides iy*, there are other
common purely imaginary zeros, the above procedure may be repeated.

For Category II, there are three possibilities to consider. (i) If z -0 is a
common zero of g(z) and h(z), the case may be treated as in Category I. (ii) If
z 0 is a simple zero of g(z) + h(z) but not for g(z) and h(z) separately, then from
(2) one can easily see that q(z) always has a simple purely imaginary zero at
z 0 for any value of r. In other words, this simple zero z 0 does not leave
the imaginary axis as varies. With the behavior of the zero z 0 clear, the rest
of the problem can be processed as in Category III. (iii) If z 0 is a multiple
zero, then the system is unstable by Theorem 4.

Since the effects on stability of the presence of common purely imaginary
zeros of g(z) and h(z) or a zero of z 0 can be ascertained separately and easily,
we shall assume in the subsequent analysis that qg(z) is in Category III.

3. Decomposition of the x-axis. The development of the present method
makes use of an idea upon which the D-decomposition method [2] and the method
of Pinney [3] are also based. In the usual D-decomposition method, the para-
meter space is partitioned into a number of regions under the condition that the
time retardation r is kept constant. After the regions have been found, one then
studies the change of stability character of the system as the boundaries of the
regions are crossed. In the present investigation, since we are interested in the
effects of r on the stability, r is allowed to vary while other parameters are kept
fixed. The positive half of the r-axis is first divided into intervals by boundary
points at which purely imaginary roots of the characteristic equation exist.
One then shows that within each interval the ,stability character of the system
does not change. Next, one proceeds to determine how the number of zeros of
qg(z) with positive real parts changes as the boundary points of the intervals are
crossed. Here it is found possible to identify this change with the leaving or
entering of a unit circle by a simple curve defined by an algebraic expression
which does not involve the time retardation at all. This, in the form of Theorem 15,
is the main result of the investigation.

By defining

(4) Wl(Z) ez,

() w(z)
h(z)
g(z)’
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the characteristic equation (2) becomes

(6) w(z) a w(z)- w(z)= 0 or w(z) w(z).

To find the purely imaginary zeros of qg(z) or w(z) we set z iy in (4) and (5).
As z varies along the imaginary axis of the z-plane from -i to +i, (4) and
(5) yield two curves in the complex w-plane. Evidently, (4) maps the imaginary
axis of the z-plane to a unit circle with the path going in the counterclockwise
direction, and the existence of purely imaginary zeros of w(z) is signified, according
to (6), by the intersection of the wz(z) curve with the unit circle. This Wz-curve
in the w-plane shall be called a testing path in w or simply a testing path in the
subsequent analysis. For a given r, the number of zeros of qg(z) with positive real
parts will be denoted by N(r). In terms of this notation we cite without proof
the following theorems.

THEOREM 5 (see 4] ,.[5]). If the testing path w(z) does not intersect the unit
circle, then N(r) N(O).

TnOZM 6. The stability character of the system (1) is unaffected by the time
retardation r, >= O, !l

(7) Ig(iy)l > Ih(iy)l for all y.

Theorem 6 follows immediately from Theorem 5. Here we note that if the
testing path does not intersect the unit circle, it is necessarily inside of the unit
circle because n > m in (1). We also note that as g(z) and h(z) are assumed not to
have common purely imaginary zeros, the purely imaginary zeros of g(z) cannot
be zeros of qg(z).

If the testing path does intersect the unit circle, let exp (i), exp (i2),
exp (ij), be the points of intersection and let yj be the value of y on wz(z) at
exp (i%). Concerning the angle measurements of j, we adopt the following rule"
For yj > 0 the angle j will be measured in the positive direction and, therefore,
0 _< < 2ft. For y < 0 the angle j will be measured in the negative direction
and, therefore, -2rt < =< 0. With this convention, the set of critical values of
r at which purely imaginary zeros of p(z) exist is readily seen from (4) to be

(8) ( + 2),

where k 0, 1, 2, for y# > 0 and k 0, -1, -2, for yj < 0. Since z 0 is
assumed not to be a zero of o(z), yj 4: 0. Rearranging the nonnegative # into an
ascending sequence z, z z, 3, "", one obtains the desired boundary points of
the intervals of . For each interval we have the following theorem which is given
here with its simple proof omitted.

TI-IOM 7 (see 5]). If t and 2 are in the same open interval (z, r,+ x), then
N(tl) N(t).

Often two or more of the r calculated according to (8) may coincide, each
rj corresponding to a different set ofyj, oj and k. A typical example occurs when the
purely imaginary zeros come in a pair + iyj with the corresponding angles ___j.
This occurs, for instance, when g(z) and h(z) have their coefficients all real. Another
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distinct p()ssibility is, of course, that the testing path may be tangent to the unit
circle at the point of intersection, thus raising the possibility that the purely
imaginary zero may bc of multiple order. This general case has not been con-
sidered by previous writers. In rare instances, the testing path could intersect
the unit circle at a specific point w exp (ia) more than once. Let us say that it
passes through that point Q timcs; then the corresponding
are necessarily different. In that case the point of intersection exp(i0j) will be
considered to be Q different intersection points, each being characterized by
(0j, yj(q)), q l, 2,..., Q, and each to have its corresponding Zk calculated by (8)
with yj replaced by .Vj(q). We also remark here that the determination of yj does
not require solving any transcendental equations; it involves only calculations
on polynomial expressions.

We conclude this section by referring to some assertions made in [4, p. 4243.
Consider a case (Case f in [4) where the system without retardation is stable and
where there are two points of intersection K’1. and K between the positive half
of the testing path and the unit circle. Let 01 and a2 be the angles and let iy and
iy2 be the purely imaginary zeros associated with K’ and K, respectively.
Moreover, let

1 2
"10 "[20"

Y

It is then asserted that (in the notation of this paper) the system is stable in

(ga) 0 =z Zo, Zo z z11, z z ,""

and unstable in

(9b) 1o < ’" < "C20, 7711 < " < 2721, "/712 < 5 <: 2722

with continual alternation of the regions of stability and instability with increase
of :. It is also explained that the above "corresponds to the fact that since the
Mikhailov curve in the presence of delay is ’wavy’ with increase of z the waves
deform in such a way that the points K’I and K are alternately incident on the
origin of coordinates. Incidence of the point K] on the origin of coordinates
always implies instability of the system while incidence of K returns the system
each time to the stable state." Similar assertions are also made for a case where
the system is unstable without delay and the testing path intersects the unit circle
at two points.

A careful examination of (8) will show that in general ’lk and 272k
k 0, 1, 2,..., do not form an alternate sequence. Sooner or later either the
:, or the g2k sequence will lag behind and the picture of alternate regions of
stability and instability cannot be true any more. As a matter of fact, it will be
shown later in the paper that as long as the testing path intersects the unit circle
the system is always unstable for sufficiently large :. Thus, the assertions quoted
above cannot be true in general and are never true for large enough :. The basic
idea behind the approach of Sokolov and Miasnikov is, however, a most fruitful
one; it is only necessary to recast the criteria, of stability and instability in a
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somewhat different form. This will be done in a general and more complete manner
in the following sections.

4. Main theorems on the variation of N(z). The next task for us to do is to
find how N(z) varies as each boundary point zj is crossed by the increasing z.
As a preparatory work we first define the types of purely imaginary zeros which
might be encountered in the above construction.

DEFINITION 1. Let Zo be a zero of an analytic function f(z) and

d(o) df(o) d"-f(o)
f(zo)

dz dz2 dz’-
O,

d"’f(zo)

then Zo is called a zero of order m.

dz

Next we consider mapping of wl(z) and W2(Z curves in the w-plane to curves
in a (-plane through

(11) w e-.
Evidently, the characteristic equation can now be written as

(12)

where

(3)

(z) - 2(z) (z) 0,

,(z) z,

(14) 2(z) In [Wz(Z)] _+ 2nni In
g(z)] +- 2nni,

with In [w2(z)] denoting the principal value of the logarithmic function.
Let + iq. Then the unit circle wl(z) in the w-plane is mapped into the

imaginary axis of the -plane, the w2(z) curve is mapped into a sequence ofidentical
curves displaced in the vertical direction with a period of2i, a point ofintersection
w exp (ij) is mapped into r/=

_
2n, the interior of the unit circle in the

w-plane is mapped into the left half of the -plane, and a Wz(Z) curve leaving (or
entering) the unit circle is mapped into a 2-curve entering into the right (or left)
half of the -plane. Moreover, since the mapping is conformal, the angle between
the unit circle and the Wz-curve at the point of intersection is preserved in the
transformation. Also obvious is that if iy is a purely imaginary zero of w(z) of
order m, it is also a zero of (z) of the same order.

Consider now a typical boundary point n(=vjk) separating the intervals
(zn-, rn) and (rn, rn+). At this value of z there exists a purely imaginary
characteristic root z iyj, which corresponds to the intersection point P of the
(-curve (in the strip 2kn <= Im( < 2(k + 1)n for )9 > 0 and in the strip 2(k 1)n
<Im ( =< 2kn for yj < 0) with the imaginary axis at r/= ej + 2kn. Here, k is the
same integer k used in defining zn Zk through (8). If zn is given a small incre-
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ment Az, then the root iyj will also change and, in general, will not remain purely
imaginary. Our aim is to find the real part of this change Az. The new root
z iyj + Az corresponding to ’c ’cn + A’c, of course, has to satisfy (12) which
we rewrite now as

(z)
() f(z).

What we need to do is to solve z in terms of ’c in the neighborhood of (z iy,
c ’cu) in order to find the change Az for a given change Az. To proceed further
we consider separately the different cases according to the order of the zero
z iyj involved.

Case I. Simple zero. Let us look at the characteristic equation (15). It is
satisfied by z iyj when "c ’cn and the corresponding value of C2 is iyj’cn. Now
assume that z iyj is a simple zero of (12). Then, by Definition 1,

d
(16) dz2(iYj) :/: "cn.

This implies by (15) that

(17) z iyj

This allows us to invoke the following lemma to express z in terms of ’c.

LEMMA (see [9]). Iff(z) is regular in a neighborhood of zo and iff(zo) "co,

df(zo)/dz O, then the equation "c f(z) has a unique solution, regular in a neigh-
borhood of "co, of the form

(18) JZ Zo _} ,, L,z._ {,(z)}
z-zo

where

(19) k(z)
Z Z0

f(z) "Co"
Applying (18), which is known as Lagrange’s inversion formula, to our

problem at hand, we obtain

(20) if(z)

and A’c being real,

dm(2
z=iyj

Z ZO)

(21) Re (Az) --.q- Re z,--,-f{t(z)}"
iyj

For our purpose of determining the change of N(’c) as ’c increases across ’cn, it
is not necessary to obtain the series (21) in its entirety but rather only the leading
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term. For the following analysis we need the real and imaginary parts of (dn(2/dz")
at z iyj separately. Let us write

d"
r, + is,.(22) d"z (-i)"(r, + is,) or -Y"l=irj2z=iy

Case IA. Consider first the case r 4: 0. In this case one easily finds by (20)
and (21) that

yjrlAz
(23) Re (Az)= -r] + (sl zn)2

+ O((Az)2)"

This says that for Az > 0 the characteristic root z iyj at T ZH changes into
one with positive real part if yjrl < 0 and changes into one with negative real
part if yjra > 0. For AT < 0 the reverse is true. In other words, we have the follow-
ing theorem.

THEOREM 8. Ifthe zero z iyj, which exists for T TH, is a simple zero and if
r :/: 0 at z iyj, then as T increases across TH, N(T) increases by ijyjrl < 0 and
decreases by 1 if yjr > O.

Case IB. Next we consider the case
because otherwise d(2/dz TH at z iyj and the zero is no longer simple. We
further note that when r 0 the first order term on the right-hand side of (23)
vanishes. Therefore, one must proceed to investigate terms involving higher
orders of Az in order to ascertain the change Re (Az) with respect to AT. Let us
assume for the general case that rM - 0 but all rm 0 for m < M. Then by (20)
and (21) it is found that

rMy (AT)M(24) Re (Az) -M!(s T--H)M+

From this we see that if M is even then the changes of Re (Az) are of the same
sign for both AT > 0 and AT < 0; therefore, there is no change of N(T) as T in-
creases across TH. If M is odd, then the change of N(T) depends upon the sign of
yjrt. Thus, we have established the following theorems.

THEOREM 9. If the zero z iyj, which exists for T Tn, is a simple zero, if
rM 0 for an even M and if all rm for m < M vanish, then N(T) suffers no change
as T increases across

THEOREM 10. If the zero z iyj, which exists for. T Tn, is a simple zero, if
rM :/: 0 for an odd M and if all rm for m < M vanish, then as T increases across
Tn, N(T) increases by 1 if yjrM < 0 and decreases by 1 if yjrM > O.

Case II. Zero oforder K. K > 1. Let z iyj now be a zero of(12) of order K.
By Definition 1,

d(2(iyj)
dz

(25)

dK-l(z(iyj)d2(z(iYJ)
0 0TIt, dz2 dzK-

dK2(iyj) O.
dzK
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When referred to (15), one finds that (25) implies

dK- lf(iyj)df(iyj)
0

d2f(iYJ)
0 0

dz dz2 dz-(26)
d;f(iYJ)

:/: O.
dzu,

Therefore, in the neighborhood of z iyj,

(27) z zu + d"f(iyj)(z iyj).
,= n! dz"

Here we note that the series in (z iyj) on the right-hand side starts with the Kth
power, and the Lagrange inversion formula (18) is no longer appropriate or
adequate. We need a new lemma.

LEMMA 2. Iff(z) is regular in the neighborhood of Zo with f(zo) Zo, and !f
the first K derivatives off(z) vanish at Zo, but df(zo)/dz :/: O, then the equa-
tion f(z) T has a K-valued solution of the form

(28) z Zo + Z (T To)"/*:F d"-’
.’ Ldz"-’ {./,(z)}"

Z----ZO

where

(29) if(z)
Z Z0

If(z)- o] ’m"

Proof Let us introduce a complex variable which is related to T by

T To (t to).

where

(34) O(z)
Z Z0

u(z)- to"
Making use of (30) and (31) to express the series in terms off(z) and T, we obtain
the desired formulas (28) and (29). When the K values of (f(z) To)m are taken

(30)

Then is a K-valued function of T. As a function of z,

(31) to + (f(z) To)/: ___a u(z).
Consider the K values of (f(z) To)m one by one. Then it is easy to show that

and that t(z) is regular in a neighborhood of zo. Thus, Lemma 1 is applicable to
u(z) for each of the K values of (f(z) To) Ira,

n (t- to)" F d
(33) z Zo + , L{C’(z)} z:=o’
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altogether, z is seen to be a K-valued function of :. This fact is also clearly reflected
by (29). This completes the proof.

Applying Lemma 2 to the problem at hand, we find

(35)

and

zl/K
1/K

(36) Re(Az) ,=, Re (At)"/:Ldz._, {0(z)}"
z=iyj

(37)

Case IIA. Consider first the case of r - 0. Then by (36) and (35),

Re (Az)= ReIK’i(sl+irt)YAr}lmr2 + s: + O(IAvl2/)"

Let us denote
K !i(s + ir)yjAz_ peiO(38) r + s

Then

0_< 0< 2re.

(39)

where

Re (Az)= pl/ cos 0, + O(IAI2/), n= 1,2, ,K,

0 2(n- 1)rt
(40) 0, + K

There are K values of Re (Az) for each change At, corresponding to the order
K of the zero z iyj. It can be easily shown that as long as r: 4: 0, then none of
the multiple values of Re (Az) from the first term of (39) is zero and, therefore,
the purely imaginary zero of order K changes into K zeros with nonvanishing
real parts of order IArl 1/ as r increases or decreases from n. We also note that
the K values of the arguments 0, are spaced evenly from 0 to 2ft.

Consider now separately the case where K is even and the case where K is
odd. For K even, there are necessarily K/2 number of 0. in the range (-rt/2, rt/2)
and K/2 number of 0. in the range (t/2, 3t/2) no matter whether AT is positive
or negative. This means we have the following theorem.

THEOREM 11. 1.f the zero z iyj, which exists for r rn, is a zero of even
order K and ifr =/= O, then N(r) suffers no change as z increases across

For the case K is odd, we need the following results which are cited here with
their straightforward proofs omitted.

LEMMA 3. lf(K + 1)/2 is even and if- re < 0 < t/2, then among

0 2(n- 1)r
n= 1,2,.-.,K,(41) 0, + K
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(K 1)/2 number of O. are in the range -/2 < O, < /2 and (K + 1)/2 number
of O, are in the range /2 < 0. < 3/2. If/2 < 0 < 3/2, then the reverse is true.

LEMMA 4. If(K + 1)/2 is odd and if- 7/2 < 0 < 7/2, then among

0 2(n- 1)
(42) 0. + K

n 1,2,--., K,

(K + 1)/2 number of O, are in the range -/2 < O, < /2 and (K 1)/2 number
ofO. are in the range /2 < 0. < 37/2. If/2 < 0 < 3/2, then the reverse is true.

Now if we refer to (38) and take K to be odd, we may rewrite it as

(43) peiO
K !(- 1)tr + W2(rK isr)yAz

If (K + 1)/2 is even and yjrr > 0, then by Lemma 3 the number of zeros with
negative real parts will exceed by one the number of zeros with positive real parts
for Az > 0, and the number of zeros with positive real parts will exceed that with
negative real parts by one for Az < 0. In other words, N(z) will decrease by one
as increases across ZH. If (K + 1)/2 is even but yjrr < 0, then the reverse is true
and N(z) will increase by one. When (K + 1)/2 is odd, then we can apply Lemma 4
to obtain similar results.

THEOREM 12. Ifthe zero z iyj, which existsfor z zH, is a zero ofodd order
K and if rK 0, then as z increases across ZH, N(z) increases by one if yjrK < 0,
and decreases by one if yirK > O.

Case IIB. Next, we consider the case rK 0. Here it is desirable to study four
separate cases, namely" K 0, 1, 2 and 3 (mod 4), respectively.

Take first K 4N, N 1, 2, 3,.... For this case, by (38) we have

K !]SKyAz[
0 =t0 if SKyAz > O,

(44) P SEK if SKyAz < O.

Now, if SKyjAz < 0, then all the K values of Re (Az) calculated from the leading
term of (39) can be shown to be nonzero, half positive and half negative. Thus,
we have the information we need on Re (Az). The multiple zero iy of order K,
regarded as K zeros momentarily coalesced into one at z ZH, changes into K/2
zeros with positive real parts and K/2 zeros with negative real parts. If sKYjAz > 0
the situation is different. Based upon the leading term in (39), there will be
(K 2)/2 number of zeros with positive real parts and (K 2)/2 number of zeros
with negative real parts, but there will be also two (distinct) purely imaginary
zeros corresponding to

(45) Az d-ip 1/K d-O(]AzIZ/K).

For these two values of Az, and for these two only, the first order term of (39) or
(36) does not provide us with any information about the real part of Az; it is,
therefore, necessary to go to the higher order terms of (36) in order to complete
the analysis. It is useful to note that the imaginary parts of these two values of
Az are still of the order IAzl 1/K. Let rr + rK + 2 I’M-1 0 but rt - 0.
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Then it can be shown that the higher order calculation of Re (Az) leads to

(46) Re (Az)
(K 1)! rMYs( +_pl/K)4-K+ + O(IArltM-K+Z)/K).
M! sKys

Now, if M is even so that M K + is odd, then there are one positive and
one negative Re (Az) from (46). Combining this result with the previous discus-
sion, one finds that there are still K/2 zeros with positive real parts and K/2 zeros
with negative real parts even for the case sxyjAr > 0. Therefore, there will be no
change in N(z) as z increases across

If M is odd, then by (46) there will be two positive Re (Az) or two negative
ones depending upon the signs of rMyj and syj. The results obtained by a straight-
forward examination of (46) may be combined with the earlier discussion as
shown in Table 1.

TABLE

rty > O, sr,y > O, Az <0
Az>O

ruyj > 0, SKy < O, A’C < 0
Az>0

rMyj < O, sryj > O, Az < 0
Az>0

ruy < O, sry < O, Az <0
Az>0

Number of
Re(Az) 0

K/2
(K/2)-

(K/2) +
K/2

K/2
(K/2) +

(K/2)-
K/2

Number of
Re(Az) 0

K/2
(K/2) +

(K/2)-
K/2

K/2
(K/2)-

(K/2) +
K/2

Change in
increases

--1

--1

+1

+1

Consider next the case K 4N + 1, N 1, 2,.... For this case by (38) we
have

K !lsryjAzl ( re/2 if sKysAz > O,
(47) P= s/ 0=,3rc/2 if sKy;Az <0.

Then by (39) one finds that among the K values of Re (Az) calculated to the first
order of IAzl 1/K there are (k 1)/2 positive values, (K 1)/2 negative values and
one zero value. This last one corresponds to

(48) Az [sgn (sKYjAz)]ip 1/I’: + O(IAzl2m).

For this one and this one alone we need go to the higher order terms of (36) to
find the real part of Az. Let rM again be the first nonvanishing r for m > K.
Then the higher order analysis yields

(49) Re(Az)=
(K- 1)! ryj[sgn(sKYjAz)pl/r]M_K+ + O(IArI(M_K+Z)/K).
M! SKy;
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Now, if M is even so that M K + is even, then the sign of Re (Az) given
by (49) will be the same for Az > 0 and for Az < 0. This means that there will
be no change in N(z). IfM is odd, then a tabulation similar to Table 1 can be carried
out, leading to the conclusion that as z increases across zn, N(z) increases by
if rMyj < 0 and decreases by if rtyj > 0.

Other cases where K 2 or 3 (mod 4) can be carried out in a similar manner.
The criterion expressed in terms of rt and rMyj remains unchanged. Thus, we
have the following theorems.

THEOREM 13. If the zero z iyj, which exists for z zn, is a multiple zero of
order K, if rM :/: 0 for an even M and if all rm for m < M vanish, then N(r) suffers
no change as z increases along

THEOREM 14. If the zero z iyj, which exists for z zn, is a multiple zero

oforder K, ifrt : Ofor an odd M and ifall fro for m < M vanish, then as z increases
across zo, N(r) increases by if rtyj < 0 and decreases by !frtyj > O.

Next, we study the curve (2(z) in the strip 2krc _< Im
< Im ( =< 2krc in which the intersection point P is located. The purpose of the
study is to establish the local geometrical property of the (2-curve near P with
respect to the imaginary axis. For z iyj, (2 has a purely imaginary value
2krc + .i. As yj is given a small increment dy, the corresponding change in (2 is
given by

(50) d2 d"z (i dy)" d"Z
n! z" n! dy"

where the derivatives are evaluated at z iyj. Making use of (22), one finds that
the real part of d2 is simply

(51) d:z Re (dz) ,, -ir.(dy)".
Suppose that among rl, r2, the first nonvanishing one is rt; and if the

direction in which y increases is taken to be the forward direction for the 2-curve,
then we obviously have:

(i) If M is odd and ru is positive, the 2-curve crosses the q-axis at P and
goes from the left to the right.

(ii) If M is odd and ru is negative, the 2-curve crosses the q-axis at P but
goes from the right to the left.

(iii) If M is even then the 2-curve, although touching the imaginary axis at
P, does not cross it. It remains on one side of the imaginary axis in the neighbor-
hood of P.

Making use of these geometrical properties of the 2-curve near P, and
observing the mapping relationship between the 2-curve and the w-curve and
that between the unit circle in the w-plane and the imaginary axis in the ’-plane,
we may reinterpret the results established in Theorems 8 to 14 in the following
manner.

THEOREM 15. Let rn be a boundary point on the r-axis, let the associated purely
imaginary zero be iyj, and let Q be the corresponding intersection point of the
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testing path wz(z) with the unit circle. If the testing path enters the unit circle at Q,
then as z increases across zn, N(z) increases by 1Jbr yj > 0 and decreases by for
yj < O. If the testing path leaves the unit circle at Q, then as increases across
N(r) decreases by for y > 0 and increases by for yj < O. If in the neighborhood
ofQ the testing path remains on one side ofthe unit circle, then N(z) suffers no change
as increases across n.

Starting with N(0) and counting the change of N(r) at each of the boundary
points zj, one can find N(r) for any value of r. The system is asymptotically stable
only when N(z) 0.

Remark 1. Theorem 15 is established on the assumption that each boundary
point is associated with only one iy. When this is not the case, the counting
procedure has to be modified. We have mentioned earlier that often two or more
of the rjk calculated by (8) may coincide, each 75jk corresponding to a different set
of yj, j and k. In this case each of the identical Zk SO obtained must be treated
as a separate one and its corresponding change of N(z) calculated according to
Theorem 15. The algebraic sum of all the changes of N(z) gives then the net change
of N(z) as z increases across this particular z,n Zk. Thus, for instance, when
g(z) and h(z) have their coefficients all real so that the purely imaginary zeros come
in pairs

_
iyj with their corresponding angles +_ j, the change of N(z) will always

be -2, 0, +2, or other even integers, as each boundary point is crossed.
Remark 2. In this section the conclusions of the theorems are stated in terms

of the change of N(z) as z increases across zn. When z/ happens to be equal to
zero, one cannot use directly these theorems because as z changes from positive
to negative the system changes from one of the retarded type to one of the ad-
vanced type possessing an infinite number of zeros with positive real parts. What
one really wants under that circumstance is not to have N(z) for z < 0 involved
in the analysis but rather simply to find whether the purely imaginary zero which
exists at z 0 changes into a zero or zeros with positive or negative real parts
for very small positive values of z. This information is, however, not difficult to
obtain because it has been explicitly given in the discussions leading to the estab-
lishment of the theorems. With this knowledge in hand and the number N(0)
obtained from a stability analysis of the system without delay, one can start the
counting procedure of N(z) along the whole positive z-axis.

5. Large time retardation. If the testing path of a system does not intersect
the unit circle, then by Theorem 5 the stability character of the system with any
amount of delay remains the same as of that without delay. Let the system be
such that the testing path does intersect the unit circle. There are two types of
points of contact’points where the testing path crosses the unit circle and points
where the testing path remains on one side of the unit circle in the neighborhood of
the contact point. Associated with points of the second type there will be no
change of N(z); therefore, we shall ignore them. For points of intersection of the
first kind, let the associated yj be arranged in the following manner"

(52) Yi- < Y <"" < y, < y < Y--1 < < Y < Y,
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where the superscripts (-) and (+) indicate the signs of Ys. Because of n > m
for retarded systems (1) the testing path starts and ends at the origin of the w-
plane as y varies from - to + . Therefore, yf with j odd (even)and y with
j even (odd) are necessarily associated with points where the testing path leaves
(enters) the unit circle. Moreover, A + B must be even. Let the corresponding
angles measured according to the convention established earlier (refer to (8)) be
denoted by

DEFINITION 2. Int (a) stands for the smallest integer, including zero, which is
greater or equal to the number a.

With the aid of this symbol Int (a) it is easy to show that for a given z which
is not a boundary point the number of ZSk associated with y which exist in the
interval (0, z)is given by

(54) Int rlyjI
2rt

The results contained in Theorem 15 may then be recast in the form of the follow-
ing theorem.

THEOREM 16. At a given value of r, not one of the boundary values,

(55)

where

N(’c) N(O) + U- V,

B orB-1 [’yf (X/(56) U Int + Int
j= 1,3,5,..- 2
BorB-X zyf f(57) V Int + Int
j= 2,4,6,... 2re

(58)

We may also write U V as

if A is even, or

U-V--

(59)

AorA-1

j= 1,3,5,...

AorA-

2,4,6,...

S Int Int
j= 1,3,5,... 2rt

-[(zyf-f)_2re
Int+ Int

j= 1,3,5,...

ly/I -I/I
2

27z

zY;+I
27[

j= 1,3,5,... 2n
Int

+ Intl
2

B-2

j= 1,3,5,’"

Int
zyf x/

27

Int
2

+ Int
2
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If A is odd. We note here that all Int (a) appearing in (58) and (59) are non-
negative. Also, because of the ordering of the magnitudes of yj by (52), all the
expressions in the brackets of (58) and (59) are nonnegative if z is greater than a
certain value T. For instance, we may choose T to be the smallest z satisfying

Ifl -If=+ al for all odd j.(60) z >
lYfl- [yf+ 11

Furthermore, if T or a larger one, if necessary, also satisfies

2n + If:l -I+,1(61) T > for one odd j,

then

(62) U- V => 1.

Thus, we have proved the following theorem.
THEOREM 17. If the testing path for a system does intersect the unit circle so

that the set {yj) is nonempty, then the system is unstable for all sufficiently large
values ofT.

This theorem obviously invalidates one of the assertions given in [4] and
quoted in 3.

(63)

6. Examples. We conclude the paper by giving two examples of application.
Example 1. Consider a dynamical system described by

d2x(t)
dt2

+ 4n2x(t) + rc2x(t- z)= O.

The characteristic equation is

(64) qg(z) (z2 + 4n2)e + n2 0.

For z 0, z _x/ni. Hence N(0 0. For z 0 we follow the procedure
given in this paper and find the purely imaginary zeros to be

Yl re, 01 0

v/(65) Y2 7, 2 7

=0

and the boundary points of z to be at

+ 2k

(66)
+ l+2k
2k

leaving,

entering,

leaving,

entering

k=0,1,2,...,

k =0,1,2, .-..
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Then, by Theorem 15 we find the regions of stability and instability as follows"

2 3 4
0 < < < z < < z, unstable,

2 3 4
(67) <<,v/, ,,<z<,,, asymptotically stable,

stable.

Example 2. Next consider a dynamical system of the fifth order described by

dSx(t) 23dx(t) dax(t) dEx(t) 6dx(t)(68) 10
dt

+
dt4

+ 24
dt3

+ 16 dt2 +
dt

+ x(t-z)=O.

The characteristic equation is

(69) qg(z) (10z5 + 23z’ + 24z3 + 16z2 + 6z)e + 1 O.

When 0, we find N(0) 0 by the Routh-Hurwitz criterion. For : 0, we
find

y]- -0.180, ]- -1.28 leaving,
(70)

yi 0.180, 1.28 entering

and

1.28 + 2kt
(71) Vk 0.180

k =0,1,2,

The regions of stability and instability are found to be

0 < z < 7.1, asymptotically stable,

(72) 7.1 < z, unstable,

z O, 7.1 stable.
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ON OPTIMAL CONTROL OF THE VIBRATING STRING*

KAZIMIERZ MALANOWSKI"

Summary, The problem of minimization of total energy of the vibrating string in a given time is

investigated. The boundary value control with constrained magnitude is considered.
It is shown that this optimal control problem is equivalent to the determining of the minimum

of some integral functional subject to constraints on the magnitude of the argument.
The form of the optimal control function is characterized. It turns ou,t that, in general, an optimal

control of "bang-bang" type does not exist and the magnitude of the optimal control function is
equal to the constraints only on some subintervals of the interval of control.

1. Problem statement. In the paper [53 the optimal control of a system
described by a symmetric hyperbolic equation is investigated. The control func-
tion is a finite-dimensional one and its Euclidean norm is constrained. The time
of control is given and the performance index has the form of some quadratic
functional of integral form of the terminal state. It is shown in [5 that the optimal
control exists and the necessary conditions of optimality in the form of some
maximum principle are formulated. Moreover, in that paper the conditions for
optimal control to be of "bang-bang" type [2 are analyzed.

By analogy with the systems described by ordinary differential equations
these conditions are called by the author the normality conditions. In contra-
distinction to the ordinary differential equation the normality of the analyzed
systems depends on initial and terminal states.

As an example of the application of these results the problem of minimiza-
tion of total energy of the vibrating string is investigated in [5. The normality
conditions for this case are obtained, but they are characterized by means of the
terminal state of the system which is not given a priori.

In the present paper the problem of determination of this optimal control
of the vibrating string is investigated. The direct method analogous to that used
in [43 is applied. It is shown that this problem is equivalent to the problem of
minimization of some integral functional subject to the constraints on the magni-
tude of the argument.

The method of Lagrange functionals [13, [33 is applied to solve this last
problem and the form of the optimal control function is characterized. It appears
that in general an optimal control of "bang-bang" type does not exist. Generally
the magnitude of the optimal control function is equal to the constraints only in
some subintervals of the control interval.
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Our problem can be formulated as follows" There is given a system described
by the equation

t32w 2w
(1)

and the following boundary conditions are satisfied:

(2) w(0, t) 0, w(l, t) f(t).

We shall require that df(t)/dt be an absolutely continuous function whose deriva-
tive u(t) dZf(t)/dt2, which exists almost everywhere, satisfies the condition

(3) lu(t)l =< 1.

The function u(t) will be called a control function.
We introduce the change of variable

(4)
x

w(x, t) y(x, t) - f(t).

Hence (1) takes on the form

(5)
02y 02y X

p- "C -x2 pTu(

along with the boundary conditions

(6) y(O, t) O, y(l, t) =- O.

Putting

c3y(x, t) Oy(x, t)
(7) yl(x, t) , y2(x, t)t x
we rewrite (5) in the form

(8)

c3yx g3y2 X

p- Z-x + PTU(t),
ty2 ?yl
t x

The boundary conditions (6) imply

(9) Yl(0, t) =- O, y,(l, t) =- O.

Moreover the following initial conditions are given:

(10) y,(x, O) y(x), y2(x, O) y2(x),

where y(x) and y2(x) are absolutely continuous functions and satisfy

(lOa) yx(O) O, y(l) O.
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Our aim is to find a control function u(t) satisfying (3) such that at the given
time T the vibrating energy of the system (8)-(10) given by

(11) E,(yl, Y2, T)= 2 [py(x, T) + rye(x, T)] dx

is minimal.
It was shown in [5] that the solution of this problem exists and that the

terminal state of the system corresponding to the optimal control is determined
uniquely.

In the sequel a method of determining this optimal control will be given.

2. Determination of the terminal state. Without any loss of generality we
can put

(12) p z 1, 1= n.

Using the Fourier technique we obtain [6, Chaps. 22, 23], [7, Chap. 2] the follow-
ing formulas for the generalized solution of (8) under the conditions (9) and (10)
at the time T:

y(x, T) y((x)
2

1),+ sin nx cos n(T t)u(t) dt
n=l /

(13a)
+ (_ ,o sin nT + qS, cos nT)sin nx,

n=l

(13b)

y2(X T)--Yf2(x)
2 [ l,n+l f-cos nx sin n(T t)u(t)dt
’n=l

+ (.o cos nT + o sin nT)cos nx.
tl=l

Here .o and .o are the Fourier coefficients of the functions yx(x) and y(x),
respectively. These functions are defined on the interval [0, rt] and extended to
(-c, + c) as odd and even periodic functions, respectively, i.e.,

(14a) y(x) .o sin nx,

(14b) y(x) ,0 cos nx, x e (- o + ).

In the same way we extend the definition of y(x) and yz(x) to (-c, +)
requiring

(14c) yff(- x) yfx(x), yYl(X + 2rti) yf(x),

(14d) y(- x) y(x), y(x + 2ti) yYz(x).
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Taking into consideration the identities

(- 1)"+ _1 sin nx cos n( + n) de

and

1)"+l
1 fi:-COS nx sin n( + n)d + (-1)"+ll
n /

and performing elementary transformations, we rewrite (13) in the following
form"

y(x) 2 cos n( + n)-1 cos nt u(T t) dt d
n=l

0(15a) + --[y2(T + x) y2(T- x)] + 1/2[yx(T + x) yx(T- x)],

(15b)

y{(x) 2 sin n( + n)--1 r
sin nt u(T t) dt d

n=l

;o+22( sin n(T t) u(t) dt
lTr,

+ 1/2.[Y2(r + x)+ yz(T- x)] + 1/2[ya(T + x)+ y(T- x)].

Let

(16) T 2rim + e,

where 0 < e < 2n, and let us put

(17a)
1/2[y(T + x) y(T- x)] + 1/2[y(T + x) y(T- x)]

1/2[y2(e + x) y2(e x)] + 1/2[y(e + x) yO(e x)]

(17b)
1/2[y(T + x) + y2(T x)] + 1/2[y(T + x) + yx T x)]

1/2lYe(e, + x) + y(e x)] + 1/2[y(e + x) + yx(e, x)] fz(x),

(17c) 2 ( 1).+
r
sin n(T t) y(t) dt k.

nT

We introduce the periodic functions ui(x) defined on the interval (0,2n)
as follows"

(18)

ui(x) a_ u(t)lt:z(i-

A u(t)],= 2m +
(x)Um +

0

i= 1,2,...,m,

for0 <x <e,

for < x < 2n.
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Hence equations (15) can be rewritten in the form

(19a) y(x) 2 cos/’/( + n) /,/i(e X) COS nx dx d( + f(x),
n=l i=1

(195) yY2(x) 2 sinn( + n) ui(e- xsinnxdx d + k + fi(x).
n=l i=l

Note that the formulas

ui(e x) sinnxdx and Ui( X) COS nx dx

are the respective Fourier coecients of the function u(e x). Hence taking into
consideration that each of the functions u(e x) is equal to the sum of its Fourier
series almost everywhere (as a bounded function), we can rewrite (19) in the form

(x - u( c + f (x
i=1

(Oa - u(

y{(x)=2 uT(e-n- ) d +k+f2(x)
i=1

(20b)
-2 u( e + ) d + k + f2(x).

i=l

The superscripts e and o denote here respectively the even and odd com-
ponent of the corresponding function, and the constant

i=1

is an arbitrary parameter. Denoting

m+l

i=1

we can rewrite (20) as follows:

(a y(x - [ve(-

(b y{(x v( +

Putting x 0 we obtain from (22b)



OPTIMAL CONTROL OF VIBRATING STRING 265

then (22b) can be rewritten in the form

(23) yfz(x) yzf(0) -2 v() d + fa(x) f2(0).

Integrating this equation over the interval [0, r] and taking into consideration
(7) and (9) we obtain

fo I fl(24) yzY(0 2 v() d fz(x) + f2(0) dx

Hence eventually (23) takes on the form

yf2(x) 2 v() d + f2(x) f2(O)
(25)

3. Nature of optimal control. It follows from (11), (12) and (14) that the
vibrational energy of the system (8) at the time T is given by

(26) E(y, T) J(ve, v) {[yf(x)] 2 / [yfl(x)] 2} dx.

Substituting (22a) and (25) for (26) we obtain the vibrational energy expressed
in terms of re(x) and v(x). On the other hand it follows from (3), (18) and (21)
and from the fact that v(x) is a periodic function that v(x) is subject to the following
constraints:

(27) Iv(x)l lye(x) / V(X)I < dp(x) almost everywhere for x e [0, 2rc],

where the periodic function qS(x) is defined as follows:

j m + for x e [0, e),
(27a) (x + 7)

m for x
Hence the problem of minimization of vibrational energy is equivalent to the
determination of a function v(x) satisfying (27) which minimizes functional (26).
To solve this problem we shall use the method of Lagrange functionals given in
[1] and [3].

The constraints (27) can be rewritten in the form

[gl(/)e,/))](X)-- ye(x) / V(X) (X) <= O,
(28)

[g2(/) /))](X)-- --ve(x)- V(X)- )(X) 0,

almost everywhere for x e [0, 2r].
The pair of functions (v, v) can be treated as an element of the space

L2[0, 2g] x L2[0, 2g], and the formula

a(ve, v) [gl(ve, v), gz(ve,
can be considered as describing an operator from L2[0, 2g] X L2[0, 2g] into the
same space.
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(29)

Let us introduce a Lagrange function of the form

((V V ) J(v I)) nt- [G(v

j(ve, v) + ,l[gl(ve, v)] nt.. 2[.g2(ve, v)],

where 2 (21,22) is a linear functional defined on the space L2[0, 2r] x L2[0, 2r].
The functional J(ve, v) and the operator G(ve, v) are convex (in the sense

of natural order in the spaces L2[0, 2r]). Moreover G(ve, v) satisfies the regularity
conditions (see [1] and [3]). Hence it follows from [1] and [3] that the functions
vg(x) and v(x) minimize the functional (26) subject to (28) if and only if there
exist functionals 2 and 2, such that the conditions (28) are satisfied and

(30a)

(30b)

(30d) 20[g,(veo, Vg)] O, 1,2.

The formulas dveJ[(v),Vo);Ve] and dveg[(vf,Vo);Ve] denote here the Fr6chet
differentials of the respective functional and operator at the point (vg, vg) in the
direction (ve, 0).

The inequality in (30c) means that the respective functional assumes non-
negative values on nonnegative (in the sense of natural order) elements of the
space L2[0, 2].

Note that since the functional J(ve, v) is strictly convex, the functions vg(x)
and Vo(X) which minimize it are defined uniquely. From (22a) and (26) we obtain

(31)

d,,J[(vg, Vo) ve] 2 () c d

y{,O(X) l)e() d dx

In the same way, from (25) and (26) we obtain

doJ[(v), vg); v] y{,o(X) v() d v() d dx

jo2rt fi:(32) y{,o(X) v() d dx
0

y{,o() v(x)cx.
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From (28) we have

(33a) d,,egl[(veo, I.)o); ue]

(33b) d..g2[(veo, v); ve] v(x).

We obtain exactly the same formulas for the differentials of the operators
in the direction (0, v).

Substituting (31)-(33) into (30) and using the general form of nonnegative
functional in the space L2[O, 2r], we obtain

(34a) Y{,o({) d{ l)e(x) dx + 2?(x)ve(x) dx 2(x)ve(x) dx 0,

(34b) Y{,o() d v(x) dx + 2(x)v(x) dx 22(x)v(x) dx O,

where

(34c) 2(x) => 0 almost everywhere for x e [0, 2t], 1,2,

[vg(x)+ Vo(X)- 4(x)q,(x)= o,dx

(34d)
2

o
[- ve(x) V(X) 4(X)]’O(x)dx O.

Since (34a) and (34b) must be satisfied for arbitrary functions v, v e L2[O, 2g],
we obtain

(35a) Y{,o() d + 2(x) 2(x) O,

(35b) yY2,o()d + 2(x)- 2(x)= 0

almost everywhere on [0, 2r]. Subtracting (35b) from (35a) we obtain

y{,o() d y{,o() d.

Hence

(36) y{,o(X) y{,o(X).

Therefore taking (9) into consideration we have

(37) y2Y,o(0) 0.

Summing (35a) and (35b) we obtain

[Yl,o() + YY2,o()] d + 22(x)- 222(x)= O.(38) e
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From (17), (22a), (23) and (37) we obtain

(39)

where

(39a)

y{,o(X) + y{,o(X) fl 2[Vo() c] de + f(x) + f2(x) f2(0)

2EVo()- c] d + y(e + x) + yl(e + x)- y(e)- y(e)

fO: L[-aY’( +)3 + aY( + )+2c-a 2’()1 a
[F() + 2c 2Vo()] d,

dy(e + x) dy2( + x)
F(x) +

dx dx

Taking into consideration (36) and (39) we find that the minimal value of
functional (26) can be expressed in the form

(40) J(vg, vg) [F() + 2c 2Vo()] d dx.

The value of the functional (40) depends on the constant c, which is an
arbitrary parameter. This constant ought to be chosen in such a way that the
value of functional (40) is minimal. Let us denote by Co the optimal value of c.
Differentiating (40) with respect to c we obtain the following necessary condition
for the optimality of Vo(X):

(41) [F() + 2Co 2Vo()] d dx O.

Note that it follows from (27) that the minimal value of (40) is equal to zero if
and only if

(42) max IF(x)- 24)(x)] <_- -2Co <- min IF(x) + 2q(x)].
xe[O,2n] xe[0,2]

Let us assume that the condition (42) is not satisfied.
For more detailed characterization of the optimal function Vo(X) we put

c Co and we substitute (39) into (38):

(43) IF(r/) + 2Co 2vo(r/)] drl d + 22(x) 222(x) 0.

Let us introduce the sets

(44a)

(44b)

M {x e [0, 2x] Vo(X) qS(x) 0},
N {x e [0, 2re] -Vo(X) qb(x) 0}.
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It follows from (28), (30d) and (44) that

(45a) 2(x) 0 for x e [0, 2zr]\M,

(45b) 2(x) 0 for x e [0, 2rt]\N.

Hence taking into consideration (34c) and (45) we obtain, from (43),

(46a) [F(r/) + 2Co 2vo(r/)] dr/d __> 0 for x e M,

(46b) [F(r/) + 2Co 2vo(r/)] dr/d 0 for x e N,

(46c) IF(r/) + 2Co 2vo(r/)] dr/d 0 for x e [0, 2r]\(M w N).

Note that the left-hand side of (46) is a continuous function of x. Therefore taking
into account (41) we conclude that for each component M of M the following
equation must be satisfied:

(47) IF(r/) + 2Co 2Vo(r/)] dr/de 0.

The same equation must be satisfied for each component N of the set N.
Then the points at which F(x) + 2Co >= c/)(x) as well as such that F(x) + 2Co _-< b(x)
must belong to each subset M. Therefore if F(x) is piecewise monotonic, the
number of the components M must be finite. Similarly in this case the number
of components N is finite.

The effective determining of the sets M and N is difficult and in each case
it has to be done numerically making use of the properties (46) and (47). The
additional difficulty is that we do not know the optimal value of the parameter c,
which has to be determined taking advantage of the condition (41).

Let us now assume that we have found the sets M and N and let us determine
the form of optimal control.

It follows from (41), (46c) and (47) that

(48) Vo(X) 1/2F(x) + Co for x e [0, 2zt]\(M w N).

The function Vo(X) is uniquely determined by (44) and (48). From (18), (21), (27)
and (44) we obtain

+ 1 for xe M’ {x [0, 2t]’Vo(X + e zt) b(x + e re)},
(49) Uo,i(x)=

-1 forxeN’ {xe[0,2r]’Vo(X+e-r)= -qS(x+e-zt)},

i= 1,2,.-.,m.

For Uo,,,+ (x) the same formulas are satisfied, but instead of the sets M’ and N’
we have M’ (0, e) and N’ c (0, e), respectively. Hence on these sets the functions
Uo,i(x) are defined uniquely.
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On the other hand it follows from (18), (21) and (48) that for
x [0,2zt]\(M’ w N’) the functions Uo,i(x) are not defined uniquely. They may
be arbitrary. However, the condition (3) and the equations

m+l

(50a) Uo,i(x) 1/2F(x + n) + Co
i=1

for x {[0, 2z]\(M’ N’)} c (0, ),

(50b) Uo,,(x) 1/2F(x + e, ) + Co for x e {E0, 2zc]\(M’ N’)} (, 2z0
i=1

must be satisfied.
In particular, we can put

for x (0, e.),
Uo,i(x) Uo,j(x),

for x (:, 2t).

Hence it follows from (18) that the optimal control Uo(t) is a periodic function.

i,j=l,2,...,m+l

i,j=l,2,...,m
(51)

From (18), (49), (50) and (51) we obtain

(52)

u[t + 2(i- 1)z]

+1

-1

n---i-[F(x)l=, + Co]

IF(x)[ + Co]

for x M’,

for x N’,

for x {[0, 2z]\(M’ w N’)} c (0, e),

for x {[0, 2z]\(M’ w N’)} (e, 2z).

It follows from the previous considerations that, in the case where
M w N [0, 2r], the optimal control is unique and that it is of the "bang-bang"
type. Naturally this is the case when the interval [0, 2z] does not contain any
subset of positive measure on which (46c) is satisfied. Taking into consideration
(7), (36), (39) and (47) we see that this condition is equivalent to the requirement
that there not exist any subset of positive measure on which

(53) YYl o(x)
c3yo(x, t)

c3t t=T

This condition was obtained in [5] and it was called the condition of normality
of the system. It follows from the previous considerations that in general this
condition is not satisfied.

On the other hand, except for the case where the final vibrational energy
is equal to zero, the set M w N must be of positive measure. Hence the magnitude
of [Uo(t)[ is equal to on a subinterval of the interval of control [0, T] having
positive measure. Therefore it is possible to formulate the maximum principle,
as it was done in [5].
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ON SECOND ORDER NECESSARY CONDITIONS OF OPTIMALITY*

E. J. MESSERLI AND E. POLAK’

1. Introduction. In the last few years it has been shown [13, [23 that most
of the problems of nonlinear programming, the calculus of variations and optimal
control can be treated in a unified manner by transcribing these problems into a
simple canonical form. Necessary conditions of optimality for this canonical
form may then be obtained and related to the original problems through the
structure of each particular problem.

For finite-dimensional problems, this canonical form is given as follows.
BASIC PROBLEM. Let f:E" --, E and r:E E be continuously differentiable

functions, and let f be a subset of E". Find a vector in E" such that (i)
r() 0 and (ii) for every x in f with r(x) O, f() <= f(x).

Following the convention of nonlinear programming, an satisfying (i) will
be called feasible, while an ) satisfying both (i) and (ii) will be called an optimal
solution to the Basic Problem.

A similar problem, common in mathematical programming, is perhaps
better known.

NONLINEAR PROGRAMMING PROBLEM. Let f E" - E1, r E E and
g:E" E be given functions. Find ) such that r(2)= 0, g()__< 0 and
f() min (f(x)[r(x) 0, g(x) <= 0}.

This problem may be put in Basic Problem form by identifying f as the
set {xlg(x) -< 0}.

As a more interesting example, consider the following discrete optimal
control problem" Let fO.E ._. E 1, f/. E x E E, 0, 1, k 1,
g:E" E be given functions, and Ui a given set in E for 0, 1, ..., k 1.

k-1 o uFind a control sequence (Uo, ..., Uk- 1) which minimizes i=o fi (i) subject to
(i) Yi+l Yi fi(Yi,Ui), 0, 1,..., k 1,

and
(ii) Yo o, g(Yk) O, Ui Ui, O, 1,..., k 1.
To see that this problem may be cast in Basic Problem form, let x in Ekl

k-1be given by x (Uo, "., Uk-1), f(x) i=o fi(Ui), r(x) g(yk(X)), where Yk is
obtained by solving (i) with Yo o, and, finally, f Uo x U1 x x Uk-

The demonstrated generality of the Basic Problem makes it a convenient
vehicle for the introduction of second order conditions of optimality. By a second
order condition of optimality, we mean a condition which augments or replaces
the usual first order conditions and, generally, involves a second derivative of
one or more of the cost or constraint functions.
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First and second order conditions are not independent; a second order con-
dition, usually, is only meaningful when a first order condition is already satisfied.
To clarify these ideas, we shall state a fundamental first order necessary condition
for the Basic Problem. This requires a tractable local representation of the set f.

DEFINITION 1 ([1]). A convex cone C(, f) will be called a conical approximation
to the constraint set f at the point if for any collection {Yl, Y2,’", Yk} of
linearly independent vectors in C(, f), there exists an o > 0 (possibly depending
on , Yl, "’", Yk) and a continuous map (. from the convex hull of {Yl, "’", Y}
into :2, for each 0 _< _< o, of the form

() (y) y + o(y),

where IIo(y)II/IlYll 0 as IIYll 0.
If the map (. is given by (y) y, then.C(, ) will be called a simple conical

approximation to f at .
THZORZM 1 ([1]). /f 5 is an optimal solution to the Basic Problem and C(,

is a conical approximation to f at , then there is a nonzero vector (o, m)
in E" + 1, with o <= O, such that

x(:)(y) + t (:)(y) -< 0
i=

for all y in C(, f), the closure in E" ofC(, ).
The inequality (2) may be satisfied under several different circumstances.

The first is when the multiplier fro must be chosen to be zero, and hence no
information about the cost function f(. enters into the necessary condition (2).
This occurs most often when there is only one x in f satisfying r(x) 0 and
may be avoided by introducing a regularity condition, usually called a constraint
qualification 3] on r(. and f. We shall not be concerned with this case.

A second situation for which (2) is always satisfied is that in which the vectors
cf()/c3x, crl()/cx, rm()/3X are linearly dependent, since one can then
always choose a ff- 0 which satisfies d/[cf()/c3x] + E=li[ri()/fx]--O,
and hence (2), without reference to the optimality of . This situation does not
usually lead to a second order condition unless it arises from the fact that one
or more of the gradients Of()/c3x, Orl()/Ox, c3rm()/cx are the zero vector.
When this particular situation occurs, we shall refer to it as the zero-gradient case.

There is another situation in which a second order condition is meaningful,
which is quite distinct from the zero-gradient case. This occurs when for every
y contained in C(, f), we have c3f()(y)/cx 0 and c3ri()(y)/c3x 0 for 1, ..., m,

It is to be understood throughout that any derivatives used are assumed to exist. The expansion
of a function f(. at the point will be denoted by

oOfxf( + y) f() + (:)(y) + x2()(y’ Y) +

c3f()/c3x represents the gradient off(. at , assumed to be a column vector. Vectors will be written
x (x 1, x2, x"), etc., with the exception that in E"+ the component numbering will be from
0, 1,2,... ,m.
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Thus, it is possible to satisfy (2) irrespective of the choice of the vector ft. Such
vectors y are, in a sense, critical (see Definition 6), and second order conditions
for this case correspond to examining second order effects along curves tangent
to y at :. Of course, any combination of the preceding three situations may occur
simultaneously.

In 2 of this paper, we survey briefly some of the known second order con-
ditions for finite-dimensional spaces and show that they are second order
conditions either for the zero-gradient case or for the critical directions case.

The major contributions of this paper are given in 3--Theorem 6 for the
critical directions case and Theorem 7 for the zero-gradient case. Both of these
theorems are expressed in terms of local approximations to the set , since, in
well-formulated optimization problems, f has an interior, which ensures the
existence of such approximations. Several ways by which such approximations
may be constructed are given. It is also shown that most second order necessary
conditions are special cases of Theorem 6 or Theorem 7.

In 4, proofs for Theorems 6 and 7 are given. These proofs display the
important fact that some of the proven techniques of first order theory, in
particular the use of fixed-point theorems, can be applied to second order theory.

2. A brief survey of some second order conditions. Since our interest is in the
Basic Problem, or the closely related Nonlinear Programming Problem, we shall
not cover any special results from the calculus of variations [4], [5] or optimal
control 6], [7, pp. 63-101]. Nor shall we be concerned with sufficiency conditions
either, because in many cases the required strengthening of the necessary con-
ditions may be obvious, or because our local approximation to the set may not
be sufficiently rich to describe completely the nature of f in the vicinity of 2.

Perhaps the simplest second order condition arises when the gradient of the
cost function f(. is zero at the optimal solution and we do not choose to isolate
the equality constraints for special attention.

DEFINITION 2. Let f be an arbitrary set. The tangent cone, TC(,, f), to f
at )2 is defined to be the set of all y such that there exist a differentiable function
x "E --, E" and an 8 > 0 such that (i) x(0) 92, (ii) dx(O)/d y and (iii) x()e f
for0 < < .

THEOREM 2. If is an optimal solution to the Basic Problem and 8f(:)/8x O,
then 82f()2)(y, y)/Sx2 >= 0 .for all y in TC(, f’), where ’ {xlr(x) O, x }.

This is seen to be a simple but general result for the zero-gradient case; how-
ever its application depends on our having a characterization for TC()2, f’). In
some cases, we may represent TC(,f’) as the intersection of TC()2, f’) and
TC(, {xlr(x) 0}); this facilitates matters. However, this is not true in general.

Remark 1. Theorem 2 remains true if we replace the tangent cone, TC(, f),
by the sequential tangent cone STC(, ), defined as follows.

DEFINITION 3 ([6]). Let f be an arbitrary set. The sequential tangent cone,
STC(, f), to f at 92 is defined to be the set of all y such that there is a sequence
{x,}= in f and a sequence {d} of strictly positive scalars such that (i) x,- :
and (ii) di(xi ) --* y.
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For the critical vector case, we are able to obtain second order conditions
without requiring the gradient of the cost function to be zero.

THEOREM 3. Let be an optimal solution to the Basic Problem, and let
x’E --. E" be any twice continuously differentiable function such that x(O)=
and x() is .feasible .for all [0, c2], with > O. If df(x(O))/dc O, then
d2f(x(O))/d2 >= O.

In general, without making additional assumptions about r(. and , the
conditions ofTheorems 2 and 3 cannot be decomposed into more structured forms.

One approach to a more structured condition is that fOllowed by Dubovickii
and Milyutin [8], [9]. Essentially, for a fixed 37 satisfying cf()(y)/cx 0 and
cqri()(.9)/cqx 0 for i= 1,..., m (i.e., 37 is critical) they consider the following
sets"

(3)

(4)

Co(y) {y[ there exists an So > 0 and a function o:[0,o]-o E", with
lim,_o (l[o()ll/) 0, such that r(2 + .9 + 2y + o(2)) 0 for
all [0, Zo]}.

C107) {Yl there exists an e; > 0 such that 2 + e,9 + e2uef for all
Eo,3}.

(5) C2(37) {Yl there exists an ; > 0 such that f(2 + o.f + a2y) < f(2) for all
(0,

THEOREM 4 ([9]). If 2 is an optimal solution to the Basic Problem, then2

Co(y) c int (C(f)) int (C2(y)) -ffS.
Whenever Co(f) is a linear manifold and Ca(37) and C2(37) are convex cones

(possibly translated) with nonempty interiors, the condition Co(y) c int(C(y)
c int (C2(y)) = guarantees the existence of affine functionals, Co(. ), c(. ), c2(" ),
not all zero, with Co(" vanishing on Co(f) and ci(.) nonnegative on Ci(f) for

l, 2, such that Co(X) + cl(x) + c2(x) 0 for all x in E" [8]. When specialized
to the Nonlinear Programming Problem with rather restrictive assumptions, this
gives a result similar to Theorem 5.

Finally, McCormick [10] has observed that in some cases the first order
necessary conditions for the Nonlinear Programming Problem display a multiplier
vector which can also be used in a second order condition.

DEFINITION 4 ([10]). Consider the Nonlinear Programming Problem. The
second order constraint qualification is said to be satisfied at 92 if for each y such
that cri(2)(y)/t?x 0 for i= l, ..-, m, and c3gi(2)(y)/c3x 0 for il(2)
_-a {ilgi() 0}, there is a twice continuously differentiable function x’E E"
and > 0 such that

(i) x(0)= , dx(O)/d, y,
(ii) for all, [0, 8], x(,) is feasible, and moreover, gi(x(z)) 0 for I().
THEOREM 5 ([10]). /f is an optimal solution to the Nonlinear Programming

Problem and the first order3 [10] and second order constraint qualifications are

The interior of a set C is denoted by int(C).
The first order constraint qualification is a statement of the Kuhn-Tucker constraint qualifica-

tion [11] for a constraint set defined by both equalities and inequalities.
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satisfied at 2, then there exist multipliers 01
.for 1, ..., k, such that

and

,’", m and pl "", ]k with #i <= 0

(iii) jbr every y such that (3ri(2)(y)/c3x=O for i= 1,2,...,m, and
c3gi(2)(y)/c3x 0 Jbr 6 I(),

f 1 /:ri-()(;, ;) +
i=

y) -At.- Ai
t2g

i=1 -X2(’)(Y’ y) -<- O.

Conditions (i) and (ii) represent the first order necessary conditions for the
Nonlinear Programming Problem, with the first order constraint qualification
ensuring a nonzero cost multiplier, 1, in (i). Choosing 37 such that crg(c)(y)/cx 0
for i= 1,..., m and gi()(y)/cx 0 for i 1(), we see that (i) and (ii) imply
c3f()(y)/c3x 0, i.e., 37 is critical. The second order constraint qualification then
leads to the third condition.

It is also clear, however, that .f()(y)/cx 0 also follows only from the
optimality of 2 and the second order constraint qualification, since if
c3f()(y)/c3x O, then either c3f()(y’)/c3x < 0 or 6f()(-y)/c3x < 0, and the
second order qualification leads to a contradiction of optimality. Thus, it is
apparent that the first order constraint qualification may be removed to obtain
a slightly weaker theorem. In addition, one would expect to have a condition in
terms of curves x(. that are feasible for 0, 5], but do not necessarily satisfy
the rather demanding condition, gi(x(Z)) 0 for e 1(2).

Our task in the next section will be to obtain optimality conditions without
explicit assumptions relating r(. and f, i.e., without constraint qualifications.
This will be achieved by formulating the second order necessary conditions as
fairly natural geometric relations between appropriate sets.

3. Second order necessary conditions. We have seen that Theorem 1, which
gives first order necessary conditions of optimality, relies on local approximation
to the set ). While this approximation can also be used for some second order
conditions, it is convenient to introduce a new local approximation.

DEFINITION 5. A pair {C(,)7, f),y*} will be called a f-directed conical
approximation to f at 2, if C(2, 37, f) is a convex cone and if for any collectiol
{Yl, Y2, "’’, Yk} of vectors in C(, 37, f), any k- of which are linearly inde-
pendent, there is an Zo > 0 and a continuous map y(.,.), (possibly depending
on , )7, y*, Yl, "’", Yk) from [0, o] co{y1, ..., Yk} into f , of the form

(X
2

(6) y(, y) zy + --(y* + y) + o(z2, y),

where 110(2, y)ll/c2 0 as O, for all y.
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We shall refer to {C(, jT, f), y*} simply as a directed conical approximation
when 37 is clear from the context. The special cases which arise when
C(2, jT, f)= {0}, or y* 0, or even j7 0 (or any combination of these) are
not excluded from consideration.

There may, of course, be many directed conical approximations for a single 37,
as well as useful relations between the conical approximation defined in
Definition 1 and the directed conical approximations defined in Definition 5.
Thus, if {C(,jT, f),y*} is a directed conical approximation, the ray {yly

237,2 >= 0} may be regarded as a trivial conical approximation with map
(y) ’(2y’) 2j7 +/2(y, -k- y)/2 + 0(22, y), where y is any vector in C(, jT,
and o(.,. is given by (5).

Conversely, we may often obtain directed conical approximations from
conical approximations, the most important case being the following one.

LEMMA 1. If C(, f) is a simple conical approximation to f at and is any
vector in C(:, f), then {RC(, C(2, f)), 0} is a -directed conical approximation
to ) at (where for any set S and x S, we define RC(x, S) {Yl there exists a
> Osuch thatx + 2y S forO=< 2=<,}).

Note that if j7 e C(:, f), then C(, f) RC(9, C(., f)), with strict inclusion
whenever -37 C(, f).

We digress to indicate several important cases for which simple conical
approximations may be constructed. (For f {x[gi(x)<= O, i= 1,..., k) and
x f, the index set I(x) a_ {ili {1, .-., k} and g(x) 0}.)

LEMMA 2. Suppose that (x]gi(x)=< 0 for i= 1,..., k} and that
If the internal cone to f at , IC(g., f), defined by

(7) IC(2, f) y --(92) (y) < O, e I(2)

is not empty, then it is a simple conical approximation to at .
LEMM 3. /f is contained in f and )* is any set containing such that

is convex, then RC(, c f*) is a simple conical approximation to f at
LEMMA 4. If C(,f) is a conical approximation with nonempty interior

int (C(:, f)), then int (C(, f)) is a simple conical approximation to f at
Whenever f has the description given in Lemma 2, i.e.,, we are dealing with

the Nonlinear Programming Problem, it is consistent with our idea of a well-
formulated problem that f will have an interior, and hence 1C(, f) will be non-
empty. This situation enables us to construct an important class of directed
conical approximations.

LEMMA 5. Consider the set f {xlgi(x) <= 0 .)r i= 1, 2,’’’, k} and let
f. Suppose that IC(, f), and let the index set I(, y) be defined by

(8) I(, 37) I(), ()(. 0

and let the -directed internal cone to f at , 1C(, , f), be defined by

(9) IC(2, , n) y (2)(y) < O, e I(2, )
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(and IC(2, 37, f) E if 1(2, y’) ). Then there is a vector y* E" such that

t2g tg
(i) cxa ()(37, y) + x-x ()(y*) -< 0 for i I(;c, y’)

and (ii) the pair {IC(, , f), y*} is a -directed conical approximation to f at .
Moreover, IC(, f) IC(, ., f), with strict inclusion ifI(, y) :/: I().

To illustrate the usefulness of Lemma 5 and to see that there are situations
when y* must be nonzero if one wishes to obtain a directed conical approxima-
tion, let x (x, xa), f {xlg(x) A= ((X 1) + (Xa)a 1)/2 =< 0} and (0, 0).
With 37 (0, 1) it is easy to verify that there is no cone C such that {C, (0, 0)}
is a )7.-directed conical approximation, however {IC(2, ), (1, 0)} is a (0, 1)-directed
conical approximation.

We now isolate those vectors )7 for which, in the context of the Basic Problem,
a 37-directed conical approximation will lead to a very general second order
necessary condition of optimality.

DEFINITION 6. A vector 37 is said to be a critical direction (at ) for the Basic
Problem if cf()(y)/tx <_ 0 and cri()(y)/cx 0 for 1, ..., m.

THEOREM 6. Suppose that is an optimal solution to the Basic Problem and
that is a critical direction at . If{ C(, .17, g2), y*} is a -directed conical approxima-
tion to g2 at , then there exists a nonzero vector (o, 1,..., m) in E+,
satisfying t <= 0 and /o 0 if f(2)(y)/cx < O, such that

(i) Oc3fx()(y + ,i ()(y) =< 0 for all y e C(, y, Q),
i=

(ii) O x(2)07, Y) + x(2)(Y*) + k’ -x2(2)(fi, Y) + x()2)(Y 0.
i=1

Remark 2. Note that inequality (2) of Theorem may also be obtained from
Theorem 4 by Dubovickii and Milyutin [8], [9] and Theorem 6 of this section.
then, setting 37 0, C(2, 0, f)= C(2, f2), y*= 0, and Co(e, Y)= o2Y/2 nt-o(2Y),
we find that part (i) of Theorem 6 yields the same result as Theorem 1, but part (ii)
carries no information. However, the inequality (i) of Theorem 6 will often hold
for cones C(2,37, f) which are much larger than any conical approximation
to f2 at 2.

It is appropriate at this stage to comment on the crucial differences between
Theorem 4 by Dubovickii and Milyutin [8], [9] and Theorem 6 of this section.
Note that Theorem 4 is essentially a disjointness condition in the domain space
of the map F(. (f(.), r( ),..., rm( )) (i.e., in E"), while Theorem 6 repre-
sents separation conditions in the range space of F(.) (i.e., in Em+), which
requires simpler assumptions. Thus, to obtain from Theorem 4 inequalities
of the form (i) and (ii) ofTheorem 6 it is necessary to make fairly strong assumptions
on each of the.sets Co(37), CI(y’) and CzQ, (see (3), (4) and (5)). On the other hand,
any time C(y) is of the form C(y’) y* + C(y), where C07) is a convex cone, we
find that {C(y), y*} is a 37-directed conical approximation to f at x*, and we
obtain (i) and (ii) of Theorem 6 immediately.
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Before further discussion of Theorem 6, we consider the zero-gradient case.
it is assumed that at most one gradient corresponding to an equality constraint
is zero. We define the ray P in E"+ by

P {wlw < 0 and w 0 for 1, m}.
THEOREM 7. Suppose that is an optimal solution to the Basic Problem and

that C(, f) is a conical approximation to f at with nonempty interior int (C(, fl)).
(i) If Of()/Ox O, then the ray P has no points in the interior ofthe set

(10) Lo w w -x2tx)(y, y), w (2)(y), 1,2,..., m, y 6 int (C(, f))

(ii) If c3r()/c3x O, then the ray P has no points in the interior ofthe set

(11)

(iii) If c3f(2)lt?x t?r(2)/cx O, then the ray P has no points in the interior

ofthe set

(12)
L2 { w[wo 32f 632r

-T()(y Y), w --()(y, y),

w
r }ff-XX02)(y), 2, 3,..., m, y e int (C02, f))

Remark 3. Theorem 7 remains true even when int (C02, f)) is replaced by the
relative interior of C(, f). Also, if only the case Of()/c3x 0 is considered, it
can be shown that the following is true.

THEOREM 8 ([12]). Suppose lhat is an optimal solution to the Basic Problem
and that C(, f) is a conical approximation to f at Pc. If t?f(Pc)/t?x O, then the
ray P has no points in the interior ofthe set

(13) Lb= ww f’^"-X-x2tX)(y, Y), w (2)(y), i= 1,2,...,m,yC(2,f)}.
It can be shown that theorems similar to Theorem 8 cannot be obtained

for all situations covered by Theorem 7, i.e., int (C(, f)) cannot be replaced by
C(,f). In fact, consideration of Example 1,with f {(xl, x2)l(xl-1)2

-t- (X2 1)2 2 __< 0}, 92 (0, 0) and C(2, f) {(x, X2)IX + X2 0}, will con-
firm this.

Theorems 6 and 7 represent two different approaches to second order con-
ditions. Theorem 6 is well structured and neatly supplements the first order
conditions in Theorem 1. Theorem 7, on the other hand, is in rather awkward
form, since the sets Lo, L and L2 are in general neither convex nor even conical.
However, in spite of this, Theorem 7 answers some questions which Theorem 6
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does not, and in some cases leads to alternate expressions. We now demonstrate
this.

Examination of Theorem 6 indicates that the multiplier vector ff depends
on the critical direction 37. However, it is clear from Lemma 1 that we may be
able to find a pair {C, y*} which is a directed conical approximation for more
than one critical direction 17. The natural question to ask, then, is whether there
is a multiplier vector ff which will satisfy the conditions of Theorem 6 for all these
critical vectors )7 and the given pair {C, y*}. Unfortunately, as will be seen from
the following example, this is not always true.

Example 1. Let x (x,x2) and consider the Basic Problem with
f(x) -(x x2)2, r(x) (x1)2 (x2) 2 and D {xl xl >= 0, x2 0}. Clearly,
the point (0, 0) is an optimal solution since the only feasible points are defined
by the intersection of the line x- x2= 0 and the positive quadrant. Since
cf()/cx cr()/cx 0, each j7 in is a critical direction and we may take
C(, jT, ) , y* (0, 0). Now, since each gradient is zero, if there is a single
multiplier vector ff which satisfies Theorem 6 for all 37 in fL it must satisfy

0 c32f, t2r
-xX(;, Y) + 0 -a--X()( ;) <= o

for all j7 e , with o __< 0. This is equivalent to requiring that the cone

V= {v (vo, v,) vo (2f (2r
-x2()(y, y), v Sx2()(y, y), y e f

be separated from the ray P. It is trivial to verify that V is the set {(0, 0)} w {vlv
< 0, v + v >__ 0} w {vlv < O,v v >= 0}, which cannot be separated from
the ray P.

We see that in the preceding example the set f also serves as a simple conical
approximation to f at (0, 0). Since f has an interior and both cf(2)/cx and
cr(2)/cx 0, Theorem 7 can be applied to answer the question as to when there
is a single multiplier vector satisfying

O0 c32f a2r
-(x)(y, y) + 0 -bTx()(y, y) <= o

for all y e . In particular, it yields the following modification of Theorem 6.
THEOREM 9. Suppose that the Basic Problem has only one equality constraint,

i.e., r’E" -+ E. If is an optimal solution to the Basic Problem, with
c3r(2)/cx O, and if C(2, f) is a conical approxintation to f at 2, such that the

set L2 (equation (12)) is convex, then there exist scalars o and not both zero
with o <= 0 such that

o--7(2)(y,c3f a2r
y) + 0’-;---5-(92)(y, y) <_ 0 for all y in C(2c, f).

Pro@ Since there is only a single equality constraint and both cf(2)/cx
and (?r(2)/cx 0, the set L2 is conical and by assumption also convex. Suppose
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L2 is not separated from P. It follows that P has points in the interior of the set
L2, which contradicts Theorem 7. Thus, P and L2 must be separated, which
proves the theorem.

When r(.)= 0, we have a somewhat simpler situation and Theorem 8
leads to the following result.

THEOREM 10. Suppose that in the Basic Problem, r(. =- 0 and is an optimal
solution with t3f()/c3x O. If {C(92, )l A}, where A is an index set, is any
collection ofconical approximations to f at , then

Ox2 ()(y, y) >__ 0 for all y in t._)

Proof. Let be arbitrary in A, and let C,(, f) be the corresponding conical
approximation. Applying Theorem 8, we see that the set L) is one-dimensional
and hence the statement of the theorem is that

Thus,

for all y in C(, ).

Ox2()(y, y) 0 for all y in ) C(, )
oeA

and by continuity this is also true for the closure, which completes the proof.
Theorem 2 of 2 may be obtained from Theorem 10. Thig follows by identify-

ing an index set A by A TC(, fY), where fY= {xlx f, r(x)= 0}, and for
each y A, i.e., y TC(?c, fg), identifying a corresponding conical approximation
by Cy(, ’) {Y’IY’ 2y, 2 > 0}--which is a valid conical approximation since
y TC(, f’). Then Uyea Cy(, ,-t) TC(, f’) and if t3f()/cx 0, Theorem 2
follows from the statement of Theorem 10.

When r(.)_= 0, we can also obtain a corollary of Theorem 6, similar to
Theorem 10.

THEOREM 11. Suppose that in the Basic Problem, r(.)=_ O. If 2 is optimal
and A is a set such thatfor each A there is a critical direction y and corresponding
directed conical approximation { C(2, , f), y}, then

(i) x(2)(y) >__ 0 for all y in _) C(92, 17, f)
A

and

af(ii) -x2[X)(y,, y) + xx()(y’)_>_ .for all A.

Proof. Let e A be arbitrary and let {C(, 37, f), y’} be the corresponding
)7-directed conical approximation. From Theorem 6, since (fro) is nonzero
and satisfies fro__< 0, we may take fro=-1. Thus, t3f()(y)/cx >= 0 for all
y e C(, 97,, f) and c2f()(37,, :9)/t3x2 + cf(YO(y*)/t3x >= O. Since was arbitrary,
the theorem is true.
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Theorem 3 of 2 is obtained as a special case of Theorem 11. Thus, suppose
x:E E" is a twice differentiable function such that x() is contained in
for in [0, ], > 0, that x(0) is optimal and that df(x(O))/d 0. Taking
the critical direction to be 37 dx(O)/d and the corresponding directed conical
approximation to be {C(,)7, fg), y*} {{O},d2x(O)/d2}, we obtain from the
second part of Theorem 1 1 that

dx(O) dx(O) f d2x(0)/ > 0
d

which corresponds to the condition dZf(x(O))/daz >= 0 of Theorem 3.
Remark 4. In view of Theorems 6 and 7, one may be inclined to think that

more information about a candidate optimal solution could be obtained and
verification of the necessary conditions simplified, by transcribing the original
problem into an equivalent form with simple structure or many critical directions.
Thus, for any problem of the form of the Basic Problem, an equivalent problem
with a single equality constraint, ?’E" E 1, can always be defined by letting
(X) "-7=1 (ri(x))2. Since t3?()/t3x 2 "/=iri(c)c3ri()/t3x 0, we can now
always apply either Theorem 7 or Theorem 6 with the set of critical directions
being {ylcf(Pc)(y)/t3x <= 0}. Unfortunately, Theorems 6 and 7 can be satisfied
trivially for this new problem and so it is seen that the transcription does not
increase the amount of information available about the optimal solutions of the
original problem. (Since 632()(y, y)/cx2 2 ,im= (6ri()(y)/c3x)2 >= 0 for all y, in
Theorem 6 we may take o 0 and a -1, while in Theorem 7, again by
the preceding inequality, the ray P will have no points in the interior ofL or L2.)

3.1. Applications to nonlinear programming. Theorem 6 will now be applied
to the Nonlinear Programming Problem to obtain a generalization of Theorem 5.
We note that as long as the total number of equality and inequality constraints
is less than n (where x E") and f has an interior, critical directions with non-
trivial directed conical approximations will exist. The following key theorem
will therefore normally be applicable.

THEOREM 12. If 2 is an optimal solution to the Nonlinear Programming Problem
and if IC(:, ) is not empty, then for each critical direction IC(2,, f), there
exists a vector y* in E, multipliers o, 1, ..., tm not all zero, satisfying /o <__ 0
and o 0 if c3f(,)(y)/t3x < O, and multipliers i <_ O, satisfying i 0 if I(, y),
such that

632g 63g
(i) -x2(:)07, y’) + ---X-X()(y*) __< 0 for i6 I(, y’),

(ii) 0 (2) + 0cr ff
t3g

() + () 0,
i=1

x(Xt(, y3 + x(/O,*l + 0 -((, y3 + (/0,* -< o.
i=l
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Proof Let .9e IC(2, {1). By Lemma 5, there is a. y* which satisfies (i), and
moreover the pair {IC(, .,f), y*} (see (9)) is a )7-directed conical approxima-
tion. Thus, by Theorem 6, there is a nonzero multiplier ,, satisfying fro =< 0 and
fro 0 if Of()(y)/c3x < 0, such that

O0 () (y)-}- oi
ari

i:
x(2)(Y) --< 0 for all y e IC(2, , f),

and, in addition, this multiplier satisfies condition (iii). Applying Farka’s lemma
[13] to the preceding inequality, there are scalars -/t __> 0 for I(., 37) such that

titgi()= 2 ()-
ieI(.,)

Defining i 0 for I(2, ) completes the proof.
COrOLLArY 1. If in the statement f Theorem 12, y* satisfies

O2gi
(2)(, y + (2)(y*) 0 for e I(2, ),

then condition (iii) may be replaced by

(iii’) 0 Of OOr 2_
tx(, y) + (x)(, ) + d ()(, y) o.

i= i=1

Proof Let g be the scalars given in the statement of the theorem. Then

102 Og

and therefore this term may be added to (iii) without changing the sign of the
inequality. However, from condition (ii) we have

0 ()(y*) + O
or
()(y*) + ()(y*) 0,

i= i=1

which gives condition (iii’). This completes the proof.
A sufficient condition which ensures that IC(2, ) is not empty and that a y*

satisfying the hypothesis of Corollary exists is that the vectors Og(2)/Ox, e I(2),
are linearly independent. However, while this assumption simplifies Theorem 12,
we are again hced with the question of determining when the multiplier vector
0 does not depend on the critical direction. Necessary conditions holding for a
class of critical directions, but involving only a single multiplier vector, may be
obtained with the following assumption.

ASSUMPTION 1.4 Consider the Nonlinear Programming Problem. Let be a
critical direction at 2, satisfying Og(2)()/Ox N 0 for e I(2), and dBne the set

gi
(14) Y() 1 is a critical direction at , (2)(y 0 for e 1(),

and (, ) (, ).
4 Note that Assumption does not require that IC(;c, f) 4:
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It is assumed thatJbr every y e Y(y), there is a twice differentiablefunction x "E E"
and an So > O, such that (i) x(0)= , dx(O)/d and (ii) x() is feasible for
o [0, o, with gi(x()) 0 for I(, ).

THEOREM 13. Suppose that is an optimal solution to the Nonlinear Program-
ming Problem and that y is a critical direction at satisfying Ogi()(y)/8x 0 for
i I(). If Assumption holds for the set Y(y) (equation (14)), then there exist
multipliers o, , ..., m satisjfing o O, and multipliers , 2, ..., pk satisfy-
ing pi 0 and pi 0 ifi 1(, ), such that

(15) 0 () + 0iori(1 + () 0,
i= i=1

i= i=l
()(if’ if) 0

(16)
for all Y().

Furthermore, IC(, ) , then O, and IC(, ) , then 0 and
equality holds for (16).

Remark 5. The set Y() consists of those critical directions ff satisfying
#g()()/Ox 0 for I() and I(, ) = 1(, ). Note also that the case f()()/Ox
< 0 is impossible if is optimal and Assumption holds.

Proof For any ff Y(), let x(. be the twice differentiable function guaran-
teed by Assumption 1, and let y*= dx(O)/da2. The following conditions are
readily established from Assumption 1, the optimality of and the fact that is
a critical direction"

aX2()(ff, if) + ()(y*) 0,

2 r r
(17) 2(x)(ff, if) + ()(y*) 0, 1, 2, ..., m,

2gi
()(g, ) + ()(y*) 0, 6 I(, ).

Considering first the case IC(, O) and applying Theorem 12, with the
critical direction given by y, we obtain a nonzero vector if, satisfying fro 0,
and a corresponding vector p, satisfying p 0 and 0 if i I(, y), which
satisfy (15). But now for any Y(y), conditions (17) imply that

O2f f((* + 00 -tx(, +
= ((, y3 + ((*

t2
-"

i=l #i/Xg2(’)(’)7’y) + (:)(y*) =<0.

By (15), the terms involving y* sum to zero, and hence the inequality (16) is
obtained.
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Now consider the case 1C(2, f2)= . It can be shown [1, Lemma 2] that
there exists a nonzero vector t- (#1,t2, tk), with #i<= 0 and #i= 0 if
qI(:), 1, 2,..., k, such that

(18) 2 ziogi
,=1

xx() =0.

Moreover, by taking thescalar product with ., it is clear that # 0 if I(2, y).
Therefore, for )7 e Y(y), (17) implies that

C g cg
i=I

and using (18), we obtain

2gi
(19) ]Aix2()(. f) 0.

i=1

Defining 4/ (o, , ..., era) 0 for this case completes the proof, since (18)
and (19) are the desired conditions.

A sufficient condition for the cone IC(, ) to be nonempty and for Assump-
tion to hold (for a particular y) is that the vectors t3r()/t3x for 1, 2, ..., m
and @i(2)/X, for it 1(2, ) are linearly independent. From (14) and the fact that, is nonzero for this case, this is also sufficient to guarantee that o in (15) must
be nonzero.

Theorem 12 is a second order necessary condition of optimality which does
not depend on any explicit assumptions (i.e., constraint qualifications) relating
the functions r(. and g(-), and it can often be applied in situations for which
Theorem 5 previously considered does not apply. The price paid for the freedom
from explicit assumptions is the dependence of the multipliers , # on the particu-
lar critical direction under consideration, a fault which Theorem 5 does not suffer
from. However, Theorem 13 also permits the use of the same multipliers (k,/)
for a class of critical directions and is in fact a generalization of Theorem 5. It is
clear that although Assumption is similar to the second order constraint
qualification (Definition 4), the first order constraint qualification is not required.
Theorem 13 also applies to a larger class of critical directions than does Theorem 5,
as we shall now show.

Example 2. Consider a particular problem of the form of the Nonlinear
Programming Problem, with x (x1, x2), f(x)= -(x- 1)2- (X2)2, r(x)=-O,
gl(x) (x 1)2 + (x)2 5 and gZ(x) (x + 1)2 + (x2)2 5. Since g(2) =< 0,
the identityf(x) -g(x) 5 impliesf(2) __> 5, and hence the point 2 (0, 2),
for which g(2)= g2(92)= 0, is an optimal solution, with I(2)= {1,2}. Now,
since ?ga(2)/c3x and 392()/C3X are linearly independent, Theorem 5 applies only
to the trivial case 37 0. However, we find that y (-2,- 1) is a critical direc-
tion contained in IC(2, f), with 1(92, ) {1 }. Thus, Theorem 12 can be applied
(without further assumptions) and, in addition, by trivially verifying that Assump-
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tion is satisfied, Theorem 13 can be applied (where Y(y) {YIY 2y, 2 _> 0}).
In either case we obtain an inequality for y which is not obtained from Theorem 5.

To illustrate how Theorem 12 augments the first order theory for the Non-
linear Programming Problem, suppose that is a candidate optimal solution,
)7 is a critical direction at and either I(ff)= or 37 e IC(.,f). Then, since
I(:, y)= , (ii) of Theorem 12 requires that g/c3f()/Ox + r=liOri(,)/Ox--O.
If Of()/?x, c3r()/cx, c3r"()/Ox are linearly independent, we conclude, since

0, that ff cannot be optimal. Similarly, if f()(f)/Ox < 0, and Or()/Ox,
?rm()/?x are linearly independent, we conclude that cannot be optimal. How-
ever, if (ii) of Theorem 12 is satisfied, then (iii) of Theorem 12 would have to be
examined; this is an easy task whenever the multipliers are unique.

As a more explicit illustration ofTheorem 12, consider the quadratic program-
mining problem, minimize 1/2(x, Qx) + (d, x) subject to Ax b, where Q is an
n n symmetric matrix and A is an m n matrix with m < n. Assume that 92
is optimal and that the rows a, i- 1,..., m, of A are linearly independent.
Then, choosing a vector 37 such that A)7 0, we may set 1(92) , 1C(, f) E",
y* 0. Thus, from (i) of Theorem 12, ffO(Q + d) + 7’= iai 0, and clearly

fro must be strictly less than 0. From (ii) of Theorem 12 we obtain ()7, Q)7) _>_ 0,
and since (jT, Q + d) 0, then (d, 37) 0 if Q)7 0. In other words, we have
the necessary conditions: (i) (37, Q37) => 0 for every 97 such that A37 0 and
(ii) (d, 37) 0 for every 97 such that Aj7 0 and Q)7 0. Note that these condi-
tions do not involve 2. In fact, it can be shown that the existence of one feasible
solution, together with conditions (i) and (ii), are sufficient conditions for the
existence ofan optimal solution to the preceding quadratic programming problem.

We have thus shown that most second order necessary conditions of optim-
ality are special cases of Theorem 6 or Theorem 7 which we shall now proceed
to prove.

4. Derivation of the major theorems. In this section proofs for Theorem 6
and Theorem 7 are given. Both proofs are developed within a geometric framework
and are unified by the crucial use made of the Brouwer fixed-point theorem
[14, pp. 146-150], [16]. Throughout this section it is to be understood that is
an optimal solution and that the map F :E"---, E"+ and the prohibited ray P
are defined by

(20) F(x) =(f(x) f(92), r(x))

and

(21) P {weE"+11w < 0 and w 0 for 1, 2,..., m}.

The optimality of : leads to the simple but fundamental necessary condition,
F(f) P .

Proofof Theorem 6. Let )7 be a critical direction at 92, and let {C(, 37, f), y*}
be a )7-directed conical approximation to f at 92. We define a convex set K in
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Em+l by

(22)
c32F OF

K -Sx()07, y’) + x()(y* + C(, 37,

and a convex set K in E by K --Pro(K), where P,,(w,w 1, ..., wm)
(w, w,..., Win).

If Of(2)(y")/Ox 0, the claim of Theorem 6 is that the prohibited ray P
(equation (21)) and the set K (equation (22)) are separated, while if 3f(2)(9)/Ox < O,
the claim of Theorem 6 is that the origin in E is not in the interior of the set Km.
The proof is by contradiction.

Consider first the case c3f()(y’)/Ox 0, and suppose that Theorem 6 is
false, i.e., that the ray P and the convex set K are not separated. Then it follows
that there exist m + 1 vectors Yl, Y2, "’", Ym+ in C(2, 37, f), any m of which are
linearly independent, such that the ray P has points in the interior of the set

co 0,0x--5-(2)(37, Y3 + (2)(Y* + Yl),’",Oxz ()(.9, Y3 + O--(2)(Y* + Y,,+ 1)

(but P does not necessarily have points in the interior of the set K). Using the
preceding relation and the map (.,. and o associated with Yl, Y2, "’", Ym+
(see Definition 5), the following results are readily established:

(23) 2 + el(e, y) e f for all e e (0, eo] and for all y co{y1, Y2, Ym+ 1};
The set

(24)
where

CO{W1, W2, Wm}

2r r
w, ?-x()(37, y3 + Uxx()(y* +

for 1, 2, ..., m + 1 is a simplex5 in Em, containing the origin in its interior;

f(2+(e,y))<f(2) for all ee(0, e] and yeco{y,yz,"’,ym+}
(25)

for some ) e (0, eo].

Now suppose that Of()(y’3/cx "< 0, and that the corresponding statement of
Theorem 6 is false. Then the origin in E" is in the interior of the convex set K,,,
and hence there exist vectors Yl, Y2, "’", Ym+ in C(, 37, f), any m of which are
linearly independent, such that the origin is in the interior of the set Z, where E
is constructed as in (24). Thus (24) is again satisfied, and using the o > 0 and
map (.,.) associated with Yl,Y2, "", Ym+I, (23) is satisfied. But since
Of()()/Ox < 0, it follows that there exists an ) such that (25) is satisfied; and
hence, irrespective of whether cf(:)(p)/cx 0 or Of()(p)/Ox < 0, if Theorem 6 is
false, then (23), (24) and (25) are satisfied (for appropriate vectors Yl, Y2, "’", Ym+ 1,

o > 0, > 0 and map (.,. )). We shall now use these facts to complete the
contradiction.

A simplex in E" is a convex polyhedron with m + vertices which has ata interior.
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Now, let W be an m m matrix whose ith column is W --Win+l,

1, 2,..., m, and let Y be a n m matrix whose ith column is Yi- Ym+l,

1, 2, ..’, m. Then W is nonsingular since E is a simplex. Hence, for every
w e E and 7 e (0, o],

yW- I(w Win+l) + Ym+ e co{Yl, Y2, "’’, Ym+ l}
and y(, YW-X(w- Win+ ) + Ym+ 1)e f- .

For e (0, ], we now define the continuous map G,’Z E by

2
(26) G(w) w r(: @ (0, YW-l(w win+ 1) -I- Ym+ 1))"

Then recalling the form of (., (see (6)) and noting that r(2) 0, t3r()(.)/x 0
and dr()Y/t3x W, we obtain

2 ( t3r 2 t3r
G(w) w r())+ (ZX())(;) + 5-(’)(YW-l(w- win+ 1) 1_ Ym+l + Y*)

(27)
e2 c32r / o’(e2 w)

+ 5- bx()(y’ ;) + ’(’ w) ;
)

where IIo’(e, w)ll/e2 0 as e- 0, uniformly for we 2. Hence, there exists an
e* e(0, e] such that G,(. maps Z into Z, and therefore, by Brouwer’s fixed-
point theorem, there is a w* in Z such that G,,(w*) w*. But now, from (26),
we see that the point

x* + (*, YW-(w* Win+ ) + Y.+ )

satisfies r(x*) 0, and since from (23), x*e f, and from (25), f(x*) < f(), we
have a contradiction of the optimality of :.

Thus, if Of()(y)/t3x 0, then the set K and the ray P must be separated,
while if cf(2)(y)/t3x < 0, the origin in E is not contained in the interior of the
set Km, and the statements of Theorem 6 follow.

Proofof Theorem 7. Since we need not distinguish in our proof between the
cases (i), (ii) and (iii) in the statement of Theorem 7, it is convenient to define an
indicator set J taking the form d {0} for case (i), d 1 for case (ii) or d {0,
for case (iii). For J taking any one of the preceding forms we define the continuous
function H :E" Em+l by

(28)

2- -xz-(X) (Y Y)
Hi(y)

for ie J,

for ie,] {0, 1, ..., m} J.

If C(, f) is a conical approximation to f at x, the claim of Theorem 7 is now
seen to be that the prohibited ray P has no points in the interior of the set
H(int (C(, f))). The proof is by contradiction and requires a preliminary lemma.
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LEMMA 6. Let Ao and A1 be n x n symmetric matrices, and let ao, a l, ..., am
be vectors in Em. Suppose that for J taking any one of the forms d {0}, J {1}
or J {0, 1}, the.function ’E" Em+ is defined by i(x) (x, Aix) for it J
and i(x) (a i, x)for it , and suppose that C is a convex cone in E.

IfJbr J taking any one of the preceding forms, the prohibited ray P has points
in the interior of the set H(C), then there exists an Y in C such that (i) H(Yc) P and
(ii) the Jacobian matrix c3H(Yc)/c3x has rank m + 1.

Proof We shall prove the lemma only for the case d {0, the proofs for
the other two cases are similar. Now, under the hypothesis of Lemma 6, there
exists a vector Wo P such that Wo belongs to the interior of H(C). It follows that
there is an ff C such that (i) H(ff) w0, and (ii) the vectors Aoff, a2, a3, am
are linearly independent. If all of the vectors Aoff, Aff, a2, a3, am are linearly
independent, then c3()/cx has rank m + 1, and we are finished. If they are not,
then we shall construct a new vector which satisfies the conclusions of Lemma 6.

Suppose that Ao,A,a2,a3, ..., am are linearly dependent. Then, since
(, Ao:) < 0, we must have, for some f12, f13,

(29) A,ff E fliai"
i=2

Now, letting Wo (a, 0, 0,..., 0), where a < 0, it is clear that for some
> 0, we may choose xl and x2 in C such that/-7(xl) (a, -, 0, 0, ..., 0) and

H(x2) (0,)’, 0, 0, 0). For /z => 0 and 2 e [0, 1], let x(2,/,) ff + /-t(/].X1
+ (1 2)x2), and observe that x(2,/)e C and that (ai, x(2,1a)) 0 for 2,3,
.,, m. It then follows from the symmetry of A and relation (29) that

(X(/],, /), A1X( )) ]22(X1 q- (1 /],)X2, AI(X -+- (1 /],)X2)

But now, by choice ofx and xz, there is a 2* e (0, 1) such that (x(2*,/), A lX(2",
0 for all/ >_ 0.

Finally, let /* > 0 be chosen so that (x(2*,/*), Ax(2*,/*) < 0, and let
x(2*,/**). Then /7() e P, and Ao, A, a2, a3, ..., am are linearly inde-

pendent, since otherwise

Alff +/*2*Ax, + #*(1 2*)Ax2 Y’.
i=2

for some/2 /rn i.e. from (29)

2*Alxl + (1 2*)Alx2 fiiai
i=2

for some fi2, ..., tim. But this implies (x, A1x2} < 0 and (x2, AlX) > 0, which
is impossible, and hence the lemma is proved (for J {0, 1}).

Let us now assume that Theorem 7 is false. Then it follows from Lemma 6
that there is a vector 07 e int (C(, f)) such that H(y’) Wo P and such that the
Jacobian cH(.)/c3x has rank m + 1, where H(. is defined by (28). We may assume
without loss of generality that the first m + columns of cH(.)/cx are linearly
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independent, hence, letting )7 07’,J7’’), where )7’= 07x, y2, ..., n+ 1) and 17"
=(,,+2, ..., y,), it follows from the implicit function theorem [15] that there
are closed neighborhoods U and V of the origin in Em/ such that H(.) is a
homeomorphism from {)7’+ U} x {"} onto wo + V. So restricted, we shall
denote the continuous inverse of this function by H-(. ). Clearly the set V may
be assumed to be convex.

Since we may assume that U is sufficiently small, there is a linearly inde-
pendent set of vectors Y l, Y2,’", Y, in int (C(2, )), with corresponding map
(. and eo > 0, defined as in Definition 1, such that

{)7’ + U) x {)7") co{O,y,y,’",yn}.

We now define, for e e (0, eo], the uniformly continuous map G’V E"+1 by

(30) G(w) Wo + w- D(e)-IF(Pc + ((eH-(wo + w))),

where O() [d()ij] is an (m + 1) x (m + 1) noningular diagonal matrix such
that for i,j O, 1,..., m,

O, i4:j,

2
d(oOij -, j and e J,

e, i=j andie3.

Expanding (30) and noting that F(2) 0, we obtain

cF
O(w) Wo + w- D(e)- e-x(C)(H-(wo + w))

(3)
o2 2F+- SxZ(2)(H-(wo + w), H-(wo + w)) + o(a2, w),]

which, recalling (28), may be rearranged to yield

G,(w)-- Wo + w- H(H-(wo + w))- D(a)-’6(, w)= -D(a)-’fi(a, w),

where, for 0, 1,.-., m, I6i(e, w)l/d(oOi 0 as e 0, uniformly for w e V.
Thus, we may choose e*e (0, Co] such that G,(w) V for all w V, and, there-
fore, from Brouwer’s fixed-point theorem there is w* e V such that G,,(w*) w*.
But now, from (30), the point x* 2 + ((e*H-(wo + w*)) f satisfies F(x*)

O(*)Wo P, i.e., f(x*) < f(2) and r(x*)= 0; this is a contradiction of the
optimality of 2. This completes the proof of Theorem 7.

Conclusion. We have constructed in this paper a theory of second order
conditions of optimality, which is consistent with the modern approach to first
order necessary conditions. Also, we have shown that this theory not only results
in a number of new conditions of optimality, but also yields most, if not all, the
previously known second order conditions. The application of our results to
specific nonlinear programming or optimal control problems is reasonably
straightforward and, consequently, was not emphasized in our treatment.
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In conclusion, we should like to point out that a number of the results in
this paper may be extended to optimization problems in linear topological spaces.
These extensions are obtained by stipulating the existence of suitable linear and
bilinear functionals to replace the gradients and Hessians used in this paper.
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ON THE ADMISSIBLE SYNTHESIS IN OPTIMAL CONTROL
THEORY AND DIFFERENTIAL GAMES*

STEFAN MIRICA,

1. Introduction. In [4] the notion of a "regular" admissible synthesis is
presented for the time optimal control problem.

In 2] Berkovitz uses a strategy inducing a "regular decomposition" of the
phase space for a class of differential games. The control problems corresponding
to the differential games considered are nonautonomous, with n-dimensional
terminal manifold in (n + 1)-dimensional (t, x)-space.

In the present paper we combine the ideas from [2] and [4] in order to define
an "admissible synthesis" for a nonautonomous control problem, with general
terminal manifold.

In the first part of this paper we study the properties of the trajectories
generated by the admissible synthesis, dual variables and the value ofthe functional
along these trajectories, using the same methods as in [2].

In the second part, we use the notions introduced in [4] (see also [5]) to
prove that the functional equation of dynamic programming and a certain form
of the maximum principle are equivalent and represent necessary and sufficient
conditions of optimality for the trajectories generated by the synthesis.

Thus, the problem of admissibility is separated from the problem of optima-
lity, and this allows us to see when and how the optimality conditions occur.

By optimal synthesis we do not mean a synthesis which is optimal with respect
to other admissible syntheses, but a synthesis generating optimal trajectories with
respect to a much wider class of admissible trajectories.

In the final section we present analogous results for a class of differential
games.

2. Statement of problem and definition of the admissible synthesis. We consider
a bounded region f R R" and a bounded region cf c R R" R. We
let U denote the projection of into Rp U is generally supposed to be a closed set.

is assumed to be open. The vector-valued (with values in R") function f(t, x, u)
and the real-valued function.f(t, x, u) defined on cg are assumed to be of class C
with respect to (x, u) and continuous in t.

The differentiable manifold oY-c of class Ctl) and of dimension k,
0 =< k =< n, will be called the terminal manifold (for k 0, ,Y- a point of

A real-valued function g of class C1) is given on if1, a subregion containing- in its interior.
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The control system is"

dx
(2.1) f(t, x, u), x(r) , (, ) c, u U.

dt

DEFINITION 2.1. The vector-valued function u(t) defined on I c prRCff with
values in U is called an admissible control corresponding to the initial point (z,
if’

(i) it is piecewise continuous in I;
(ii) the system of differential equations

dx
(2.2)

dt f(t, x, u(t) ), x()

has the solution qg(t; r, {), with qg(r; z, {) {, which remains in c and intersects --in a finite time (that is, there exists t > , so that

{(t, 0(t;

and

(t, q(t z, )) e -).

We shall call the curve {(t, q(t; z, ))[z __< __< t} an admissible trajectory of
the system (2.1) related to the initial point (z, ).

We let @’(z, ) denote the class of the admissible controls corresponding to
(z, ) and let @’ denote the class of admissible controls corresponding to all the
points of

For every admissible trajectory we define the functional

(2.3) P(r,,u) g(t,x) + f(t,o(t;r,),u(t))dt,

where x
DEFINITION 2.2. The admissible control e ’(, ) is optimal with respect to

the initial point (z, )e N if

P(z, , u) V(z, ) __< P(, , u) for any u e ’(r, ).

In what follows, the notions of "curvilinear polyhedron" and piecewise
smooth set" are those defined by Boltyanskii in [4, [5].

Let N,P, P be piecewise smooth sets, such that -c Pc P/
c p c a, and let v(t, x) be a function defined on a with values in U.

We denote ek- ,, p,+
DEFINITION 2.3 (Boltyanskii 4], [5]). The sets pk, pk+ ,... ,p,+ and the

function v(t, x) represent an admissible synthesis for the control problem if the
following requirements are fulfilled"

A. (i) The connected components of the sets P-(U-lwN),i k,
k + 1, ..., n + 1, are differentiable manifolds of class C ) of dimen-
sion i; we call them/-dimensional cells.



294 STEFAN MIRIC,,

lo

(ii) The function v(t, x) is of class C1) on every cell and can be extended
to a function of class C1) on a neighborhood of the cell.
Every cell is either of type or of type II.

(i) The (n + 1)-dimensional cells are of type I, the k-dimensional ones
of type II.

(ii) If c is an /-dimensional cell of type I, then through any point
(t, x) c, there passes a unique trajectory of the system

(2.4)
dx

f(t, x, v(t, x)
dt

with the following property:
There exists a unique (i 1)-dimensional cell I-I(c) (of type or II)

such that the trajectory starting from (t, x)e c leaves c after a finite
time and reaches 1-I(c) at a nonzero angle. (In particular, at the point
of intersection we havef(t, x, v(t, x) 4: 0.)

(iii) If c is an/-dimensional cell of type II, > k, then there is a unique
(i + 1)-dimensional cell E(c) of type so that from any point (t, x) e c,

there starts a unique trajectory of the system (2.4) reaching Z(c) and
having only one common point with c. Moreover, the function v is
of class C1) on c w E(c).

It follows that a trajectory of the system may be prolonged from cell to cell
as follows: from c to H(c) if 1-I(c) is of type I, and from c to E(l-I(c)) if 1-I(c) is of
type II.

C. (i) Every trajectory of the system (2.4) remains in aj, reaches - in a
finite time and is not tangent to -.

(ii) Every trajectory goes through a finite number of cells.
(iii) From a given point in N there need not necessarily emanate a unique

trajectory of the system (2.4). Trajectories of (2.4) starting at points
in N do not remain in N, but reach a cell of type I. The value (2.3)
is the same for all trajectories starting from the same point in N.

D. The value (2.3) along all the trajectories which fulfill the requirements A-C
is continuous in c.

As in [4], we shall call these trajectories marked trajectories and denote them
by x O(t; z, 0. Denote by tv the first moment when the trajectory reaches -,
that is, tv is a real number such that

{(t, O(t; , 0)lz =< < tF} -and XF O(tF; qT, ),(tF, XF) G’. For a marked trajectory, the value of the
functional will be

(2.5) W(z, ) g(tF, XF) + fO(t, O(t; ), v(t, (I)(t Z, ))) dr.
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Remark 2.1. It is obvious that the function fi(t) v(t, (I)(t; z, )) is an admissible
control corresponding to the initial point (z, ), and therefore the marked trajec-
tories are admissible according to Definition 2.1. That is, the set of marked trajec-
tories (generated by admissible synthesis) is included in the set of admissible
trajectories.

3. Properties of the marked trajectories. Since 1 is an (n + 1)-dimensional
cell (hence of type I), for any (z, )e el, we obtain a unique marked trajectory
x (t; z, ) starting from (z, ) and reaching - in (tF, XF).

From the definition of admissible synthesis we deduce the following proper-
ties of marked trajectories"

(a) The trajectory passes through a finite number of type I cells cl, 2, "’", eq.
(b) For any 1 __< =< q, if 1-I(ci) is of type I, then ci+ II(ei) and the tra-

jectory goes from ci directly to ci+l; if II(ci) is of type II, then ei+l E(FI(ci))
and the trajectory goes from ci to ci +1 by crossing the manifold II(ci) in a single
point. In this case, +1 and c have the same dimension. For i= q we let
n%) .

(c) Let t, 1, 2, ..., q, denote the moments at which the trajectory reaches
the cell I’I(ci), 1, 2, ..., q, tq tv, and let xi O(ti; z, ). Then (ti, Xi) I-I(ci),
i= 1, 2, ..., q, and (t, O(t; z, )) ei for ti- < < ti if FI(ei) is a cell of type II,
and (t, O(t z, )) ei for ti-1 <-_ < ti if H(ei) is of type I.

Now let I-I() be m-dimensional, k __< m _< n. Then in a neighborhood of the
point (ti, xi) 1-I(ei), the points of the manifold FI(i) are given parametrically by
the relations"

T0(0, ..., 0),
(3.1)(0

x Z0(0 0’9
where (01, 02, om) :;tim, the m-dimensional cube. Then, there exists a point
(0, ..., 0) jgm such that

fi-- T(i)(O,’",
(3.1’)(i)

Xi Z(i)(O,... One).

The functions Tti), Z(i) are of class C(1). We shall use the same notation (0) for
the parameters on every manifold I-I(c) and, for q, we denote

Ttq)(01, Ok) T(01,..., Ok),

l.(O,... 0) z(O,... 0).
The function (I)(t; z, ) defined on the interval [z, tF] is the solution of the

system"

(3.2)
dx
dt f(t, x, v(t, x) ), x(z) ,

where f(t, x, v(t, x)) is a function of class C(1) on every cell. As some of these cells
are of smaller dimension than n + 1, we cannot apply directly the theorems on
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continuity and differentiability with respect to the initial conditions for this
system.

To obtain some properties of this kind for Oft; z, ), we shall use the hypo-
thesis A (ii) from Definition 2.3 of the admissible synthesis. The function v(t, x)
can be extended to a function v(i)(t, x) of class C(1) on a neighborhood i of the
manifold c. We shall then use the systems

(3.3)(i)
dx
dt f(t, x, v((t, x) ), x() fl,

where (e, fl)e 2i.
LEMMA 3.1. (i) The points (t, xi), 1, 2,..., q, where the trajectory passes

from one cell to another, are functions of class C(1) with respect to (r, )
(ii) The function O(t z, ) is continuous with respect to on the interval [, tv]

and with respect to (, ) el. The derivatives

80 d

are continuous on every interval (ti, ti+ 1) and have one-sided limits at the
points ti.

(iii) The matrices

(3.4)(i) N() -d-(t’ 0; z, )-3-0-{00) --8-0(i)(0o) 1, 2,... q,

have maximum rank (equal to the dimension of the cell H(ci)).
(iv) The one-sided limits at the points t, 1, 2,..., q, of the derivatives

in (ii) satisfy the relations:

8
(ti 0", , ) -.f(t, xi, v(i)(ti, xi))(z,, ) + (’ ),

(3.5)()
8t(, + o. , ) -f(t,; x,, (,+l)(t,,x,))(, ) + (, ),

8x
(t o" , ) -f(t; x, v()(t; x))(z, ) + (, ),

(3.6)()

N + o; , ) -f(; x, v(+ (;x,, ) + (, ).

Proof We shall prove the statements (i)-(iii) by recurrence.
The function Oft; :, ), the solution of the system (3.2), is defined on the

interval [z, tl]. Also the system (3.2)coincides with (3.3)(1)for (t,x)eel. On the
other hand, for the system of differential equations

dx
(3.3)(1) dt

f(t, x, v(1)(t, x)), x() fl,
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we can apply the theorems on continuity and differentiability with respect to
the initial conditions (for instance, Theorem 15 from [8]) and so, we can state:
there exist rl, r2 > 0 SO that, for It 0] < rl, ! 01 < r2, ] fl] < r2, there
exists the unique solution x tl)(t; z, ) of the system (3.3)tl) with tl)(Z; z, ()
continuous with respect to the variables (t, z, ) together with the derivatives

d (()) d
-gr-(t;,)

Because of the uniqueness, the functions (D(t; z, ) and ttl)(t z, ) will coincide on
the common domain of definition for (z, ) C l. Since (I)(t; z, ) is defined on
[Z, tl], the solution @tl)(t; z, ) can be prolonged, and therefore @tl)(t; z, ) is
defined on some interval (z r.,tl + .), e > 0. Since (tl,Xl) 1-I(cl)and 1-I(el)is
n-dimensional, in a neighborhood of (t l, x 1) we have the representation

T(1)(01, on),
(3.1)(1)

X Z(1)(01, On),

and there exists (0, .., 0) so that

T(1)(0,..., 0),

x Z(1)(0,..., 0).

Since x (tl; z, ) ql)(t; z, ), we have

(3.6)1) (T(1)(0,..., 0); z, ) Zl), (0,..., 0).

or

If (z, ) ranges over a neighborhood in c l, then (01, 0") ranges over a
neighborhood of (0, , 0) in the n-dimensional cube

We shall first show that the relations (3.6)1) give 01, 0" as implicit func-
tions of class C1) in (z, ).

The functional matrix of the equations (3.6)1) is

(d_d_ cT)mNI) (T(1)(Oo) "r, )---O--,vo! --t(tl 0; z, )--0--(0o) -0--wo,

On the other hand, because of the nontangency of the trajectory (t; z, ) to
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the manifold H(cl), the vectors

1

)(1)

-(t 0;Z,)

are linearly independent; that is, the matrix

M(1)

-(t 0; ,
has the maximum rank, n + 1.

1)
-Ov(0o)

’(i)

1:),0 (0o)/
i- 1,2,...,n,

--b--(0o)
1:()
(0o)/O0

Since the rank of a matrix does not change if we apply elementary transforma-
tions, the rank of matrix Mtl) is the same as that of the matrix M11) obtained by
multiplying the first column by OT(1)/00i(0o) and adding the result to each of the
other columns"

1 0

MI1) d(I)

-(tl 0; T-, )

It is obvious that the rank of the matrix M11) is n + 1 if and only if the rank of
the matrix N(1) is n.

Hence we can apply the implicit functions theorem to the relations (3.6),)
and obtain that 0= 0(T-, ), i= 1,--., n, are C(1)-functions of (T-, ) in some
neighborhood of c 1.

It follows that the functions

(T-, ) T(1)(O(T-, ) ),

XI(T-, ) Z(1)(0I(T-, ), On(T., ))

are of class C(1) in (T-, ) on el.
To prolong the trajectory, let us consider.the two possible cases"

(a) Ifl-I(el) is of type I and e2 1-I(el) is n-dimensional, then the system (3.3)(2)
will coincide with (3.2) for 0 l, X

The solution (I)(t; 1, x ) (I)(t; T-, ) of the system

dx
f(t, x, v(t, x)), x(t 1) X

dt

will be defined on the interval (t l, t2) and will coincide with the solution
@(2)(t 1, X 1) of the system

dx
(3.3)(2) dt

f(t, x,/2(2)(/7 x)), X(tl) x1
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for t[tl,t2). As ttE)(t;tl,xl) may be prolonged further, it follows that it is
defined on (tl 6, t2 + t), t > 0, and is continuous together with its derivatives
of the first order with respect to t, tl, Xl.

Therefore we have

(t; 1, X 1) (2)(t tl, X 1) (t; z, )

for It1, t2]. In particular,

X2 (I)(t2 , ) @(2)(t2 l, X1).

Furthermore, in a neighborhood of the point (tz,X2) 1-I(c2) (I-I(c2) being an
(n 1)-dimensional differentiable manifold), the points of H(c2) are given para-
metrically by the relations

T(2)(01, 0 1),
(3.1)(2)

X Z(2)(01, O 1),
where (0, 0 )e 3ff , the (n 1)-dimensional cube.

Note. 0 in (3.1)(2)is not the same as 0 in (3.1)).
For fixed (z, ), the point (t2,x2) is perfectly determined on the manifold

1-I(c2). Hence there exists a point (0, ..., 0- ) so that

t (0o, ..., 0-’),
(3.1)2)

X2 Z(2)(0, "’", 0)-1).
As above, we shall show that the relations

(3.6)2) (T2)(01, 0"-1); tl,xl)= Z2)(01,
(3.6’)2) 2)(T2)(01, ..., O"-l);tl,x)= Z2)(01, ..., 0"-1)

define 01, ..., 0"-1 as implicit functions of class C1) with respect to
Since we have already shown that (tl, xl) is a Cl)-function of (z, ), it will follow
that 0, ..., 0 are C)-functions of (z, ).

The functional matrix of the equations (3.6’)2) is

d(2) T(2) Z(2) [q )N(2) dt (T(2)(0); tl’xl)-(00)

d(I) T(2) g(2)[--(t2 0"z, )-0--(0o) --0-wo

On the other hand, because of the nontangency of the trajectory (t; z, ) to
the manifold 1-I(c2), the matrix

1 T(2) (0o)
0

M(2)
dO Z(2)/.q
-dt-(t 0;, ) --d-o,
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has maximum rank n, and so does the matrix

i’
o

M2) d
-d(t2 o; z, ) Nt.

It follows that the rank ofmatrix Nt2) is n 1, and from the implicit functions
theorem it follows that the relations (3.6’)t2) define 01, 0"-1 as Ctl)-functions
of (t 1, x a) and therefore of (z, ).

Hence, the functions

t2(1,) 2)(01(,),..., 0n-l(,)), X2(,) Z(2)(01(,),..., 0n-l(,))

are of class C).
(b) If H(c) is a cell of type II, then c2 Z(H(c)) is of dimension n + 1 and

v(t,x) is of class C) on H(Cl) w c2. Applying the arguments of the case (a) to the
manifold H(c) w c2, we obtain the sentences (i)-(iii) of Lemma 3.1 for t 2

Continuing in this way, we obtain the proof for the whole interval [,
In particular, tq(Z, ) tv(Z ), Xq(X, ) XF(Z ) are Cta) functions of (z,
and

t ) 0
(’ ) ao’ (0o)(z, ),

/=1

(3.7)
Ot (r, )

l=0o), ),

where m is the dimension of the manifold H(c). Analogous formulas hold for
#x/Or, Ox/#.

(iv) To prove (3.5),)and (3.5%), we shall use the relations

x (t; r, ) ,(t; t_ , x_ )
(3.8)

.+ (t; t,

which we have previously obtained. For t_ < < t, 1, 2, ..., q, we have

(3.9) (t; r, ) i)(t;ti-(r,),xi-x(r,)).
Then"

( (i) ti- @(i) Xi- (,, )(t; z, ) --(t;ti-a, xi- a)--(z, ) -F ---(t;ti-a, Xi- 1)

(3.10)
@(i) Oti- (T, ) + (t Xi T--a& (t; z, ) (t; t,_l, x,_ 1) z -1, -1

For t 0, we have"

(i) 1);1() 8t_
(, ) + (t; t x (, )(t- 0;,()= (,;,-i,x,-) ... -1,

(3.)
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and similarly for the derivatives with respect to z. But (3.8) may be written

(3.12) xi(z, ) ti)(ti(z, ); ti- l(z, ),xi- (z, )).

Hence

d, ttXi (T,, ) ti Xi 1) )(ti -1, (,
(3.3)

and similarly for the derivatives with respect to z.
As @i)(t; ti- , xi- ) is the solution of the system (3.3)i), we have

(3.14) d@i)
(ti; ti- xi- ) f(ti, xi, i)(ti, x) ).

dt

Hence, according to (3.11) and (3.13), we obtain:

and similarly for O(ti 0; z, )/z.
For the right limits in ti, 1, 2, ..., q 1, we remark that for t <

< ti+ 1, 1, 2, .-., q 1, the following relations hold:

(3.15) o(t; z, ) #,+ (t; t+,x+ ),

#+= )(t- t, x)t +) x(3.6) (t; , ) (, ) + (t; t,, xi)-(z, ),

and similarly for the derivative with respect to z.

ortti + O,

ti + 1) XiO(i+(ti,ti ) + (ti,ti,xi)(,)(3.7 (t + 0; , (,
Since 0(+ (t;t, x) is the solution of the system (3.3),+ , its derivatives

are the solutions of the equations of variation with the initial conditions:

OOi+ (ti; t,xi) E, 0+ (ti; ti,xi) f(ti,xi, v(i+ (ti,xi))

respectively.
From (3.17) we have (3.5),) and (3.5’)ti), and the lemma is completely proved.
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We let

(3.18) P 0 (h,x,vto(h,x)), P + 0 (h,x,v(i+)(ti, x)).

The relations (3.5) and (3.5%) may now be written:

c3t c3x(3.19) (t, O’z, ) -f(P, O)(z, ) + (z, ),

t X
O20) tt, + 0", , ) -fei + 0)z, ) + z, ),

with analogous formulas for

(h 0"z, ),z (t + 0;z, ).

Remark 3.1. An admissible synthesis solves the controllability problem for
the system (3.2).

Remark 3.2. The examples studied in [4] satisfy the properties stated in this
section if we consider them in (t, x)-space.

Remark 3.3. The results of this section hold if the functions f(t, x, u) and
f(t, x, u) are not of class C) in , but only of class C on every cell, and may be
extended to some functions of class C) on a neighborhood of the cell. In this
case, the systems (3.3)t0 would be replaced by the systems

dx

4. Dual variables for marked trajectories. Since some of the properties we
proved, or will prove, hold only for (z, ) in cells of maximum dimension n + 1,
we let M P"w N. Then ff- M will be the union of all (n + 1)-dimensional
cells. If 2 (21, 22, ,n), we set

(4.1) vf(t, x, u, 2) f(t, x, u) + 2f(t, x, u) f(t, x, u) + 2{fJ(t, x, u),
j=l

(4.2) H(t, x, 2) f(t, x, v(t, x), 2)

for all (t, x) in i, where ci is a cell of type I and Sg is the neighborhood where the
extension v(0 is defined. Let

(4.3) H(o(t, x, 2) ’(t, x, vi(t, x), 2).

For (t, x)e Zi, the derivative

OH(i) (t, x, 2) ’ c3( c3v(i
cx -x (t, x, v(i)(t x), ) + u (t, x, v(i)(t x), )--x (t, x)

exists and we denote, for (t, x)e i,

(4.4)
H
x

OH(i)--(t, x, 2) --x(t, x, 2).
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For arbitrary 2(), 2ti+), we denote"

(4.5) Hf- (ti, xi, vi(ti, xi), 2()),
Then with the notations (3.18),

(4.6)

H{ (ti, xi, vi+ a)(ti, xi), 2-).

3(f(YI-) fO(p, O) + 2)f(P, 0),
+3f(yi[) fO(p, + O) + 2(,)f(P, + 0).

In this section we shall study the "adjoint" systems

d_2 c3U(i) (t, x, 2)
dt c3x

or

d2 33gf
(4.7%) d--/= Ox

,2)"’(t,x).(t, x, v(i)(t, x), 2) -u (t, x, v(i)(t, x) cox
For (t, x)e aj M, the system (3.3)ti) coincides with the system (3.2) and the

system (4.7),) coincides with the linear system that is adjoint to the equations of
variations of (3.2).

For (t, x) e M we shall use (3.7),) without writing subscripts (i) for the function
H(i)(t, x, 2).

LEMMA 4.1. For (z, ) ca c qJ- M, there exists a nonzero vector-valued
function 2(t;z, ) (2a(t;z, Q,..., 2"(t;z, )) defined on the interval [z, tF] SO

that on every interval (ti-a, ti), it is a solution ofthe system

d2 0H(t, O(t; z, ), 2), 2(ti) 2(), 1, 2, q,(4"8)(0 dt cox
where the 2t) are given by the relations:

(4.9)
j 1,2,...,k,

(n,-)-$0;(0)- .(Oo)= (n)(0o)-
(4.10)

j= 1,2, m,

where 2) 2v, P 0 Pv,2) 2(t + 0;, ),i 1,2, ..., q 1.

Proof The algebraic linear system (4.9) has k equations for 2,..., 2
(n unknowns). The coefficient matrix

(4.11)
c3T cZNv N(q) f(Pv)-(Oo) -do(Oo)

OT OZ
’ )o (Oo) (Oo)
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has rank k according to Lemma 3.1. Then the system (4.9) has infinitely many
solutions which depend, generally, on n k parameters. When (z, ) ranges over
a neighborhood in cl, 0 0(z, ) is a function of class C(2). Since all functions in
(4.9) are continuous in (, ), we can choose 2F 2F(Z, ) as a continuous function
of (, ) e .

Then the system of linear differential equations

d2 OH
(t, o(t;-, O, ), (t,)

dt c3x

which we can write

d2 8.0f
dt 8x

--(t, o(t; , O, vcdt, o(t; , 0), ;)

--(t, (t-:, O, v.)(t, o(t; :, O, )(t, (t; :, 0))

has the solution 2 2(t; tF,2F) with 2(tF; tF,)F)--" )F defined on the interval
(tq_ 2, tF]. We set

,(t; z, ) 2(t;tr(, ), 2r(z, )).

If 2(_ ) 2(t_ + 0; , O, then the vector 2_ a) is the solution of the linear
algebraic system

0)8q 1)(0o) + 2 1)[f(pq__ 0)0q 1)(Oo)_O(q 1)(0o)]fO(pq_
80 0 O0

(4.12)

fO(p_, + 0)0-,)(0o) + 2_,) f(P_x + aO (0o) (0o)
0 0

j= 1,2,..-,ma_.
The coefficient matrix

f(P(,- 2 O)
8Tq_ 2 (0o)N(_ 1) 80

has rank equal to the dimension m_ of Fl(c_ x). Therefore, the solution 2_ 2)

of the system (4.12) depends generally on n m(q_ 2) arbitrary constants.
The linear system

d2 8H
(t, O(t; , O, 2), 2(t_ x) 2_ 1),

dt 8x
has the solution

2(t; , ) ),(t; tq_ 2(, ), 2-1)(, ))

defined on (t-2, t_2). Continuing in the same way, we obtain the function
2(t; , ) defined on the whole interval [, tF] with the properties from the statement.
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Remark 4.1. If k n as in the case considered in [2], 2(t; z, ) is uniquely
determined.

5. The value of the functional for marked trajectories. According to 2
and 3, the value of the functional for the marked trajectory x q)(t; z, ) is

where

to(, ) , ta(z, ) tF(, ).

We can write this as

w(, ) g (t(, ), x(z, )
(5.2)

+ f(t, (I)(t ", ), V(i)(t, (I)(t ", )))dt,
i= t- t(,)

since, for ti_ < ti vi)(t, (t , ) v(t, (t z, ) ).
It is obvious, from Lemma 3.1, that W(z, ) is a function of class C) in

(, ) on m.
We shall now prove the following lemma.
LEMM 5.1. For any (z, ) M, we have

#W
(5.3) e (, ) 2(; , ),

8W
(5.4) (, ) fo(:, , v(t, )) 2(:; z, )f(z, , v(z, )).

Proof We set

fii) f(t, q)(t; "c, ), v(i)(t, (t; "c, ))), j =0,1,2,... ,n,

(i) v(i)(t, q)(t ", )).

From (5.2) we obtain"

(5.5)
q-

0 OtZ fo(p, + )--(T,, )i=l

Ou Ox ]-b- (t; ’ ) dt.
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From systems (4.8)(o, we obtain

d2 o fi
(5.6)(o

c3f(i) J(t; z, )++u
On the other hand, according to Lemma 3.1,

+ u j(t;vq z, ) vq[f(t’ (t; z, Ovti)(t, (t; r,x

Therefore,

d2 c30(t" z, 0 2
d (c30at --ft ---(t;z, )

We now have

for 2, 3, ..-, q, and

-(t; z, Odt 2(z; z, O--(z; z, ) 2t])-(t O; z, )
cg cg c

for 1.
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From (5.5), we have

’ ) Ti’xT(t’ ) + ’ x)--. , )

+ ,+--(, ) + ( ;,)(;, ).

From (4.9), (4.10)(o and

0 (, o, 0-,o,(, ) -(, ),

we obtain

OtF Og 63Xf--(tr, xv)---(, ) + x(tV, xv)--(z, )

and

cOt OX t
(n?)-(, ) (, ) (n?)-(, ) (,+ (, O,

i= 1,2,...,q-- 1.

Since

(; , ) E,

it follows that

8W
(, ) (; r, ).

Formula (5.4) is obtained in the same way.
Remark 5.1. We note that at every stage we have a great liberty in choosing

the conditions that define 2(t; z, ). Nevertheless, for (z, ) in a M, the value
2(z; r, ) is uniquely determined. This fact is in some sense "dual" to the property
of the trajectories (I)(t; , ) which start from different points in ff M and reach
the same terminal point in Y-.
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6. Necessary and sufficient conditions for optimality in the form of the dynamic
programming equation. Lemmas 6.1-6.4 can be proved as in [4] or 5.

LEMMA 6.1. (i) Let V(t, x) be a real-valued function defined and continuous in
c, satisfying thefollowing" V(t, x) g(t, x)for (t, x) - Vis ofclass Cx) in q M,
where M is an arbitrary set and such that, for (t, x) ( M, the inequality

V
(6.1)

c3V
(t, x) + (t, x)f(t, x, u) + f(t, x, u) > 0--f x

holdsfor all u U.
(ii) Let u(t) be an admissible control corresponding to (z, )6 such that the

corresponding trajectory x p(t; z, ) intersets M in a finite number ofpoints.
Then

P(, , u) >= V(, ).

LEMMA 6.2. Let condition (i) of Lemma 6.1 hold, and let u(t) be an admissible
control corresponding to (, ) such that the trajectory x p(t; , ) reaches -- in
(t,, o(t, , )).

Then in every neighborhood of (, ), there exists a point (to, Xo) such that the
solution of the system

dx
f(t, x, u(t)), X(to) Xodt

remains in c5, intersects M in a finite number of points, is defined on [-to, t] and is
such that

n(, , u) >= V(v, ).

LEMMA 6.3. IfM is a piecewise smooth set of dimension rn <= n in ( and u(t) is
an admissible control corresponding to (, ), then the second condition ofLemma 6.2
holds.

LMMA 6.4. If M is a piecewise smooth set in c5 of dimension rn <= n, V(t, x)
satisfies (i) ofLemma 6.1 and u(t) is an admissible control corresponding to (, ) (,
ther

P(, , u) >= V(, ).

We can now prove the following theorem.
THEOREM 6.1. If the value W(v, ) of the functional corresponding to marked

trajectories satisfies the inequality

WOW(z,) + ( )f(z u)+ fo(z u)> 0

for all u U andfor every (t, x) M, then the marked trajectories are optimal.
Proof The set M P"w N is (by hypothesis) an n-dimensional piecewise

smooth set and W(v, ) satisfies the condition (i) from Lemma 6.1. Applying Lemma
6.4, it is obvious that for any admissible control u(t) related to (v, ) aj we have
V(, , u) W(:, ). Since for the marked trajectories, V(, , ) W(, ), the
theorem is proved.
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THEOREM 6.2. Ifthe marked trajectories are optimal, thenfor every (z, ) (q M
andfor every u U, we have

(6.2)
8W

(’c, ) + -;-(z, )f(z, , u) + f(z, , u) >--_ O.

Proof The proof will be the same as that given in [2] for the corresponding
result.

Let (z, )e aj M and let Uo e U be arbitrary. From the existence theorem it
follows that there exist a number r > 0 and the unique solution x (t) of the
system

(6.3)
dx

f(t, x, Uo), x(z) ,
dt

defined on It z I< r with 9(z) .
Since M contains no interior points, ff- M is open, and there exists a

neighborhood Vo of (, )included in ( M. Let Vo{(t, x)l [(t, x) (, )[ < e < r}.
On the other hand, O(t) is continuous at z. Hence for e > 0, there exists a
6 > 0 such that [(t) (z)[ < e for It z[ < 8.

Let 6 < e. Then for z =< __< z + 6 we have (t,(t)) V0, with Vo cff M.
For every admissible control u(t) corresponding to ( + 6, q(z, 6)), we have

(6.4) W(z + 5, O(z + 6)) <_ P(z + 5, (z + 5),u)

since the marked trajectories are optimal.
On the other hand, the function

fUo if z+b,
(t)

u(t) if t>z+6

is an admissible control related to (z, ) according to Definition 2.1. It follows that

(6.5) W(,

where

P(z, , ) g(tl, x 1) + f(t, (t), Uo) dt

+ f(t, q(t), u(t)) dt.

Ifinstead ofx (t) we take the marked trajectory startingat (z + 6, @(z + 6))
(that is, instead of u(t) we take (t) v(t, (I)(t; z + , @(z + 6)), we have"

W(z + b, ( + b)) g(tv, xv) + f(t, ;z + 6, ( + 6)), O(t)) dt.
,+
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Hence (6.5) becomes

(6.6) W(z, ) =< W( + , 0( + )) + f(t, O(t), uo)dt

or

W(z + 6, h(z + 6))- W(z, ) + f(t, d/(t), Uo) dt >= O.

Multiplying by 1/6, 6 > 0, and using

lim
w( + ,( + ) w(, ) w w )()(, )+

W(W
(z, ) + ()f(z, , Uo)

and

irn f(t, O(t), Uo) dt fo(r, (), Uo) fo(r, , Uo),

we obtain the inequality in the statement.
Remark 6.1. Theorems 6.1 and 6.2 show that a necessary and sufficient

condition for an admissible synthesis to be optimal is that the corresponding
W(3, ) satisfy the dynamic programming equation

3
--(z, ) + min (3, ).f(3, , u) + fo(z, , u) 0

uU

for every (3, ) ff M.

7. Necessary and sufficient conditions for opthnality in the form ofthe maximum
principle.

THEOREM 7.1. lffor every (z, ) c andfor every u e U, thefollowing inequality
holds"

(7.1)

then the marked trajectories are optimal.
Proof Inequality (7.1) may be written

(7.2)
fo(, , v(3, )) + 2(3; 3, )f(3, , v(3, ))

=< f(3, , u) + 2(3;3, )f(z, , u).

Using (5.3) and (5.4) we obtain, for (, ) (# M,

c3W
---(, ) =< f(3, , u) + --;-(z, )f(3, , u)
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or

OW(z, ) + (z, )f(z, g, u) + fo(z, , u) > 0

for every u U.
The conditions of Theorem 6.1 are verified" hence the marked trajectories are

optimal.
Remark 7.1. It is obvious that for the optimality of the marked trajectories it

is sufficient that (7.1) hold only for (z, ) M and not for every (:,
THEOREM 7.2. If the marked trajectories are optimal, then Jbr every

c. M, the inequality (7.1) holds.
Proof Indeed, in this case, Theorem 6.2 states that W(z, () satisfies the ine-

quality

W3W
(’c, ) + (’c, )f(’r, , u) + f(z, , u) > 0

for every u in U and every (z, .) in c M. Using (5.3) and (5.4) we obtain (7.1).
Remark 7.2. Theorems 7.1 and 7.2 show that a necessary and sufficient con-

dition for an admissible synthesis to be optimal is that the function #(t, x, u, 2)
satisfy the following"

(7.3) min (z, , u, 20: z, )) oct(r, , v(z, ), 2(z z, ))
uU

for every (z, .) .c, M.
To show that this relation together with (3.2), (4.8)-(4.10) represents a special

form of the maximum principle and transversality conditions, we note the follow-
ing"

(a) If z _<__ < tF is such that (t, (t;’c, )) (ff m and if x @(t’z, ),
then we have 2(t; t, x) 2(t; z, ) (see Remark 5.1) and

#W
(t, x) ,(t; t, x) (t; , ).cx

Hence, for such points (t, x), (7.3) may be written

(7.4) min :f(t, I)(t; r, ), u, 2(t; :, )) ovf(t, (t; z, ), v(t, I)(t; z, ))).
uU

(b) See [10]. If(7.1)(and hence 7.4))is fulfilled and U has a piecewise smooth
boundary, then on every interval (ti--1,ti) such that c ff- M the system
(4.8) becomes

(7.5)
dt

since

(7.6)
U

(t; O(ti, z, ), v(t, O(t; z, )), ))

---(t, (t; , ), v(t, (t; r, )), ,(t; -, ))(t, ,(t; , )) o.
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Indeed, if the minimum in (7.4) is obtained for v(t, O(t; z, ))e int U, then
(2/f(.)/(?u 0. If v(t, (I)(t; :, )) lies on a smooth region of the boundary of U,
then &X(. )/cu is normal to the boundary of U. That is, (. )/Ou is normal to
the vectors Or(t, (t; , ))/?x, 1, 2,... n. Hence

v
(-))-(.) 0, 1,2,.-., n.

If v(t, O(t; , )) lies in a corner or on an edge of the boundary of U, then (7.6)
holds by continuity.

On the intervals (t_ , h) for which c M, we cannot state (7.4) and (7.5).
Hence (3.2), (7.4), (7.5) represent a special form of the maximum principle.

If we let 2 -(fo(pe) + 2f(P)) and suppose g(t, x) O, then the rela-
tions (4.9) are the transversality conditions as they are formulated in [4] and [5]
in geometrical language.

8. Admissible synthesis for a class of differential games. We consider the
following differential games problem"

Let ff R R", and let R R" R’ R be a bounded region such
that P R,rg. Let Y- Pr and let Z P; the sets Y and Z will be,
generally, closed regions.

The vector-valued functionf(t, x, y, z) and the real-valued functionf(t, x, y, z)
defined on rg are of class C(1) with respect to (x, y, z) and are continuous with
respect to t.

A k-dimensional differentiable manifold - of class Ctl) is given and is
called the terminal manifold.

In a neighborhood ffl of -there is given a real-valued function g(t, x) of
class C(1) which will be called terminal payoff.

The state x(t) of the game is determined by the system

dx
(8.1)

dt
f(t,x,y,z), x(z) , (z,)e, ye Y, zeZ.

In the following we use the terminology proposed in [10].
DEFNVON 8.1. The functions y(t) and z(t) defined and piecewise continuous

on I p,a with ranges in Y and Z, respectively, will be called admissible strategies
with respect to the initial point (, ) if the solution x qo(t; , ) of the system

(8.2)
dx

f(t, x, y(t), z(t) ), x(z)
dt

remains in N and reaches - in a finite time.
Let t > be a real number such that, if x q0(t z, {), then (t, x)e

and
{(t, (p(t;z, ))lz =< < l} r -.

The trajectory x q(t; :, ) will be called an admissible trajectory of the
game.
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For every admissible strategy (trajectory) we may define the payoff of the
game:

(8.3) P(’c, , y, z) g(t,, x,) + f(t, q)(t; , ), y(t), z(t)) dt.

DEFINITION 8.2. The admissible strategy with respect to (:, ), 07(t), _(t)) is
called optimal, if for all admissible strategies (y(t), (t)), (i9(t), z(t)) (with respect to
(, )) the following inequalities are satisfied:

(8.4) P(, , )7, z) =< P(v, , if, ) =< P(z, , y, ).

DEFINITION 8.3. The piecewise smooth sets N c , pk -- pk+ ...
c P" P’+x ff and the pair of functions (y(t,x), z(t, x)) defined on with
values in Y Z represent an admissible synthesis for the defined differential game
if the conditions A--D of Definition 2.3 are satisfied when the system (2.4) is
replaced by the system

(8.5)
dx

f(t, x, y(t, x), z(t, x) ).
dt

The trajectories x (t; z, ) generated by such admissible syntheses are also
called marked trajectories.

It is obvious that all statements of 3- 5 hold for this problem (see also
[2]).

Concerning the optimality conditions for marked trajectories, we prove the
following theorem.

THEOREM 8.1. If W(, ) is the payoff of the game corresponding to the marked
trajectory x (I)(t :, ), then the trajectory x <I)(t z, ) is optimal if and only if

(8.6)

cW(z, ) + min max (, )f(z, , y, z) + f(z, , y, z)
T y zZ

cW
(r, ) + max min (r, )f(r, , y, z) + f(r, , y, z)

zZ y Y

for every (z, ) M.
Proof. We let, as before, y(t)= y(t, @(t;z, )), (t)= z(t, @(t; z, )). For the

control problem with differential equations

(8.7)
dx
dt f(t, x, y, z(t, x)), x(z) , y e Y,

the sets N, P", ..., P"+ and the function y(t, x) represent an admissible synthesis
according to Definition 2.3 since the function F(t, x, y) f(t, x, y, z(t, x) satisfies
the condition of Remark 3.3.

The marked trajectories of this problem are also the functions (t; , ) and
the value of the functional is W(z, ). Moreover, W(z, ) satisfies the dynamic
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programming equation"

(8.8) z(z’)+min[(z’)f(’r’’Y’Z(Z’))+f(’r’’Y’Z(Z’)=O’yr
Indeed, (5.3) and (5.4) may now be written in the form

(8.9) (z, ) + -(z, )f(z, , y(z, ), z(z, ) + f(z, , y(z, ), z(z, ) O.

From (8.6) and (8.9), we have

min max (r, )f(, , y, z) + fo(, , y, z)
yg zZ

(r, tf(, , y(, t, z(, II + fo(, , (, t, z(, tt

(r, .
Hence (see [7, Theorem 1.5]),

min (z, )f(’c, , y, z(z, ) + f(z, , y, z(z, )
yeY

max ()f(z, , y(’c, ) z) + f(z, , y(z, ) z),
cW

--(, )

for (, ) aj M.
Equation (8.8) now follows from (8.10).
Since the control problem (8.7) satisfies the requirements of Theorem 6.1, it

follows that for every pair (y(t), z(t)) which is admissible with respect to (z, ),
we have

P(z, , y, .) P(z, , , Y.) W(z, ).

(The marked trajectories x tI)(t; z, ) are optimal for the control system (8.7).)
The same arguments, applied to the control system

(8.7’)
dx

f(t, x, y(t, x), z), x(z)
dt

show that the following inequality holds for every admissible strategy (y(t), z(t))"

(8.11’) P(z, , .9, z) W(z, ).
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From (8.11) and (8.11’) we have that

P(’, , y, 2) __< W(z, ) -< P(z, , .9, z).

We suppose now that the marked trajectories are optimal (hence, the admissible
strategy (.9(t), (t)) is optimal).

In this case, the trajectories x O(t; z, ) are optimal for the control problems
(8.7) and (8.7’). Applying Theorem 6.2 we obtain for every (z, ) aj M

OW
(r, ) + max (, )f(:, , y(:, ), z) + if(r, , y(r, ), z 0

zZ

and

c3W(, )+ minlC3(,)f(,,y,z(,))+fo(,,y,z(z.,) O.
( y Y

Remark 8.1. The sufficiency part of Theorem 8.1 may be proved directly by
means of results analogous to Lemmas 6.1-6.4.

Similarly, the necessity part of this theorem may be proved directly proceeding
as in Theorem 6.2. Such a direct proof is given in [2].

THEOREM 8.2. Let (t, x, y, z, 2) f(t, x, y, z) + 2f(t, x, y, z) and let the func-
tion 2(t; , ) be defined as in 4. Then the relation

min max .)f(, , y, z, 2( , ))
y Y zZ

max min (, , y, z, 2(; , ))
zZ yY

for every (, ) ( M is a necessary and sufficient condition for optimality of
marked trajectories.

Proof From (5.3) and (5.4) it follows that the requirements of Theorem 8.2
are fulfilled. Moreover, if Y and Z have piecewise smooth boundaries, Remark 7.2
holds also for differential games.
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OPTIMUM CONTROL OF NON-GAUSSIAN LINEAR STOCHASTIC
SYSTEMS WITH INACCESSIBLE STATE VARIABLES*

JAMES G. ROOT"

Summary. This article presents a new result in the optimum control of linear systems with respect
to a quadratic performance criterion. It is assumed that the system is subject to additive random
disturbance and that some state variables cannot be measured or can only be measured with additive
noise. It is well known that when the disturbances and noise are Gaussian random variables, the
optimum controller is a certain linear function of the mean of the posteriori distribution of state
variables. It is shown here that this result holds without qualification.

1. Introduction. It is often the case in linear models that full information
concerning the state of the system is not available to the decision maker. Rather
than observing the state x(t) at each epoch t, he observes a vector y(t) that contains
partial information concerning the state of the system. He must then base his
control u(t) upon partial information. A popular model for decision processes of
this type is given by the matrix equations

(la)

(lb)

x(t + 1)= A(t)x(t) + B(t)u(t) + d(t)

y(t) C(t)x(t)

fort=0,1,...,T- 1,

fort 0,1, ..., T,

where x(t) and d(t) are m vectors, u(t) is a q x 1 vector, y(t) is an r x 1 vector
with r __< m, the matrices A(t), B(t) and C(t) are of appropriate dimensions and
C(t) is of rank r. We shall also assume, without loss of generality, that C(t) consists
of the first r rows of the m m identity matrix. To require r _< m and C(t) to
be of rank r would clearly result in no loss of generality. That no loss results
from requiring C(t) to be of such a simple form will be shown in 2. The vector
d(t) represents an independent random disturbance. We assume the probability
distributions old(0), d(1),. , d(T 1)are known and E(d(t)) O.

To start the decision process, x(0) is chosen randomly according to a known
probability distribution with mean zero. For > 0, x(t) is not deterministic, owing
to the random disturbances. The control u(t) must be based upon the observables,
which are the history of observations, y(t), y(t- 1),..., y(0), and the history
of decisions, u(t 1), u(t 2), ..., u(0). All of this information can be summarized
in a conditional probability distribution over the state space--this distribution
then being updated from epoch to epoch.

Received by the editors May 16, 1968, and in revised form February 7, 1969.

" System Sciences Department, The RAND Corporation, Santa Monica, California 90406. This
research was supported in part by the National Bureau of Standards and in part by the United States
Air Force under Project RAND.

That is, d(t) and d(t’) are independent if 4: t’. However, di(t) and dr(t may be dependent.
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To complete the specification of the model we select a quadratic performance
criterion for the system, namely, to minimize

(2) I=E(x(t)’Z(t)x(t)+u(t)’Q(t)u(t)),
where Z(t) is a symmetric nonnegative matrix and Q(t) is a symmetric positive
definite matrix.

The model simplifies in an essential manner if C(t) is square, since then
y(t) x(t). It is widely known (see, for example, [1]) that in this case the optimum
control u(t) is given by the relation

(3) u(t) M(t)x(t),

where M(t) is a q x m matrix that can be computed recursively. The important
fact here, of course, is that the optimum control is also linear in the state variables.

Returning to our case in which only partial information is available about
the state variable x(t) (i.e., when C(t) is not square), let (t), a function of the
observables, bethe mean of the posteriori distribution of x(t); i.e., 2

(4) if(t) E[x(t)[y(t), y(t 1), ..., y(0), u(t 1), u(t 2), ..., u(0)].
It has been shown (see [2] and [3]) that the optimum control u(t) is still ofthe simple
form

(5) u(t) M(t)(t)

when the d(t) are Gaussian distributed. Our contribution is to show that without
the qualification optimum control is still given by (5).

The proof of this observation occupies 3. In 2, we pause to translate another
popular model into the form given by (1) and (2) and to prove our assertion that
no generality is lost by assuming the simple form for C(t).

2. Translation of linear models to standard form. The problem described by
(1) and (2) is general enough to include in its scope a number of other problems
which at first glance may seem more general. We give an important example (see
also [2] and [4]) which indicates the translation procedure and as a by-product
substantiates our assertion about the form of C(t).

Suppose (la) is given by

(6) y(t) C l(t)x(t) + s(t) fort 0, 1,..., T,

where y(t) is an r vector, where r may be greater than m, Ca(t) is an r m
matrix with no other restrictions and the measurement errors, s(t), O, 1, ..., .T,
are independent3 random r vectors with E(s(t)) 0. Suppose also there is a
sequence {r(t)}, r(t) 4: O, of reference vectors which, without loss of generality,

The conditioning here on the u(i), < t, can be interpreted literally or as indicating that the
expectation is to be computed under the assumption that control functions u(i), 0, 1, , 1, were
used at epochs 0 through 1.

Letting v(t)’ (s(t + 1)’, d(t)’), we only require that the variables s(0), d(T) and v(t), O, 1,
T- 1, be independent.
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we may suppose are generated by the recursion formula

(7) r(t + 1) R(t)r(t),

where R(t) is a square matrix. Also, suppose the criterion is given by either

(8) I’ E ((x()- r(t))’Z(t)(x(t)- r(t))+ u(t)’Q(t)u(t))

(r(t) is taken to be an m x vector in (8)) or

(9) I" E 2 ((y(t)- r(t))’Z(t)(y(t)- r(t))+ u(t)’Q(t)u(t))
t=O

(r(t) is taken to be an r x vector in (9)). We shall show that, in fact, the problem
defined by (la), (6), (7) and (8) or (9) can be put in the form of(l) and (2).

We define
r(t) R(t) 0 0 0

g(t)= s(t) F(t)= 0 0 0 H(t)= 0

x(t) 0 0 A(t) S(t)
(10)

0

e(t) s(t + 1) C2(t)
I Cl(t

d(t)
where the O’s and I’s represent zero matrices and identity matrices of appropriate
dimensions. Then (la), (6) and (7) may now be rewritten as

(lla) g(t + 1)= F(t)g(t) + H(t)u(t) + e(t),

(llb) y(t) C2(t)g(t),

where C2(t) is of full rank.
In the case of (8) we have

-1

(x(t)- r(t))’Z(t)(x(t)- r(t))-- g(t)’ 0 Z(t)(-I, O, I)g(t)

I
(12)

g(t)’O(t)g(t),

where O(t) is a nonnegative symmetric matrix, and for (9) we have

(y(t) r(t))’Z(t)(y(t) r(t)) (C,(t)x(t) + s(t) r(t))’Z(t)(C(t)x(t) + s(t) r(t))

(1.3) Z(t)(- I, I, C(t))g(t)

g(t)’ch(t)g(t),
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where 0(t) is a nonnegative symmetric matrix. The translation is complete except
that C2(t is not of the simple form of C(t) in (lb).

To finish the translation, let C3(t) be a matrix such that (C2(t)’, C3(t)’) C4(t)’
is nonsingular. Let w(t) C4(t)g(t). Then (11) and (8)(or (9)) become

(14a)

(14b)

and

w(t + 1)= C(t + 1)F(t)C4(t)-lw(t) + C4(t + 1)H(t)u(t) + C,(t + 1)e(t),

y(t) C2(t)g4(t)-1W(t)

(15) I E (w(t)’C(t)- ’O(t)C4(t)- w(t) + u(t)’Q(t)u(t))

which is of the form of (1) and (2).

3. Derivation of the optimum controller. We begin the proof with some
preliminary definitions and calculations which will be used later. It will be con-
venient to let xl(t) be the first r components of x(t) which are observable and x2(t)
be the last m r components of x(t) which are not observable and rewrite (1) as

(16a) Xl(/ --I- 1)-- A(t)Xl(t + Alz(t)xz(t) + Bx(t)u(t) + d(t),

(16b) x:z(t -k- 1)= Az1(t)x(t -+- Azz(t)Xz(t "k- Bz(t)u(t) -k- dz(t),

where (d(t)’, dz(t)’)= d(t)’ and y(t)= x(t).
The state (ofknowledge) of the system described by (16) at epoch is completely

described by the couple (a, U), where x l(t) a and U is the conditional distribution
of x2(t) given xl(0), xl(1), ,x(t) and u(0), u(1), ..., u(t 1). We assume the
distribution functions of d(t) and x(0) admit ordinary densities and have finite
covariance matrices. This assumption implies F admits an ordinary density and
has finite covariance matrix V(U) {vij(Ft)} and mean vector m(t).

For any vector b let F(x) Ft(x b). Then V(U) V(F) for any b. Also
let

H’(,Ft, a,u) Pr[x(t + 1)< [xz(t)’U,x(t)= a,u(t)= u]

Pr[Axz(t)Xz(t) + d(t) <= A(t)a- B(t)UlXz(t)’U,x(t)= a,

u(t) ul
(17)

Pr[Alz(t)xe(t) + d(t) <= A(t)a + Az(t)b B(t)ulxz(t)’F,

x(t) a, u(t)= u] (for any b)

H*’[- A(t)a + Az(t)b- B(t)u, F],

4 If we are in state (a, F’), then (t)’ (a’, m(t)’).
The notation y’F means the distribution function of y is F. If F is a distribution function with

an ordinary density, we shall designate the density function with the symbol f
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(18)

(19)

and

Gt(,F’,a,u) Pr[x(t + 1) _<_ lx2(t)’U,x,(t)= a,u(t)= u]

Pr x2(t) + d(t) <= l_t_la- (t)"
A22(t)] 2

X l(t a, u(t)= u J
Pr X2(t + d(t) < + b a- B(t)u

A22(t) A22(t) A21(t)]

X2(t)’Ftb, X(t)= a, u(t)= u]
a*t , + b a- B(t)u, F

A22(t)] A2 l(t)

Jt(,e,c,U,a,u) Pr[x2(t + 1) + e =< ]x2(t)’U,xl(t)= a,u(t)= u,

Xl(t + 1)= c]

g,t + b a B(t)u, Ftb
x e A22(t)] A21(t)!

dx
h’tic A 11(t)a + A 12(t)b Bl(t)u, Ftb]

(for any b)

jt(, A22(t)b A21(t)a B2(t)u C, U, a, u)
(20)

Kt(, c + A12(t)b- A11(t)a- Bl(t)u, Ftb).

Our proof will be inductive and use a dynamic programming argument. We
assume that the minimum expected loss from epoch n + 1 to T starting in state
(a, F" + 1) at epoch n + is

(21) R,+ l(a F+ 1) (a’, m(n + 1)’)L(n + 1)(a’, m(n + 1)’)’

+ dn+ l(Fn+ l),

where b"+ (F"+ 1) 95.+ l(F,+ 1) for any b and F"+ 1; and L(n + 1) {l(n + 1)}
is a nonnegative m m symmetric matrix.

We have

(22) Rr(a, FT) z,+d+(T)v,)(FT) + (a’, m(T)’)Z(T)(a’, re(T)’)’
i,j<_m-r

which is of the form of (21), since vij(Fr) vij(Ub) for any b.
We now express R"(c, F") as

(23)
R"(c, F") minu {i,j<_m_r zi+d+r(n)vij(F") + (c’, m(n)’)Z(n)(c’, m(n)’)’

+ u’Q(n)u + E[R"+ l(a, V"+
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where F"+ 1(. jn(., 0, a, F", c, u) and the expectation is taken with respect to
H"(., F", c, u).

Since b"+ I(F"+ 1) b"+ I(F+ 1) for any e, by using (20) the expectation of the
last term in (21) can be written as

(24)
E[.+ l(s,(., 0, a, F", , u))]

E[b"+ I(K"(., a + Alz(n)b All(n)c Bl(n)u,F,))]

for any b. Making the change of variable x a + A12(n)b A ll(n)c Bl(n)u,
we can express (24) as

(25) f dp"+ I(K"( x, F,))h*’(x, FT, dx

where for ariy b, O"(F") O"(F’).
Noting that E(x2) --(E(x))2 + E[(x- E(x))2], we may write the first term

of (21) as

(26)
(li+r,s+r(n + 1))vis(F"+ 1)

i,j<=m-r

+ E(x(n + 1)’L(n + 1)x(n + 1)lxz(n + 1)’f"+ 1,xl(n + 1) a).

Since E(vij(F"+ 1)lx2(n)’F,,xl(n)= c, u(n)= u) is independent of constants c, u
or b, the expected value of the first term in (26) may be written as D"(F"), where
D"(F") D"(F) for any b.

For the expected value of the second term in (26) we have

(27)

E[E(x(n + 1)’L(n + 1)x(n + 1)lxz(n + 1)’F"+ 1,xl(n + i)= a)l

x2(n)" F", x l(n) c, u(n) u]

E[x(n + 1)’L(n + 1)x(n +. 1)[xz(n)’F", x(n) c, u(n) u] (footnote 6)

E[(A(n)x(n) + B(n)u + d(n))’L(n + 1)(A(n)x(n) + B(n)u + d(n))]

E[x(n)’(a(n)’L(n + 1)A(n))x(n) + x(n)’(A(n)’L(n + 1)B(n))u

+ u’(B(n)’L(n + 1)A(n))x(n)+ u’(B(n)’L(n + 1)B(n))u

+ d(n)’L(n + 1)d(n)]

si+r,j+r(n)vi(F") + (c’, m(n)’)S(n)(c’, m(n)’)’
i,j<-m-r

+ (c’,m(n)’)J(n)’u + u’J(n)(e’,m(n)’)’ + u’K(n)u

+ E(d(n)’L(n + 1)d(n)),

where S(n)= A(n)’L(n + 1)A(n), J(n)= B(n)’L(n + 1)A(n) and K(n)= B(n)’L(n
+ 1)B(n) and S(n) and K(n) are nonnegative.

In the following equations the conditioning is not stated but should be understood as indicated
here.
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Using the preceding results we may express (23) as

R"(c, F") min { i,j<_m--r
[zi+r,j+r(n) + si+r,j+(n)]vij(F")

+ (c’, m(n)’)(Z(n) + S(n))(c’, m(n)’)’
(28)

+ (c’, m(n)’)J(n)’u + u’J(n)(c’, rn(n)’)’

+ u’(K(n)+ Q(n))u + E(d(n)’L(n + 1)d(n))

+ O"(F")+

Since (K(n) + Q(n)) is symmetric, the derivative of the function in the brackets
on the right side of (28) is

(29) d{.} 2(K(n)+ Q(n))u + 2J(n)(c’, m(n)’)’.
du

Since Q(n) is positive definite, so is (K(n) + Q(n)), and we find the optimum
control function is

u(n) (K(n) / Q(n))- J(n)(c’, m(n)’)’.(30)

By letting

"(F") [zi+,,j+(n) + si+,j+r(n)]vij(F")
(31)

i,j<_m-r

+ E(d’(n)L(n + 1)d(n)) + O"(F") + D"(F")

and substituting u(n) into (28), it may be verified that R"(c, F) is of the form of
(21), and thus the proof is completed.
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OPTIMAL CONTROL OF PROCESSES DESCRIBED BY
INTEGRAL EQUATIONS. I*

V. R. VINOKUROV’

1. Let us assume that the behavior of a plant is described in n-dimensional
Euclidean space, E., by the system of equations

(1.1) x(t) f(t) + K(t, x(s), u(s), s) ds,

which is regular in a neighborhood of each of its boundary points. That is, we
column vector. The vector function u(t), with values in E, will be called a control.

The allowable controls will be assumed to lie in a certain closed region U
which is regular in a neighborhood of each of its boundary points. That is, we
assume that for every boundary point u of U, it is possible to find continuously
differentiable functions

(1.2) qi(u), i= 1,2,3,.--,k,

such that in a neighborhood of u l, U is described by qi(u) <= O, with qi(u) O,
1, 2, ..., k (see [1]). In the case that ux lies inside U, we take k 0 in (1.2). As

the class of allowable controls, we take the set of all piecewise continuous and
piecewise smooth vector functions u(t) on the segment [0, T] having values in U at
every instant. At points of discontinuity, we take u(t) u(t 0). The solution of
(1.1) for a given u(t) will be called the trajectory corresponding to the given control
u(t).

Let us assign a region B in the space E,, containing the pointf(0) and having
a smooth boundary. This region is defined near the boundary by the inequality
q(x) =< 0, where the scalar function (x) is twice continuously differentiable near
the boundary b(x) 0, and

grad (x)
8x

vanishes nowhere on the boundary. Let there also be assigned functionals

(1.3) Io(x, u) Ktm(x(s), u(s), s) ds,

(1.4) I(x, u) K("+(x(s), u(s), s) ds + (x(T)), j 1,2, I.

Originally published in Izv. Vyssh. Uchebn. Zaved. Matematika, 1967, no. 7, pp. 21-33, Sub-
mitted for publication on April 28, 1966. This translation into English has been prepared by R. N. and
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Let us finally assume that for 0 _<_ s =< __< T, x e B, u e U,

fti)(t)
df(i)(t) KCJ)(t, x, u s)

(KCJ)(t, x, u, s)
dt

c3KJ)(t, x, u, s) c3K(J)(t, x, u, s) 2Kt)(t x, u, s)
c3x() c3ua) c?tc3x)

c32KJ)(t, x, u, s) tOJ)(x)

i= 1,2,...,n, j=0,1,...,n + l, 0= 1,2.-.,n, fl= 1,2,...,r,

exist and are continuous in all their arguments. We now examine the following
problem.

PROBLEM. Find an allowable control u(t) having values in U, such that the
corresponding trajectory x(t) lies in the assigned region B, and such that Ij(x, u)

0, j 1, 2,..., 1, and lo(x, u) is minimum. For brevity, this will be called
Problem (1.1)-(1.4). The solution functions x(t) and u(t) for this problem will be
called the optimal trajectory and the optimal control.

A problem similar to Problem (1.1)-(1.4) for systems of differential equations
was examined in [1, Chap. 6]. Equations and functionals more general than
(1.1), (1.3) and (1.4) were considered in [3], but the problem with bounded phase
coordinates was not examined. In addition, equations and functionals of the
type (1.1), (1.3) and (1.4) lead to results which are more convenient for applications.

2. Let us define

(x) for x on the boundary of B,
g(x)

for x inside B,

g)(x, u, t) K)(x, u, t) + pjK"+J)(x, u, t),
j=l

x(t) g(x(s), u(s), s) as, Y g .f
f

Then system (1.1) is obviously contained in the system

(2.1) 2(t) f(t) + (t, x(s), u(s), s) ds.

We use the convention that if z is a vector and 2(z) a scalar, then t?2/cz grad 2(z)
is a row vector, while iff(z) is a vector, then t?f/c?z is the matrix with elements

Of(z) c3fi)(z)
c3z ! c3z)
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We further define

p(x, u, t)
Og(x)

K(t, x u t)
OX

8g(x(t) OK(t, x(s), u(s), s)
pz(t,x,u,s)

3x 8t

tg(x(t))=-p(x u t)=(8g(x(t)) fl8x
,f’(t) + pl(x(t), u(t), t) + pz(t, x, u, s) ds.

A trajectory x(t) will be called regular relative to the control u(t) if for all [0, T
the following conditions are satisfied:

(i) If qi(u(t)) are the functions (1.2) for the u(t) in question, then the vectors

(2.2)
8p(x(t), u(t), t) 8q(u(t)) 8qk(u(t))

8u 8u 8u

are linearly independent.
(ii) p(x(t), u(t), t) 0. The set of controls u relative to which the trajectory x

is regular will be denoted co(x).
Let us define

(2.3) H(x, z, u, t) F(x, u, t) + z(s)K(s, x, u, t) ds,

where

(2.4)
c3(J)(x(T))

K(T, x, u, t)|,
8x

and z(t) is the row vector which is the solution of the system

z(t)
SF(x(t)’ u(t)’ t) [x’(t) cgx2 8x -x 18x

+ 2(0
02g(x(t))

+
Og(x(t)) OK(t, x(t), u(t), t)

(2.5)

+ (x(s)) K(s, x(t), u(t), t) s +
8x 8sSx Jt 8x

(x’(t) is the row vector obtained by differentiating x(t)in (1.1)). We see that 2(0 is
uniquely specified by

8H(x(t), z, u(t), t) 8p(x(t), u(t), t)
+

8u Ou
(2.6) r pa(s, x, u, t)

ds + v(t)c?q(u(t)) O.+ 2(s)
8u = 8u

The trajectory x(t) and control u(t) are said to satisfy the maximum principle if
there exist a constant vector ] (p, p, ..., p) and a piecewise smooth scalar
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function 2(0 such that for the optimal trajectory x(t) and optimal control u(t),
for which the functionals (1.4) vanish, (2.1)-(2.6) are satisfied, and for almost all
t6[0, T],

(2.7) H(x, z, u, t) min H(x, z, v, t),

(2.8)
d2(t) < 0.
dt

The unusual form of (2.7) results from the choice of sign for H.
THFORM 2.1. In order that x(t), u(t) be an optimal solution to Problem (1.1)-

(1.4), with x(t) e B, u(t)e U, and x(t) such that it undergoes at most a finite number
of transitions from the boundary ofB into its interior and back, it is both necessary
and sufficient that x(t) and u(t) satisfy the maximum principle.

Proof Necessity. Let )?(t) be a trajectory of system (2.1) lying in B x Ox),
and let 2, i= 1, 2,..., k, be fixed points along the trajectory other than the
endpoint 2(T). Following [1], we shall construct column vectors N such that

_c, Ni) __> c> 0

for x lying in a sufficiently small neighborhood of xi and continuously differenti-
able scalar functions a(x) which are equal to unity in a certain neighborhood of
i and to zero in a certain other neighborhood of i. Also following [1], we intro-
duce the functions

(2.9) h(2, t) g x + =, a(2)N),
(2.10) P(2, u, ei/, t)

dh(Yc, e6la)
dt

where the derivative is found using (2.1). Obviously P(2, u, 0, t) p(2, u, t). We
consider the system

(t) f(t) + (t, y(s), v(s), s)ds,

(2.11)
P07, v, eb/, t) 0.

As in [1], if 37(0 is sufficiently close to (t), and if h(y(to), z@) 0, then (t) B
O) (and conversely). (t) and u(t) satisfy (2.1 1) with @ 0.
We show that if for 0 _<

_
0 we have

(2.12)
(t) (t) + e(t) + o(z),

v(t) u(t) + u(t) + o()

everywhere except possibly on segments the total length of which is of order e,
then it is possible to construct a solution of the system (2.11) such that (2.12) is
also satisfied for [0, T], with smooth 6:(t) and piecewise smooth 6u(t). To do



328 v.R. VINOKUROV

this, we divide the segment [0, T] into partial segments of sufficiently small length,
using points 0 t0 < r <"" < rm < ,,+1 T, with all jump points of the
control included among the points ri. Assuming that the solution 37(0, v(t) of
(2.12) has already been constructed on the segment [0, vii, we continue it to the
segment [r,ri+l]. According to the conditions, the vectors (2.2) are linearly
independent at the point r + 0. Let us assume that the following Jacobian does
not vanish:

D(pl(x(ri), v(zi + 0), z + 0), ql(v(z + 0)),..., qk(v(’ci + 0)))
(2.13) D(vl), v2), vk+ 1)) 4: 0.

Let us write the second equation of the system (2.11) in the form

(2.14)
Oh(.(t), e,c31),(t, y(t), v(t), t)

where

(2.15)

h(;(t), au)f,(t) O(t, 37, v) (t, 37, v),

f’ Oh(y( ebp) cK(t, y(s), v(s) s)
b(t, 37, v)

3t
ds,

O(t, )7, v) fl, c3h(y(t),_fi ebp) K(t, y(s),tOt v(s), s)
ds,

and adjoin to it the equations

(2.16) q(v(t)) q(u(t)), 1,2,..., k.

For near ri and for sufficiently small e, from (2.14)-(2.16) it is possible to find v1),
v2), ..., v+ 1) as functions of the form vCJ) rl)(t, , v+ 2), ..., vr), e6p, , ),
j 1, 2, .--, k + 1, where the r/) are differentiable in all arguments.

For j k + 2, ..., r, let us take vJ)(t) u)(t), and examine the system

;(t) f(t) + K(t, y(s), v(s), s) ds + K(t, y(s), v(s), s) ds,

(2.17)
vtJ)(t) q(J)(t, y(t), u+ 2)(t), utr)(t), ebtt, ok, ),

j= 1,2,...,k+ 1,

where q and ff are defined by (2.15). Since the r/(J) satisfy a Lipschitz condition in
the arguments )7(t) and q, and O(t, y, v, s)/Ot satisfies a Lipschitz condition in
y and v, by the usual method of successive approximations it can be proved that
on a small interval [r,’r+ 1] the system (2.17) has a unique solution. Let us now
show that it satisfies (2.12). Assume that (t) Yc(t) + (, t), v(t) u(t) + w(e, t),
where for j k + 2, ..., r we have w(J)(e, t) 0. For bit 0, we have

2(t) f(t) + (t, x(s), u(s), s) ds + I(t, x(s), u(s), s) ds,

u(t) rl
( t, 2(0, u(+ 2(t), ..., u(t), O, p(t, 2, u, s) ds, p(t, 2, u, s) d

j= 1,2,-..,k+ 1.
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Since by assumption, for _< zi, (2.12) is satisfied everywhere except possibly on
intervals of total length of order e, we obtain

I1(, 011 =< Z max (ll,(s)ll + u(s)ll) + B (11(, s)ll + Ilco(, s)ll)ds + Ke,
O<s<i

Ilco(, t)[I =< Ce/ + OllW(, t)[ + F max (ll(s)ll + tlu(s)ll)
O<s<zi

+ G (11(, s)ll + Ilco(, s)ll) as + Le

<= e[C6p + DK + L + (AD + F) max (s)ll + IIu(s)l )]
O<s<r,i

+ (BD + G) ([l(e, s)ll + Ilco(, s)ll) ds.

From this it follows that (e, t) and w(e, t) are of order e.
We shall now prove the existence of piecewise smooth n-dimensional column

vector functions A(t,s), La(t,s), 3 1,2,..., k, and piecewise smooth scalar
functions A)(t, s), L)(t, s), fl 1, 2,..., k, such that for 0 =< s <_ __< T, we
have

x(s), u(s) s) 63P1(X(S), U(S), S)
u + A(t, s)

(2.18)

+ A(t a)c3p2(a’ x, u, s)
da bu(s) O,

where

A(t,s)
/A(t,s) ,’ (t,s)

La(t,s) 1"
If at the point s he Jacobian (2.13) is nonzero, we define AS)(t, s), L}S)(t, s) as the
solution of the system

(2.19)

c3/{s)(t, x(s), u(s) s) 6pl(x(s), u(s), s) [*t
Ou( + A(S)(t, s) 0u(’) + Js AtS)(t O’)

3PZ(ff’ X, U, S)
3U()

+ L)(t s)
qa(u(s))
cu)

=0, a= 1,2,...,k+ 1,
/=1

the existence and uniqueness of which are proved in the same way as for (2.12),
with the argument made easier in view of the linearity. Then (2.18) is established
in the same way as (6.30) of [1], and we find that 6u) 0, 0 k + 2, ..., r.

Let us now divide the interval [0, T] into parts by points 0 < z _-< z2 <
_-< Zm <_-- Z T, andasin [1] select arbitrary nonnegative numbers 6tl fit2, .-., tm,
and a number fit, with the points Zl, z2, "’", rm being continuity points of u(t).
Further, let the points v l, v2, ..., v, U be such that the vectors

cp(x(ri), vi, zi) cqs(vs)
j= 1,2,...,k,
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are linearly independent. Let

cSt (6ti + + 6tm) for T 27,

((ti + at- 6tm) for "/2 27 < T,

(6ti + + 6tj) forzj=zi+x z<Z+l
and

I T, .ql_ , T -lt- F, -" ( i- 1,2,...,m,

where e is sufficiently small. We shall construct a varied trajectory *(t) and
control u*(t). For 0 _<_t :1 + ell, we assume *(t)= (t), u*(t)= u(t), and
continue them on the subinterval I1 in the following way. Let qi(v) be the functions
(1.2) for the point vl. Like the system (2.14)-(2.16), the syst.em P(,v, e6la, t)

ql(v) qk(v) 0 is solvable, say, for the first k + coordinates of the
vector v in the neighborhood of (rl), vl, e6/ 0, :1. For k + 2, ..., r,
we assume v") v]) on 11, and then, as in the solution of (2.17), find 2*(0, u*(t)
on 11. As e 0, u*(t) will tend uniformly to vl on 11. For rl T2 Tj
__--< Tj+ 1, in the same way we construct a varied trajectory and control on I2, Ij,
taking v2, ..., vj rather than vl. Then for =< tj, it is easy to establish that 2*(t)
satisfies (2.12) everywhere except on the intervals I1,I2,..., lj, and therefore
they can be extended to the point zj+ 1, using (2.14)-(2.16), in such a way that (2.12)
remains true. Continuing, we obtain for points lying to the right of all intervals li

Yc*(t) Yc(t) + ebYc(t) + o()

f(t) + /(t, x(s), u(s), s) ds

my,-JI- 1 (t, X(S) -Jr- F,cX(S) -at-- O(F,), U + (Di(S, F,), S) ds
i=

K(t, x(s) + e6x(s) + o(), u(s) + bu(s) + o(), s) ds,

where the d])i(S ,) tend uniformly to zero on I as e 0. From this we obtain

(2.20)

j’[(t,x(s),u(s),s)OYc(t) fi(t, x, u, "c) +

where

OK(t, x(s), u(s), S)
bu(s) ds,6x(s) + cu

/’(t, X, U, "C) Z (i(t’ x(’r2i), U(Ti), "r’i)(ti,
i=1

biK(t, x(Ti), U(Ti), Ti) K(t, x(zi), Ui, Ti) K(t, X(Ti), U(Ti) Ti)

and 2*(t) and u*(t) satisfy (2.11) for 6/ 0. According to the conditions, 2*(t), u*(t)
must also satisfy (2.11).
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Let us multiply the second of equations (2.11), in the case where s, by
A(t, s), and integrate over s from 0 to t. Then taking into account that li has length
efti, we obtain

fO s)
Og I fO O(s x(a), u(a) a)&t (x(s) f’(s) + K(s, x(s), u(s) s) +x c3s da] ds O,

ix(t, s)
g s), ’(s) + I((s, xs), u(s), s) + s da ds

+ (t, s)
s))

’(s) + g(s, x(s), u(s), s),

f Og(s, x(a), u(a), a) do.] ds+
8s

(t,s) Oh(x(s) + ebx(s), bl)
X

If’(s) + g(s, x(s) + fx(s), u(s) + fu(s), s)

OK(s, x(a), u(a), a)
da +

c3s j=

eg(s, x(a), v,
Os

do

K(s x() + e6x(), u(a) + 6u(), )+ s d5] ds + o() O.

Subtracting the first equation from the second, we find

fi" fl oP(x’u’O’s)
A(t, zlbp,(x(z), u(z), "c) + A(t, s)bp2(s, x, u, z) ds +

(2.21)
+fi[Tx(ts)x,(s)g(x(s)),x + eg(x(s))eK(s,x(s),u(s),s))exYx

+ (t o")
tg(x(o")) 632K(o", x(s), u(s) s)
8 8o"8x

da fix(s) ds

f,’ [z(p(x(s)u(s)s)- t, S) + A(t o")
c’p2(o", x, u, s)

8u 8u do"] 6u(s) ds O,

where 6 has the same value as in (2.20), and x’(s) is the row vector obtained by
differentiating x(s) using (1.1). Using (2.21) with (2.20), and taking into account
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(2.18), we obtain finally:

(t c3P(x, u, O, s)
62(t) 6m(t x u r)+ Jl A(t s)

fi[t(t’x(s)’u(s)s)+ x + (t, s) x’(s)

(2.22) +
#g(x(s) #K(s, x(s),_x_ u(s), s)}

+ (t a)
t?g(x(a)) K(a, x(s), u(s), s)

cx cac3x

where

(2.23)

02g(x(s))

daI 6x(s) ds,

lfI(t, x, u, z)
M)(t’ x, u, "c)
M(t, x, u, "c)

M)(t, x, u, "c) )(x, u, r) + A)(t, "c)pl(x(z), u(’c), "c)

+ A((t, s)p2(s, x, u, ) ds,

M(t, x, u, r) K(t, x, u, ) + A(t, r)p(x(r), u(’c), Z)

+ A(t, s)p2(s, x, u, r) dx.

From this, in particular

x((t) M(t, x, u, ) + A(m(t, s)

(.4

+ Q(t, x, u, s) 6x(s) ds,

6x(t) 6M(t, x, u, ) + A(t, s)

(2.25)

+ Q(t, x, u, s)bx(s) ds,

O(t, x, u, s)

where

(2.26)

c3P(x, u, O, s)

cP(x, u, O, s)

eg(x(s), u(s), s)
x

[ OZg(x(s)
+

c3g(x(s) OK(s x(s), u(s), s)]+ At)(t, s) x’(s)
Ox2 c3x

+ At)(t a)
c3g(x(a)) c32K(o", x(s), u(s), s)
c3 cac3x

da,
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K(t, x(s), u(s), s)
Q(t,x, u,s) x

g(x(s)
(2.27) + A(t, s) ’(s) c3x2

(2.28)

?g(x(s)) OK(s, x(s), u(s),
+ -UXX Ox

+ A(t a) Og(x(a)) c2K(a, x(s), u(s), s)
da.x

Let R(t, s) be the resolvent of the matrix Q(t, x, u, s). Then

x(t) M(t, x, u, z) + R(t, s)M(s, x, u, z) ds

+ A(t s) + R(t a)A(a, s) da
P(x, u, O, s)

Substituting (2.28) into (2.24), we find for T:

6xt)(T) 6Mt)(T, x, u, ) + Qt)(T, x, u, s)

+ Q()(T, x, u, a)R(a, s) da 6M(s, x, u, z) ds

+ A)(T, s) + O)(T, x, u, a)

+ Q(O)(T, x, u, O)R(O, a) d A(a, s) d

If w(t) is the solution of

(2.29) w(t) Q)(T, x, u, t) + w(s)Q(s, x, u, t) ds,

then the preceding equation can be written more simply

6x)(r) 6M)(r, x, u, z) + w(s)bM(s, x, u, ) ds

(2.30)

+ A()(T, s) + w(a)A(a s) da
8P(x, u, O, s)

61a ds.

Let

(2.31) I(x, u) Io(x, u) + tsls(x, u).
j=l

OOS)(x(T))
6I(x, u)= 6x()(r) + S c3xj=l

bx(T).

Then obviously
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Taking into account (2.28) and (2.30), we find:

8t(x(T))
6I(x, u) 6 M()(r, x, u, z) + 12 M(T, x, u, "c)

j=l t0X

,T[ (J)(x(T))R(T, s)]M(s, x, u, z)ds}+ w(s) +
(2.32) =

+ A(T, s) + w(a) + R(T, a) A(a, s) da
j=l OX

OtJ)(x(T)) P(x, u 0 s)
+ a(T,s) 6ds,

where 6 is applied to the functions M) and M. Let us introduce the following:

(x(r))
(2.33) z(t) w(t) + g R(T, t),

j= x
r O(2(x(T))

(2.34) 2(t) A(T, t) + z(s)A(s, t) ds + A(T, t).
i= X

Then by simple calculations it can be shown that z(t) satisfies (2.5), and

I(x, u) O[Fx(z), u(r), ) + r)p(x(r), u(r), )

(2.35) + (s)p(s, x, u, r) ds + z(s)g(s, x(r), u(r), r) ds

r OP(x, u, O, s)
+ 2(s)

O# 6 ds.

We shall now prove that 2(t) defined by (2.34) satisfies (2.6). From (2.19),

R)(x(t), u(t) t) o(
p(x(O, u(t), t)

Ou + T, t) Ou
r OP2(S, x, u, t) k c3qa(u(t)+ A()(T,s) Ou(,

ds + L)(T,t) O,
fl=l

f,r [OK(s, X(t), u(t), t) c3p(x(t), u(t), t)
z(s) --u- + A(s, t)

I Ou(,
ds + z(a)A(a, s) da

Op2(s X, U, t)

c3()(x(T))[c3K(T, x(t), u(t) t)=x # c3x L cu() + A(T, t)
cp,(x(t), u(t), t)

T

+ A(T, S)
OP2(S’ X, U, t)

ds + ’, Lt(T, t) cgq(u(t))Jc3u() O,

ds =0,
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Adding these equations, we obtain

c3H(x(t), z, u(t), t)
Ou + 2(t) Ou

cp(x(t), u(t), t)

T 63P2(S, X, U, t) k

+ )L(s) 3u()
ds + v(t)

fl--1

with

=0,

T

v(t) L()(T, t) + z(s)Lt(s, t)ds +
j=l

c(I)(J)(x(T)
L(T, t)cox

Furthermore, taking a single division point vl on the interval [0, T], and
assuming 6# 0, we see that 61(x, u) coincides with 6H(x, z, u, t), under the
condition that (2.6) is satisfied. From this follows (2.7). Inequality (2.8) is proved
analogously to the corresponding inequality in [1], from the expression for
6I(x, u) with 6/2 > 0 and considering the empty set of division points ofthe interval
[0, T]. In this way, the necessity of the criterion is proved.

Sufficiency. Let us integrate the function H(x(t), z, u(t), t) over from 0 to T.
Taking into account (1.1), (1.3), (2.3), (2.4) and the vanishing of the functionals
(1.4), we obtain

H(x(t), z, u(t), t) dt K()(x(t), u(t), t) dt

+ t2 K("+)(x(t), u(t), t)
j=l

c30(;)(x(r))
K(T, x(t), u(t), t)l dt+ Ox

+ z(t) K(t, x(s), u(s), s) ds dt

Io(x, u) + # I- (I)’(x(T))
j=l

c(I) J)(x(T)
+ Ox

Ix(T) f(T)]
)

+ z(t)[x(t) --f(t) dr.

From this it follows that if H(x(t), z, Uo(t), t) <_ H(x(t), z, u(t), t) for t [0, T],
then also Io(x, Uo) <- lo(x, u). The theorem is proved.

Note 1. If the system (1.1) is obtained by integration of a system of differential
equations, then K(t, x, u, s) does not depend on t. In this case, ()(t)= 1,
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T

O(t) z(s) ds satisfy the adjoint system of differential equations, but never-

theless, constants requiring determination enter into the function H. If in addition,
K"+J)(x,u, t) =_ O,j 1,2,..., l, then

c3(i)(J)(x(T)) T&()(t) 1, &(t) laj z(s) ds
= cx

satisfy the adjoint system, and H is the corresponding Pontryagin function (Hamil-
tonian), taken with opposite sign. It is not necessary to formulate the jump
conditions, since they enter into the integral equation for z(t).

Note 2. Let B be the entire space E., and let z(t) be the solution of the system

(2.36) z(t) c3F(x(t),oxU(t), t)
+ fT Z(S)

OK(s, x(t),Ox u(t), t)
ds.

The next theorem follows from Theorem 2.1.
THEOREM 2.2. Let f(t), K(t, x, u, s) and cK(t, x, u, s)/cx be continuous for

0 <= s _<_ <= T, x E, and u U. Then in order that x(t), u(t) be the optimal solution

of Problem (1.1)-(1.4) with B E,, it is necessary and sufficient that there exist a
constant vector la (la, la2, /at), such that for the optimal trajectory x(t) and
optimal control u(t), for which the functionals (1.4) vanish, (1.1), (2.3), (2.4) and
(2.36) are satisfied for almost all [0, T], and

(2.37) H(x(t), z, u(t), t) min H(x(t), z, v, t).
vU

This entirely agrees with the results ofA. G. Butkovski [3].
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3. Let there be given a system of equations

x(t) f(t) + A(t, s)x(s) ds + B(t, s)u(s) ds,

where x(t) and f(t) are n-dimensional column vectors, u(t) is an r-dimensional
column vector, and A(t, s) and B(t, s) are n n and n r matrices, respectively.
Let there also be given a certain functional I(x, u). We shall consider the following
problem.

PROBLEM. Find a piecewise continuous control u(t), having values for every
[0, T] which lie in a closed bounded region U E,, such that the functional

l(x, u) is minimum, with x(t) being the solution of (3.1) corresponding to this u(t).
This problem has been considered in more general form by A. G. Butkovski.

In the present paper, for certain forms of the functional I(x, u) we give criteria for
the existence and uniqueness of solutions to this problem.

We shall assume throughout that A(t, s), B(t, s) and f(t) are continuous for
0 __< s _< <_ T. Since u(t) is bounded, so also is x(t). We denote by G the closed
bounded region in which lie the solutions of (3.1) for all possible u(t)s U. The
norm of a vector will be taken to be its Euclidean length, and the norm of a matrix
will be taken in the sense of the norm of an operator in a Euclidean space.

Let the functional l(x, u) have the form

(3.2) l(x, u) [(a(s), x(s)) + (b(s), u(s))] ds,

where a(t) and b(t) are respe.ctively n-dimensional and r-dimensional row vectors,
continuous for 0 =< < T. In this case, for brevity, we call the preceding Problem
(3.1)-(3.2). Its solution will be called the optimal control. Let z(t) be the row vector
which is the solution of the system

(3.3) z(t) a(t) + z(s)A(s, t) ds

and let

(3.4) H(z, u, t) b(t) + z(s)B(s, t) ds, u

The next theorem is from [3] and [4].
* Originally published in Izv. Vyssh. Uchebn. Zaved. Matematika, 1967, no. 8, pp. 16-23. Submitted

for publication on April 28, 1966. This translation into English has been prepared by R. N. and N. B.
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THEOREM 3.1. In order that x(t) and u(t) be the optimal solution to Problem
(3.1)-(3.2), it is necessary and sufficient that .for almost all t6[0, T] equations
(3.1), (3.3) and (3.4) be satisfied, and

(3.5) H(z, u(t), t) min H(z, v, t).
vU

(3.6)

Now let
T

H(t) b(t) + z(s)B(s, t)ds.

We make the following assumptions"
(A) The region U is a bounded convex polyhedron in Er.
(B) The hyperplane

(3.7) Hi)(t)vti) 0
i=1

in Er is parallel to an edge of the polyhedron U for at most a finite number of
values of t.

THEOREM 3.2. /f conditions (A) and (B) are satisfied, then there exists a unique
optimal solution of Problem (3.1)-(3.2), .for which the optimal control u(t) takes
values only at the vertices ofthe polyhedron U. The optimal control can change value
only at points such that hyperplane (3.7) is parallel to some edge of U.

Proof. We shall prove first that there exists at most one solution of Problem
(3.1)--(3.2) and that it necessarily satisfies the conditions stated in the theorem.
Because of the linearity in u, the function (3.4) is minimum either at one of the
vertices of the polyhedron U or on the entire boundary [1, p. 133]. We show that
the latter is possible only for a finite number of values of t. If H(z, v, t) in fact attains
a minimum on a portion of the boundary of positive dimension, then it has the
same value at at least two vertices of the polyhedron U. Let these vertices be
/)1 and/)2. The equation of the edge passing through these vertices is v =/)1 -I- (/)2

v l)z, 0 =< z =< 1. From this and from (3.6), H(z, v, t)= (H(t),vl) + (H(t),
/)2 vl)z. But by hypothesis, the coefficient of z in this latter equation can vanish
for at most a finite number ofvalues of t. For the remaining values of t, the minimum
on this edge is attained either for z 0 or for z 1. It is now also clear that switch
points can only be points for which (H(t), v2 v) O.

For the proof of the existence of optimal solutions, we first look for an optimal
control in the space /,2(0, T). Let _/= inf I(x, u) for u U, u(t) L2(0 T), where
x(t) is the trajectory corresponding to u(t), and let limk-.o l(Xk, Uk)= I. Since
the sequence Uk(t) U, it is weakly compact in L2(0, T) and thus weakly con-
verges to a certain function u(t) L2(0, T). In view of the linearity of (3.1), Xk(t)
strongly converges to a certain function x(t), and thus by considering the linearity
of (3.2), limk_o I(Xk, Uk)= I(X, U). Thus x(t), u(t) is the optimal solution to the
problem. According to the above, in this case u(t) is piecewise constant, and the
theorem is proved.
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4. We shall now examine the case where the functional I(x, u) is of the form

(4.1) I 1
I(x, u) -(C(x(s), s)u(s), u(s)) + (a(x(s), s), u(s)) + b(x(s), s) ds.

where C(x, s) is an r r matrix, a(x, s) is an r-dimensional vector, and b(x, s) is a
scalar. We assume that C(x, s), a(x, s) and b(x, s) are twice continuously differenti-
able with respect to x(i), 1, 2, ..., n. The problem of determining the functions
minimizing (4.1), under the constraint (3.1) and with u U, will be called Problem
(3.1)-(4.1). If we assume

8C(x(t) )(Sa(x(t),t)t)u(t), u(t) + u(t)z(i)(t) - Ox(i) -x(i;
(4.2)

cb(x(t), t) L f,r"- 8x(i + z)(s)Aji(s, t) ds, 1,2, ..., n,
j=l

(4.3) H(x, z, u, t) -}(C(x, t)u, u) + a(x, t) + z(s)B(s, t) ds, u

The next theorem is from [3] and [4].
THFORM 4.1. In order that x(t), u(t) be the optimal solution ofProblem (3.1)--

(4.1), it is necessary and sufficient that for the optimal trajectory x(t) andfor almost
all [0, T], equations (3.1), (4.2), (4.3) and

(4.4) n(x(t), z, u(t), t) min H(x(t), z, v, t)
vU

all be satisfied.
In the following, the closed bounded region in which z(t) is contained for

u(t) U, x(t) G will be denoted G’. Let us introduce the following square matrices:

(4.5)
8C(x, t) 8C(x_:_ t) 8C(x, t) 8C(x, t))(X GX(1) -X() x(n

a2C(x, t)) c32C(x, t)
(4.6) 8x2 u x%xU’ i,j 2 n

{8 t)) aj(x, t)(4.7) a(ox;
0

(4.8)

(4.9)

(4.10)

c32a(x, t)

8b(x, t)
X

a((x, t)
x(i)

i=l,2,...,n,

aa’(x, t) aa’(x, t) c3a’(x, t)l
8X(1), 8X(2 ,’’’, x(n-

8b(x, t) 8b(x, t) 8b(x, t)l
6X(1)’ 8X(2 ’’’’’ XX()" ]’

c32b(x, t)) c32b(x, t)
OX2 ij (x(i)x(J)’

j= 1,2,.-.,r,

i,j= 1,2,..., n.
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A matrix A will be called positive and written A > 0, if for any vector z, (Az, z) >= O.
Inequalities between matrices will be understood in this sense.

THFOREM 4.2. If U is a closed bounded region in E, and if there exists a number
0 > 0 such that for all x G and 0 <= <= T, C(x, t) >= 0I, where I is the unit matrix,
then there exists an optimal solution to Problem (3.1)-(4.1) in the space L2(0, T).

Proof. Let I inf I(x, u) for u U, u(t) L2(0, T), where x(t) is the correspond-
ing trajectory. We take uk(t) to be a sequence such that if xk(t) is the solution of
(3.1) for u(t) u(t), then lim-oo I(xk, u) _/. In view of the weak compactness
of uk(t), the sequence converges weakly in L2(0, T) to some function u*(t). Let us
introduce the following"

Xo(t) f(t) + A(t, S)Xo(S) ds,

(4.11)

2(t) A(t, s)2k(s) ds + B(t, s)u(s) ds.

Obviously x(t) Xo(t) + 2(t). In view of the linearity, 2(t) strongly converges
in L2(0, T) to some function 2(t), and lim,oo xk(t)- Xo(t)+ Yc(t)= x*(t). We
shall prove that x*(t), u*(t) is the optimal solution to Problem (3.1)-(4.1). Obviously
if u(t) 2u,(t) + laUra(t), the corresponding solution of (3.1) will be x(t) Xo(t)
+ 22,(t)+ p2m(t). Using this, we have the identity (which can be checked by
simple calculations):

l(xo + 2,,, u,) + I(xo + YCm, Urn)- 21 XO + 2 2- (C(x*(S), S)[Un(S Um(S) [Un(S Um(S)] ds

for{l[ ’n(S)’Jl- ’m(S)
+ - 2C(xo(s) + Y,(s), s)- C Xo(S) +

2
s

(4.12)

C(x*(s), s u.(s), u.(s)- - 2C(Xo(S Av m(S), S)

.(s) + (s)
C Xo(S) +

2

1[+ - C(x*(s), s) c

S)-- C(X"(S), S)J I,tm(S), blm(S

Xo(S) -1
2

S him(S), Idm(S

a(xo(s) + .(s), s)- a
.(s) + (s))]Xo(S) +

2
s u.(s)

n(S)-1t- ,m(S)
Xo(S) + s

2
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+ a(Xo(S) + c(s), s) a Xo(S) +
2

s u(s)

.(s) + x(s) as.+ b(Xo(S) + Yc,(s), s) + b(xo(s) + m(S), S)- 2b Xo(S) +
2

From this, since _/is the greatest lower bound of I(x, u) and all terms on the
right of (4.12), except the first, tend to zero as n, m - o, we have for n, m > N(e)"- (C(x*(s), s)[u,(s) u(s)], [u(s) u(s)]) cls

.<_- I(xo + Yc,, u,) + I(xo + Ycm, urn)- 2I + e.

From this, for n, m o, we have"

s)[u(s) u(s)], [u,(s) u(s)]) - o,ds

and thus in view of the positive definiteness of C(x, t), u,(t) strongly converges in
L2(0, T). This means that lim,. I(x,, u,) I(x*, u*), and the theorem is proved.

THEOREM 4.3. For x e G and 0 <= <= T, let there exist a number 0 > 0 and
functions a(x, t), fl(x, t) and y(x, t) such that C(x, t) >= OI and

(4.13) 0 <= a(x, t), fl(x, t), 7(x, t) <__ 1,

t2C(x, t) FcC(x, t)*O(x,t) (X2 L-----X---j
(4.14) M,(x, t) _= >= 0,

cC(x, t)
fl(x, t)C(x, t)cx

511 a(x, t)] x2 L---x2--J
(4.15) Mz(X t) =-- > O,

1 2a(x, t) .xZb(x, t)

>0
b(x, t)

(4. ]

(here * means transposition). Then if U is a closed bounded convex region, there
exists at most one solution to Problem (3.1)-(4.1) in the space L2(0, T).

Proof. Let u(t), u2(t) be two different optimal controls in L2(0 T). In view of
the convexity of U, u(t) 2u(t) + (1 2)UE(t) U for 0 __< 2 __< 1. Let x(t),
XE(t) be the solutions of the second of equations (4.11) for u(t) u(t) and u(t)

UE(t), respectively. Then

(4.17) x(t) Xo(t) + 2xl(t) + (1 2)x2(t)
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is the solution of(3.1) for u u(t). We find

fO’{1 Cij(x(s),s)[2ui’(s)+(1-2)u)(s)]I(x, u) - z,j=

[2u]J)(s) + (1 2)u)(s)] + ai)(x(s), s)[2u]’)(s) + (1 2)u)(s)]
i=1

+ b(x(s), s) } ds,

where x(t) is given in (4.17). Using this, we can find the second derivative of I(x, u)
with respect to 2:

d2I(x, u) ff {1  2Cij(X(S), S

d2 [(x(s), s) + (1 (x(s),s))]
/,k=l i,j=l

[x]*)(s) x*)(s)] [x]’)(s) x)(s)] [2u](s) + (1 2)u)(s)]

[2u]J)(s) + (1 2)u)(s)]

i Cdx(s)s)
+2 [x]*)(s)-x*)(s)]

k i,j x(k)

[u]i)(s) u)(s)] [Xu]J)(s) + (1 )u)(s)]

+ [fl(x(s), s) + (1 fl(x(s), s))] Cij(X(S), S)[u]i)(s)
(4.18) i’j=l

"[u]J’(s)-u’(s)]+ o2a’’)(x(s)’s)
,,=, ,=,

[x(s)

[x’(s) x(s)] [u’(s) + ( )u(s)]

+2
aa’"(x(s), s)

=, i=, ax’ [x?’(s) x’(s) [u"(s)

+ [7(x(s), s)+(1 7(x(s), s))]

a2b(x(s),s) },,=,
, [x’(s) x(s)] [xi"(s) x’(s)] ds.

Let us introduce the vectors

q,(x,u,2) {x(11)- X(21))(,Ul Av (1 2)u2),(x?
", (x]")- X(z"))(2u, + (1 2)u2)}

(4.19) qz(x, u) {u u2, x x2}
q3(x,u, 2) {qi(x, u, 2), Ul u2}
q4(x,u, 2) {q(x, u, 2), x, x2}.

x)(2u + (1 2)u),
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Using these, we can write (4.18) as

d2l(x, u) :d22 [(M(x(s), s)q3(x(s), u(s), ), q3(x(s), u(s), ,))

(4.20) + (Mz(x(s), s)q4(x(s), u(s), 2), q4(x(s), u(s), 2))

+ (m3(x(s), u(s))q2(x(s), u(s)), q2(x(s), u(s)))] ds.

In view of (4.14)--(4.16) and the positive definiteness of C(x, t), d2l(x, u)/d)2 > O,
and thus l(x, u) cannot simultaneously be minimum for 2 0 and 2 1. The
theorem is proved.

Note. Conditions (4.14)--(4.16) are particularly transparent in the case that the
integrand in I(x, u) is a quadratic form in the coordinates of the vectors x and u,
with coefficients which are functions of s. In this case, the conditions are equivalent
to the positive definiteness of that quadratic form.

We have already established that the solution ofProblem (3.1)-(4.1) is obtained
by minimization of the function (4.3). Let us write the latter in the form

(4.21) H(E, v) (C(E)v, v) + (h(E), v),

where E is the collection of variables or parameters entering into the definition of
the function H upon which it depends continuously (in particular, x, t, T, etc.).
We shall suppose that between various sets E there is established a distance, which
we designate for the sets E and Ez by p(E, ]2). Continuity with respect to E will
be understood in the sense of this metric.

THEOREM 4.4. If the conditions of Theorem 4.2 are satisfied, then every v for
which H(E, v) in (4.21) is minimum is a continuous function of E. In particular, the
optimal control u(t) is a continuous function oft.

Proof We shall prove first that min,v H(E, v) is a continuous function of E.
Let v(E) be that v which minimizes H(E, v) for a given 2. Because of the positive
definiteness of C(E), for each set E there is a unique v(E). We have

H(Z2, v(Z2)) H(Ea, v(Z))

(4.22) H(E2, v(Z2)) H(Zz, v(E1)) + H(Z2, v(Z1)) H(Zx, v(Yl))

H(Ez, v(Z2)) H(E,, v(E2)) + H(E1, v(E2)) H(E,, v(E)).

From (4.22) and the minimizing property of v(E), it is apparent that

H(E2, v(E)) H(E1, v(E2)) _-< H(E2, v(E2)) H(Zl,

<- H(E2, v(E,)) H(E,,
From this, and the continuity of H(E, v) with respect to 2;, H(E, v(E)) is continuous
with respect to Z. Further, from the identity

(4.23)

1/4(c(z)[v(z.)- v(z)], [v(z.)-

H(E, v(E)) + H(E., v(E.)) 2H
v(z) +

+ 1/2([c(z)- c(z.)]v(z.), v(z.)) + (h(Z)- h(Z.), v(Z.)),
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we obtain for p(2, E.) < 6(e) that

l(c(z)[v(z.)- v(z)], [v(z.)- v(z)])=</4(z., v(z.))- H(z, v(z))+ .
From the continuity of H(E, v(Y)) with respect to 2; and the positive definiteness of
C(E), we have that lim,-,oo [[v(E,)- v(2)[[ 0 for lim,_.op(E,,E)= 0. The
theorem is proved.

THEOREM 4.5. If the conditions of Theorem 4.2 are satisfied, if U is convex,
and ifu(x, z, t) minimizes (4.3)for given x, z and t, thenfor xl x2 G, zl., z2 G’, we
have

(4.24) [[u(xa,z2,t U(Xl,Zl,t)} <= L x2 xll[ + [z2(s) z(s)l[ ds

Proof The proof will be carried out in several stages.
(a) Let U be the segment a __< u(1) =< b, u( const., 2, 3,..., r. Then it

is sufficient to consider minimization of the function

I T 1(1)H(x, z, v(1), t) 1/2CI l(X, t) Iv(l)] 2 -t- b(x, t) + z(s)B(s, t) ds

Let

V(1) -Jr- const.

b(x, t) + z(s)B(s, t) ds
F(x, z, t)

C(x,t)

The following cases are possible" (i) F(x, z, t) < a, v() a; (ii) a <__ F(x, z, t) <= b,
v()= F(x, z, t); (iii) b < F(x, z, t), v(1)= b. Examining all possible distributions
of the points (x, z) and (x2, z2) in these three regions, we can easily be convinced
that in all cases

Ivl)(x2, z2, t) v(1)(x1, z1, t)l 5 IF(x2, Z2, t) F(Xl, Z

Proof The proof will be carried out in several stages.
Because of the existence of various derivatives and C11(x, t) >= 0 > 0, F(x, z, t)
satisfies a Lipschitz condition, and thus the theorem is proved for this case. It is
easily seen that the Lipschitz constant depends only on the norms of b(x, t),
B(s, t), C(x, t), of their derivatives with respect to x, and on 0, and therefore does not
depend on the segment [a, b].

(b) Let U be an arbitrary segment in Er. This case can be converted to
the preceding case by an orthogonal transformation u Tv, with the matrix
T-1C(x, t)T of the quadratic form being as before positive definite. In view of
T 1, the Lipschitz constant does not change.

(c) Let U be an arbitrary convex region. We join the points u(x2, z2, t),
U(Xl, Zl, t) by a segment F. Obviously

min H(xi, zi, t) min H(xi, zi, v, t), 1,2,
vU vF

and the theorem is proved.
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OPTIMAL CONTROL OF PROCESSES DESCRIBED BY
INTEGRAL EQUATIONS, III*

V. R. VINOKUROV

5. Let there be given a system of equations

(5.1) x(t) f(t) + K(t, x(s), u(s), s) ds,

where f, x and K are n-dimensional column vectors and u(t) is an r-dimensional
column vector, all satisfying the conditions given in [6], and functionals

(5.2) Io(x, u) K()(x(s), u(s), s) ds,

(5.3) I(x, u) K(n+)(x(s), u(s), s) ds + (J)(x(T)), j 1,2, 1.

We shall examine the following problem.
PROBLEM (5.1)-(5.3). We wish to find a piecewise continuous control u(t),

the value of which for each [0, T] lies in a closed region U c Er, such that,
when x(t) is the solution of (5.1) with this u(t), the functionals Ij(x,u) in (5.3)
vanish and the functional Io(X, u) in (5.2) is minimum.

This problem was solved in more general form by A. G. Butkovski [4]
and was also examined in [6, Theorem 2.2]. In this paper, its approximate solution
is considered. The notation and restrictions will be taken to be the same as in
[6], [7]. Let us choose a sequence 0 to < < t2 < < tm-- T such that
tp+ tp < h, /9 0, 1, ..., m 1, and replace the system (5.1) by the system

p-1

(5.4) yp f(t,) + y(h)K(t, y, Vq, t),
q=0

and the functionals (5.2), (5.3) by the functionals
m-1

(5.5) Io(y, v, h) 7,,q(h)K()(yq, vq, tq),
q=0

m-1

(5.6) I3(y, v, h) 7mq(h)g(n+J)(yq, l)q, tq) -t- (J)(Ym), j 1,2,..., l,
q=O

where /pq(h) > 0 are coefficients depending on the choice of quadrature formula.

Originally published in Izv. Vyssh. Uchebn. Zaved. Matematika, 1967, no. 9, pp. 16-25. Sub-
mitted for publication on April 28, 1966. This translation into English has been prepared by R. N.
and N. B. McDonough.

Translated and printed for this Journal under a grant-in-aid by the National Science Foundation.
]" Orsk, U.S.S.R.
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PROBLEM (5.4)--(5.6). We wish to find a control Vq U such that (5.4) is satisfied,
1j(y, v,h)= 0, j 1,2, ..., l, and Io(y, v, h) is minimum. The solution yp, vp of
this problem will be called an optimal solution.

As shown in [4], the maximum principle in its usual form for discrete systems,
generally speaking, is not valid. Nevertheless, with certain restrictions it will
hold true. Let us require that the coefficients 7pq(h) be such that for 0 =< q < p =< m,

(5.7) 0 < Clh <= 7pq(h) <= C2h.
Let us introduce

F(yp, Vp, tp, h) K()(yp, Vp, tp)

(5.8) "31- Itj K(n+ J)(yp, Vp, tp) -k- K(t yp, Vp, tp)
j= Y

m-1

(5.9) H(y, w, v, p, h) 7mp(h)F(y, v, tp, h) +
q=p+l

wqTqp(h)K(tq, y, v, tp),

where the row vector Wp is the solution of the system

(5.10) wp ])rap(h) 3F(yp,c3yVp, tp, h) + m-z wq]qp(h)
3K(tq, yp,3y up, tp)

q= p+

THEOREM 5.1. Ifcondition (5.7) is satisfied and if O < h <= ho, where ho is suffi-
ciently small, then in order that yp, Vp be an optimal solution to Problem (5.4)-(5.6),
it is necessary and sufficient that there exist a constant vector It (it x, It2, "’", lt t)
such that for the optimal trajectory yp and control Vp, for which functionals (5.6)
vanish for 0 =< p < m- 1, (5.4), (5.8), (5.9) and (5.10) are satisfied, together with

(5.11) H(yp, w, Vp, p, h) min H(yp, w, v, p, h).

Proof Necessity. Consider the perturbed control

. {vp for p - r,
(5.12) Vp v for p r.

If yp is the corresponding perturbed trajectory (5.4), then for p >= r

(5.13)

r-1

y f(t) + pq(h)K(tp, yq, vq,tq) + 7p,(h)K(tp, y,, v, t,)
q=O

p-1

nt- 2 ])pq(h)K(tp, y, Vq, tq).
q=r+l

From (5.7), y yp is of order 7pr(h) as h 0. Then writing yp* yp at- 7pr(h)6yp
+ o(h), we have
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where 6K(tp, Yr, vr, t,) K(tp, y,, v, tr) K(tp, y,, v,, tr). Let Rpq be the resolvent
of the matrix [5]"

Then from (5.14),

V(h)
cK(tp, y, v, t)

y

(5.15) ?p(h) 6yp 7p(h) 6K(tp, y, v, tr). +

Now introduce

p-1

q=r+l
Rpqyq,(h) K(tq, Yr, vr, tr)"

(5.16) I(y, v, h) Io(y, v, h) + #jli(Y, v, h).
j=l

Then analogous to (5.14),

6I(y, v, h) Vine(h) gtO(yr, v, t)

Vine(h) 6Ym,

where

/tO)(yq, vq, tq) Kt)(yq, vq, tq) + piK("+)(yq, vq, tq).
j=l

Taking (5.15) into account, we find from this

fiI 7mr(h) 6gt)(Y, v, t) + pj 6K(t, y, v, t)
j= Y

(5.17)

Ogt(y, v, tA+
s=q+ cy Rsq] yq(h) K(tq, yr, vr, t).

Let zv(h be the row vector which is the solution of the system

OgtO)(yp, Vp, tp)
(5.18) zp(h)-- mp(h) OY + 2

q=p+l

and let

zq(h)Vqp(h)
cK(tq, yp, Vp, tp)

Oy

(5.19) wp(h) zp(h) + kgRm,.
j--1

Then it follows from the equations for the resolvent Rp (see [5]) and from (5.8),
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(5.18) and (5.19) that

-x wq(h)Tq(h)
c3K(tq, Yv,cgy vv’ tv)

q=p+

m--z1 zq(h)qp(h)tg(tq, yp, vp, tp)
q= p+

wp(h) ])rap(h)
c3F(yp, Vp, tp, h).

cy

Ot(J)(Ym)FR Tmp(h)
g3K(tm’YP’

j--I -Y L mp Y

that is, wp(h) indeed satisfies (5.10). At the same time, from (5.17)--(5.19) there
follows 6I 6H(y, w, v,r), where H is defined by (5.9). From this follows (5.11),
and the necessity is proved.

The sufficiency is proved analogously to the proofof sufficiency in Theorem 2.1
of [6].

THEOREM 5.2. With u(t) U, vp U, let the solutions ofthe systems (5.1) and (5.4)
lie in a certain bounded region G, and for 0 <= s <__ <= T, let Kt)(t, x, u, s), j 0,
1, ..., n -t- l, satisfy a Lipschitz condition in x and u. Further suppose that condition
(5.7) is satisfied; and for t__< < t+, p=0,1,-..,m,j=0,1,...,n+ l,
x(s) G, u U, let

(5.20) KtJ)(t, x(s) Uq, s)
ypq(h) KtJ)(tp, x(s), uq, tq) ds <- t(h),

Vtq tq+ tq

(5.21) ]If(t) f(tp)[[ <= (h).

Then, where _/= inf Io(x, u), ]h inf Io(y, v, h), there exists a constant B such that

(5.22) l!- I_hl <= Bck(h).

Proof. We shall first prove tliat for any step function control u(t), such that
U(t) U(tp) for tp =< < tp+ , where x(t) is the corresponding trajectory of system
(5.1), there exists a constant A such that

(5.23) max IIx(t) ypll <= Ack(h), 0 <= <= T, tp < tp+ 1.

In fact, taking Mp max Ilx(t) ypll, tp <= < tp+ , in view of (5.20), (5.21) and
the Lipschitz conditions, we have

p-1

M, _< 2lh) + L 7,,lh)M,.
q=O

Since (5.7) and the condition tp+ tp <= h imply the boundedness of

p-1

Y’, 7pq(h);
q=0

(5.23) follows from formulas (6) and (9) of [5]. Hence analogously for this control
we easily obtain

(5.24) [Io(x, u) Io(y, u, h)l < Bdp(h).
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By definition of the infimum and (5.24),! _<_ Io(x, u) =< Io(y, u, h) + Bd(h). Since this
holds for any step function control, we have

(5.25) I < Ih + Bq(h).

Let us now choose an e > 0 and find a trajectory and control x(t), u(t) such that

(5.26) _/> Io(x, u) /2.

In view of the piecewise continuity of u(t), it is possible to find a step function
control v(t) such that the corresponding trajectory x*(t) will satisfy IIo(x*, v)

Io(x, u)l < e/2. Taking into account (5.24) and (5.26), we have for the correspond-
ing trajectory yp,

(5.27) I_ > Io(y, v, h)- B(h)- e >= _Ih Bd(h)- e.

Comparing (5.25) and (5.27), and taking into account the arbitrariness of e, we
obtain (5.22).

COROLLARY. Let yp(h), vp(h) be an optimal solution of Problem (5.4)-(5.6). If
the conditions of Theorem 5.2 are satisfied, with limh-.O+ qS(h)= 0, and if there
exists a sequence hk - 0 such that limk-.oo Yp(hk) X(t), limk-oo vp(hk) u(t) uni-

formly on 0 <= <= T then x(t), u(t) is an optimal solution of Problem (5.1)-(5.3).

6. In the case that the system (5.1) is linear and the functional (5.3) is quadratic,
we have

(6.1) x(t) f(t) + A(t, s)x(s) ds + B(t, s)u(s) ds,

where A(t, s) is an n x n matrix and B(t, s) is an n x r matrix, and

(6.2) I(x, u) [1/2(C(x(s), s)u(s), u(s)) + (a(x(s), s), u(s)) + b(x(s), s)] ds,

where C(x, s) is an r x r matrix, a(x, s) is an r-vector, and b(x, s) is a scalar. We can
then consider minimizing the functional (6.2) under the condition (6.1) and with
u e U (Problem (6.1)-(6.2)). We shall assume that all conditions set forth in 4 of [7]
are satisfied and shall retain the notation used there.

Let us replace Problem (6.1)-(6.2) by a discrete problem. To that end, rather
than the system (6.1) we shall consider

p-1

(6.3) y f(t) + 7.(h)[A(tp, t,)y + B(t., t)v]
q=O

and replace the functional (6.2) by

(6.4)
m-1

I(y, v, h) 7m(h)[1/2(C(Y, t)v, v) + (a(y, t), v) + b(y, v)].
q=O
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The minimization of functional (6.4) under the constraint (6.3), with vq U, will
be called Problem (6.3)-(6.4). Let

W(ip 7rap(h) y(i) l)p, Vp -t-
cy(i Vp -i-

(y(i) A
(6.5)

+ w (h)Aji(tq, tp), 1, 2, n,
j=l q=p+l

H(y, w, v, p, h) 1/27mp(h)(C(y, tp)v, v
(6.6)

+ 7,w(h)a(y, tp) + WqTqp(h)B(tq, t), v
q=p+

Then from Theorem 5.1 there follows the next theorem.
THEOREM 6.1. If conditions (5.7) are satisfied and if 0 < h <= ho, where ho is

sufficiently small, then for yp, vp to be an optimal solution of Problem (6.3)-(6.4),
it is necessary and sufficient that for 0 <_ p <= m- the optimal trajectory y
satisfy (6.3), (6.5), (6.6) and

(6.7) H(yp, w, Vp, p, h) min H(yp, w, v, p, h).
vU

The optimal control Vp has properties analogous to those for the continuous
case presented in Theorems 4.2 to 4.5 of [7].

THEOREM 6.2. Let the conditions of Theorem 4.5 of 7] and inequality (5.7) be
satisfied, and, in addition, for tp <= < tp+ 1, P O, 1,..., m, let

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

vl flq A(t s)
q=O

q=p+ ltq

7pq(h) Ii
A(tp, tq)][ ds<= dp(h),

tq+ tq

t + tq mp(h)

B(t s)-
7o(h)

B(t, t) ds <= dp(h),
tq + tq

q= p+ tq+ tq mp(h)

C(y(s) s)
y.,(h)

C(y(s), tq) ds <= dp(h),
q=O tq+ tq

q=O

q=O

a(y(s), s) 7.,q(h)
a(y(s), t)

tq+ tq
ds <_ dp(h),

b(y(s), s)
7mq(h)

b(y(s), tq)
tq+ tq

ds <= (h),

where limh-O+ qS(h) O. Then there exists a sequence h with hk 0 as k ,
such that !1 yp(hk), vp(hk) is the optimal solution of Problem (6.3)--(6.4)for h hk,
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thenfor t, < tv+a,p O, 1, ..., m,

(6.15a) lim IIx(t)- ypfhk)ll 0, lim [[u(t)- vp(ht)[[ 0,

(6.15b) lim It(x, u) I(y(h), v(h), hk)[ 0,

where x(t), u(t) is the optimal solution to Problem (6.16.2).
Proo Let (h) denote functions tending to zero as h 0, and let C be con-

stants. For t s < t+ , tp < tp+ 1, let us assume that

yh(t) yp(h), A(t)= f(t), Wh(t)= w(h),

Ah(t s)= (h) A(tn, t), Bh(t s)= V(h) B(tn, t),tq+ tq t+ t
Vh(t p(h), yh(t)= Trap(h).

Then (6.3), (6.5)and (6.6)can be rewritten

(6.16) Yh(t) fh(t) + [A(t, s)yh(s) + Bh(t, s)vn(s)] ds,

(6.17)

(6.18)

wh(t)=(c3c(yh(t)’tp)vh(t)’vh(t)y(t) Oa(yh(t),c3y tp),

Ob(Yh(t), tp) r Wh(S) 7h(S)
Ah(S t) Ks+ y +

0+ 7(s) h(t)

1/2(C(yh, tl)Vh, Oh)

T Wh(S) Th(S)
Bh(S t)ds Vh).a(Yh, tp) +

7h(S) 7h(t)p+l

H[yh, (Wh/)h) Vh, lp hi
h

In formula (6.18), taken for h hi, let us replace Yhl and Whl(S)/])hl(S by Yh2 and
Wh2(S)/)h2(S), respectively, and let v(t) yield the minimum of the function thus ob-
tained. Then, analogous to Theorem 4.5 of [7], for the discrete case

p+l

where tv+ is taken to be the smaller of t+ for h ha, h h2. Because of (6.9)
the coefficients of the function thus obtained differ from the coefficients of (6.18)
taken for h h2 by amounts which tend to zero as max(ha, h2) 0. Thus, in
analogy to Theorem 4.4, for the discrete case,

Ilvh(t)- Vh=(t)ll Ilvh(t)- (t)ll + Ilk(t)- Vh=(t)ll
(6.19) ! w(s) wds)lL I[yh,(t)- yh(t)[[ + ( ds + O(h).

p+l



OPTIMAL CONTROL 353

Taking into account the existence of the second derivatives of C(x, t), a(x, t) and
b(x, t) with respect to x, from (6.17) and (6.9) there follows

+ Cllv,(t)- v(t)ll + c , ,(s)From this

,(t)
(6.20)

+ C6 yh,(s)- yh2(s) + IlVh,(S)- Vh2(S) )ds + q3(h).
p+l

From (6.19) and (6.20) there follows

7h,(s)
ds + q52(h).

Ilvh,(t)- vh(t)ll < C7 IlYh,(t)- y(t)ll

(6.21)
+ II(s (sll ds +

p+

Now let xh(t) be the solution of (6.1) for u(t) v(t). It is easy to show that the
set offunctions xh(t) is uniformly bounded and equicontinuous, and thus, according
to Arzela’s theorem, it is possible to choose a sequence h 0 such that xh(t) x(t)
uniformly on the interval [0, T]. In view of (5.23), y(t)converges uniformly to the
same function. Thus, according to (6.21), vh(t) is a fundamental sequence converg-
ing to a certain function u(t). Conditions (6.6), (6.8), (6.10), (6.12) and (6.13) assure
the applicability of Theorem 5.2. From the corollary to this theorem, x(t), u(t) is
an optimal solution to Problem (6.1)-(6.2), and (6.15) is a corollary to that theorem.

7. In the case that not only the system of equations but the functional, as
well, is linear, it is possible to develop an even more general method for finding an
approximate solution of the optimization problem. Thus let it be required to
minimize the functional

(7.1) I(x, u) [(a(s), x(s)) + (b(s), u(s))] ds,

where a(s), b(s) are n- and r-dimensional vectors respectively (Problem (6.1)--(7.1)).
Let us choose a sequence 0 to < < < tm T with tp+ tp <= h,

and replace the integrals in (3.1) to (3.4) of [73 by sums derived from some quad-
rature formulas (not necessarily the same for each integral). We shall obtain as the
result of this

(7.2)

(7.3)

p-1 p-1

y f(t) + v’)(h)A(tp, t)y + (h)B(t,, t)v,
q=O q=O

p--1 p--1

I(y, v, h) y}n3)q(h)(a(tq), yq) + /(m4)q(h)(b(tq), Vq),
q=0 q=O
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m-1

(7.4) wp a(tp) + WqT(q)(h)A(tq, iv)
q=p+l

(7.5) H(w, v, tp, h) b(tp) + WqT6)(h)B(tq, tp), Vp
q=p+l

Let the vector v satisfy the conditions

(7.6) H(w, Vp, tp, h) min H(w, v, tp, h)

and
m-1

(7.7) H(tv, h) b(tv) + Wqy6)B(tq, tv).
q=p+l

THEOREM 7.1. Let conditions (A) and (B) of [7] and equations (7.2) to (7.6) all
be satisfied. Also, for 0 <= q < p <_ m, let the coefficients 7) satisfy 7)(h) > O,

1, 2,..., 6, as well as the conditions
p-1 m-1

(7.8) y)q(h) < A, i= 1,2, 3,4, 7(h) <= A, i-- 5, 6,

(7.9)

q=0

q=O

(7.11) a(s) a(tq)
q=0 tq+ tq

q=O

(7.13) A(s t) 7qp (h)
q=p+ tq+ tq

1 ftq+X 6p,(h
B(s, t)

q=p+ Vtq

q:p+l

tq+ tq
A(tp, tq) ds <= 4(h),

7(pZq)(h)
(7.10) B(tp, tq)[, ds<= b(h),

tq+ tq

ds <= dp(h),

7q)(h)
(7.12) b(tq) ,l ds <_ dp(h),

tq+ tq

(7.14)
tq+ tq

A(t, tp) ds <_ dp(h),

B(tq, tp)[[ds<_dp(h),
where c/)(h) 0 as h O. Then if x(t), u(t) is the optimal solution to Problem (6.1)-
(7.1), maxllx(t) Ypll 0 uniformly as h Ofor

(7.15)

and

(7.16)

tp -< < tp+ l,

lim II(x, u) I(y, v, h)l O.
h-O

p=0,1,...,m- 1,

Proof Let us denote by i(h) functions which tend to zero as h-, O. Sub-
tracting (7.4) from (3.3) in [7], and taking into account (7.8), (7.13) and the
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continuity of a(t), we find that for tp =< < t,+ 1, P 0, 1, ..., m 1, max [z(t)
wv =< 4 (h). From this, in view of the continuity of b(t), taking into account (7.8)

and (7.14) we obtain max [H(t) H(t, h)ll =< 2(h), where the maximum is taken
with the same conditions. Let us divide the interval [0, T] into two parts A 1(6) and
A2(6). In AI(6) we shall include those points at which the minimum angle between
the hyperplane (3.7) in [7] and the edges of the polyhedron U is no less than /2,
with the remaining points being assigned to A2(6). It is easy to prove that for any
e > 0 there can be found 60 > 0 such that for < o, the measure of A2(b is less
than e. For if the contrary were the case, we could let tend to zero, obtaining
in the limit a set of positive measure at the points of which the hyperplane (3.7) of
[7] would be parallel to some edge of U, which would contradict condition (B)
of [7]. Now let us choose an h(6) such that for h =< h(6) and tv A(6), the minimum
angle between the hyperplane

H(i)(tv, h)v(i) 0
i=1

and the edges of U is not less than 6/2. Then in view of (3.5) of [7] and (7.6), u(t)
vv on A(6), for v <= < tv+ . From this, since the measure of A2(6 is less

than e and conditions (7.8) to (7.10) are satisfied, (7.15) is proved. Equation (7.16)
follows analogously from (7.8), (7.11) and (7.12).
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U’-STABILITY (1 =< p =< ) OF NONLINEAR TIME-VARYING
FEEDBACK SYSTEMS*

M. Y. WU AND C. A. DESOER"

1. Introduction. In the past few years the L2-stability [1], [2] and the L-stability [33, [4], [5] of certain classes of nonlinear and time-varying feedback
systems have been extensively studied. However, no general LP-stability results
valid for any p in [1, oo3 are known. Recently Desoer and Wu [6], 7], [8] have
derived LP-stability conditions for a very broad class of linear time-invariant sys-
tems whose impulse responses may include an integrator and an infinite sequence
of impulses. Chen [9] has considered the LP-stability for a class of linear time-
varying systems. In this paper the transformation technique, the small gain theorem
and some results of Desoer and Wu [6], [7], [8] are used to derive the LP-stability
for a class of nonlinear time-varying systems. As an application, LP-stability
conditions for the damped Mathieu equation are obtained and compared with
recent zero-input results.

To save space, we shall derive only the stability results for the multiple-input,
multiple-output case. The results for the scalar case will then be stated as a corol-
lary.

2. Notations. In this paper we shall encounter real numbers, vectors (in
R") and elements of function spaces. Lower-case boldface (e.g., e, u) denotes vectors
and upper-case boldface (e.g., K, G) denotes matrices: R+ denotes the set of
nonnegative real numbers. The symbol I- is used to denote both the magnitude of
a real number and the norm of a vector in R". For function spaces, we use the
following norms:let x:R + R", then, by definition,

[Ix p [x(t)[ p dt <__ p <

and

ess sup
t>-o

The resulting normed spaces are denoted by L,p, p . If n (scalar case),
we write Lp. When the symbols ]. and I" are applied to a matrix or a matrix-
valued function, they denote the induced operator norms. Note that the norms

* Received by the editors August 13, 1968, and in revised form November 22, 1968.
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Laboratory, University of California, Berkeley, California 94720. This research was sponsored by the
National Aeronautics and Space Administration under Grant NsG-354 (Suppl. 5) and the National
Science Foundation under Grant GK-2277.
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defined above are valid independently of the choice ofnorm in R" because all norms
in R" are equivalent.

Following Zames [2], the space L,Pe, the extension of L,p space, is defined as
follows:

Le& (.) Ix(t)l’dt< o, VTe[O, oe), l__<p< o

and

L. ___a {x(.)less sup Ix(t)l < ,
t[O,T]

VT [0, )}.

Roughly speaking, if x Le, then x does not have a finite escape time.
In order to allow us to consider a larger class of linear subsystems whose

impulse responses may include an infinite sequence of impulses, we introduce the
Banach algebra . (see [6], [7], [8]): Let f be a distribution whose support is in
[0, c). We say that t" is an element of’, if

f(t)-- f(t) + fib(t- ti),
i=0

where fa" [0, )- R" is in L,, the sequence {ti} is in [0, ) with 0 to <
< t2 < ..., {fi} is a sequence of constant vectors in R" subject to S=o Ifil <
and 6 is the Dirac "function." The set of all elements in, constitutes a commuta-
tive Banach algebra with the usual definition for addition, the product defined by
convolution, and the norm defined by

i=0

These facts are well known [10], [11]. Similarly, we say that an n n matrix-
valued distribution F is in e’.. whenever each of its column vectors is in ’..
If n 1, we write e’.

The symbol "^" over a function, such as , denotes the Laplace transform of f"
it is defined by

(s) ___a f(t) -t dt.

For distributions, it is defined according to L. Schwartz [15] or, by using Stieltjes
integrals, according to Widder [16].

The subscript T, as in fT, denotes the truncation of the function f at time T
namely,

ff(t) for 0=<t =<T,
fT(t)

0 for t>T

3. System descriptions. In this paper we shall consider the multiple-input,
multiple-output, nonlinear, time-varying system S as shown in Fig. 1. The vectors
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u(t), u2(t), ea(t), e2(t), y(t)and y2(t) belong to R". The block labeled G is a linear,
time-invariant, nonanticipative subsystem whose input-output relation is defined
in terms of its impulse response matrix G by the convolution integral

(1) y(t) = (G. e)(t) G(t :)e(:) d:.

The block labeled , is a memoryless, time-varying nonlinearity whose input-
output relation is defined in terms of a nonlinear function q’R" x R / --. R by

(2) y(t) g[e(t), t].

The system equations (see Fig. 1) are (1), (2) and

(3) e U Y2,

(4) e2 =u2 +Yl.

In the analysis we consider only the behavior of the system for _>_ O" therefore we
take u(t), U2(t), el(t), e2(t), yl(t) and y2(t) to be zero for < 0. The inputs u(.

FIG.

and U2(" take into account the effects of the outside disturbances and the effects
of the initial condition at 0.

4. Main results.
THEOREM 1. Consider the system S (Fig. 1). Let the input-output relation of the

linear time-invariant subsystem G be given by (1), where the open-loop impulse
response matrix G is of theform

.for >= O,
(5) G(t)

O .for < O,

with R being an n x n constant real matrix and Ge ’n Let Or be the time-varying
nonlinearity whose characteristic p( ., has the following properties:

NI. q(., .): R" R+ --} R" and p is a continuous function with respect to its

first argument and is a regulatedfunction [12 with respect to its second argument.

R" is called a regulated function if for fixed x e R", p(x, t) has (finite) one-sided(x,t) R" R+
limits at every R
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N2. There is an n n constant real matrix K and a positive real number 2 such
that

(6) I(o, t)- Kcrl _-< ,lcrl

for all R + andfor all 0 R".
For some p in [1, ], let the inputs Ul, u2 be in LP, and, for all such inputs, the

corresponding el, e2 be in LP.e Under these conditions, if
(7) inf Idet[l + t(s)K]l > 0

Res>=O

and !feither R 0 or all the eigenvalues ofRK are in the open right half-plane,

(8) IIHII < 1,

where

(9) HK(t) a__ a- 1{ [I + (](s)K]- l(s)},
then el. e2, Y and Y2 are in LP,.

As a special case of Theorem 1, we state the results for the scalar case as
Corollary 1.

COROLtR 1. Consider the system S (Fig. 1). Let the input-output relation of
the linear time-invariant subsystem G be defined in terms of its open-loop impulse
response g by

(10) yl(t) (g* el)(t) a__ g(t z)e(z)dz,

where g is oftheform
r + ge(t) fort >__0,

(11) g(t)
0 .[’or < O,

with r being a nonnegative constant and gee ’. Let t be the time-varying non-
linearity whose characteristic qg(., has the following properties:

N|. qg(.,. ):R R+ R and q9 is a continuous function with respect to its

first argument and is a regulatedfunction with respect to its second argument.
N2. For somefinite constants k and 2

(12) kl 0"2 o’q(o’, t) k20"2

for all R+ and tr R. For some p in [1, 0], let the inputs u x, u2 be Lp and, for
all such inputs, the corresponding el, e2 be in LPe Under these conditions, iffor
some constant k [kl, k2] with kr > 0

(13) inf l1 + k,(s)l > 0,
Res 0

(14) hk < 1,

where

(15) hk(t) a___ 0-1 [1 + k(s)]- ,(s) }
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and

(16) max {]k2 kl,]k, k]},
then el, e2, Yl and Y2 are in Lp.

Remark 1. If, in Corollary 1, we take k (kl + k2)/2, then N2 may be written
as Iq(a, t) kal _<= 21a[, with 2 [k2 kl/2, which is the direct specialization
of N2 to the scalar case.

Remark 2. In Corollary 1, since both hk and 2 depend on k, there may exist an
optimal choice of k such that (14) will be satisfied for the largest class of the linear
subsystems.

Remark 3. If the assumptions of Corollary are specialized to g e L and
p , then Corollary reduces to a result of Sandberg [3].

5. Proofi To prove Theorem 1, we need the following two lemmas.
LEMMA (see [7], [8]). Consider the system S (Fig. 1), where for all e2 Rn,

all R+ (e2, t) Ke2 with K being an n n constant real matrix. Let the open-
loop impulse response matrix G be defined by (5). Under these conditions, !f

inf Idet [I + ,(s)K]l > 0
Res>_O

and if either R 0 or all the eigenvalues of RK are in the open right half-plane,
then (I + GK)-1 is a well-defined nonanticipative operator in g’.,. Furthermore,
the closed-loop impulse response matrix HK of the system is also in ,, where
HK(. is defined by (9).

LEMMA 2 (Small gain theorem). Consider a more general system than the one
shown in Fig. 1, in that G and are replaced by H. and H2 respectively. Let H
and H be nonanticipative maps ofL, into L,, for somefixed p [1, c]. Let Hx be
linear. Let e and e2 be in L,, and u u be defined by the system equations. Under
these conditions, ((

(a) for some n n constant real matrix K, (I + HK)- maps L, into L. and
is nonanticipative,

(b) there exists some positive real number 2 such that

(c)

]I(H2e2)T Kezrl[p 1[e2rl[p

[l(l + HIK)-IHIII < ,
for all T [0, ), e2 LP.e,

(d) ? I1(I + HIK)-HIlI2 < 1,

then

In particular, !fu, l12 e L.p, then e2 L,p.
Lemma 2 is a slight modification of the results in [13], [14].
ProofofTheorem 1. Let K be an n n constant real matrix. Make the system

transformation such that the block in the forward path becomes

(17) H (I + GK)-’G
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and the block in the feedback path becomes

(18) , a= ,_ KI.

Let flu(s) be the transfer matrix of HK; then

(19) 121K(s) [I + ((s)K] x((s).
By assumption (7) of the theorem and Lemma we see that (I + GK)- is a well-
defined nonanticipative operator in .,. Furthermore, H(. ), defined by (9),
is also in sO’, ,. Therefore, H is of the form

(20)
Haft) + Hg(t tj) for => 0,

H(t) =o

0 fort<O,

where Ha has all its column vectors in L, and the Hs’s are constant matrices such
that oo IHsl < oo and 0 to < < t2 <--. Also H has a well-definedj-0

norm

(21) HII IHa(t)l dt + IHI.
j=0

Note that IIHK is the induced operator norm when p oo and is an upper bound
on the induced operator norm when p # oo. By assumption N2, we have

lltp(e2, t)T Ke2Tllp 2lle2Tllp, for all T [0, c), e2 LPne
Finally, by assumption, In 12 < 1. Thus we see that all conditions of Lemma 2
are satisfied and hence it follows that e2 L,p, _< p =< . Since Y2 q(e2, t)
and

< 21e21Iltp(e2, t) p IlKe2llv < p(e2, t) Ke2 v v,

it follows that Y2 L,p. Finally e and Yl are also in Lnp because e u Y2 and
Yl e2 u2. This completes the proof.

6. Example. As an application of the results in 4, we derive an Lp stability
(1 < p __< ) criterion for the damped Mathieu equation with a.forcing function.
The stability regions in the parameter-plane are then compared with those obtained
by Michael [17] and Parks [183 for the free damped Mathieu equation. The
result is stated as Theorem 2.

THEOREM 2. Consider the forced damped Mathieu equation defined by

(22) j + a)) + (b + e, cos nt)y u(t),

where a, b, e, and n are somefinite constants with a > O, b > 0 and n > O. Let k be a
real number such that b + k > O. Let 2 max {le kl, le + k]}. Ifeither

(i) a2 >4(b+k) and 2<{(b+k)[a2-4(b+k)]/2}/a,
OF

(ii) a2 < 4(b + k) and 2 < {a[4(b + k)- a2]’/2}/4,
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then u Lp, <= p , implies y Lp. Furthermore, if u L2, then y L2 L
and y(t) 0 as - o.

Proof. First note that from the Bellman-Gronwall inequality, if u Lep, then
y Lp. Now rewrite (22) as

(23) + a9 + by +(ecos nt)y u(t)

and observe that (23) is the system equation of the system S (Fig. 1), where the
linear, time-invariant, nonanticipative subsystem G has

(24) (s) L
sz + as + b

as a transfer function and the block in the feedback path is the memory-less,
time-varying gain

(25) if(t) e cos nt.

Let g(t) a__ e-l[(s)] be the open-loop impulse response of G. Since a > 0 and
b > 0, we see easily from (24) that g e L L, i.e., g Lp for any real p
Let k be some real number and make a system transformation as described in the
proof of Theorem 1" we obtain

(26) k(S) a___
S2 -Jr" as + (b + k)

and

(27) Ck(t) = q(t) k.

By assumption a > 0 and b + k > 0; clearly hk(t) .-1[k(s)] e L1. From (26)
we obtain

1 { I a (a2-4(b+k))/2,1hk(t)=(a2_4(b+k))/2 exp -+ 2
(28)

-exp[ a2 (aZ-4(b+k))’/2]}2
Now we consider two separate cases" In case assumption (i) holds, i.e., a2 > 4(b
-k- k), [a2 4(b + k)] /2 is.a real number. We obtain from (28)

a
(29) IIhll < (b + k)(a2 4(b + k))I/a"

From (25) and (27), we note that liff(t)l 2. By assumption (i), Ilh, llx2 < 1. In
case assumption (ii) holds, i.e., a2 < 4(b + k), [a2 -4(b + k)] /2 j[4(b + k)

a2] /2. From (28) we obtain

(30) hk(t)
(4(b + k)- a2)/ exp
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Hence

4
(31) Ilhkll a(4(b + k)- a2) 1/2"

Since li};(t)l < R, and by assumption (ii), 2 < [4(b + k)- a2]/2a/4, we have
Ilhkll 2 < 1. So in both cases, Ilhkll 2 < 1. It then follows from Corollary 1 that
ueLp, 1 <= p <__ oo, implies that ye Lp. Hence, so is eeLp because e u y.
Furthermore, if u e L2, then y e L indeed y g e and both g and e are in L2,
thus j)= p,,eL. Moreover, by the Riemann-Lebesgue lemma, y(t)- 0 as

00. This completes the proof.

(Porks)----/

0.5 \\xx’,. k: 0 Stability regions in

(Parks)---’x\L
the (b- )-plane
for the damped
Mathieu equation’x,,,,.... ;+,+(b+E cosnt)y=u(t)

FIG. 2

Remark 4. In Theorem 2, if the linear time-varying gain O(t)= e cos nt is
replaced by a nonlinear time-varying gain (p(r, t) subjected to Iqg(tr, t)l =< I1 Irl,
then the results of Theorem 2 still hold.

Remark 5. Figure 2 shows various stability regions of (22) in the (b e)-plane
with a obtained by Theorem 2 and by Parks [18]. With k 0, the LP-stability
region (i.e., the regions enclosed by the solid line) are I1 < [b(a2 4b)X/2]/a when
a2 > 4b and lel < [a(4b a2)1/2]/4 when a2 < 4b. With k -b + 5a2/16, the Lp-

stability region (i.e., the region enclosed by the dash-dot line) is lel < b (3a2)/16.
Note that the region obtained with k -b + 5a2/16 is much larger than those
obtained with k 0. This justifies Remark 2 that an appropriate choice of k will
give a better stability result. The stability regions (i.e., the regions enclosed by
dashed lines) obtained by Parks [18] for the free damped Mathieu equation (i.e.,
u(t) =- 0 in (22)) are e2 < aZ(4b a2)/4 when a2 < 4b and e2 < b2 when a2 > 2b.
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Note that even though there is a forcing function, the stability region obtained by
Theorem 2 with k b + 5a2/16 is not contained in that obtained by Parks
for the zero-input case.
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ERRATUM" ON A MATRIX RICCATI EQUATION OF STOCHASTIC
CONTROL*

W. M. WONHAM

In 5, the symbols N(s), N(t), N(a) should be replaced wherever they occur
by the symbol N.

In 6, the expression (6.1) should read"

FI- PB(F + N)-1B’P.

This Journal, 6 (1968), pp. 681-697. Received by the editors January 25, 1969.
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CONTINUOUS TIME MARKOVIAN SEQUENTIAL
CONTROL PROCESSES*

S. S. CHITGOPEKAR"

Abstract. Consider a stochastic system with a finite state space and a finite action space. Between
actions, the waiting time to transition is a random variable with a continuous distribution function
depending only on the current state and the action taken. There are positive costs of taking actions
and the system earns at a rate depending upon the state of the system and the action taken. We allow
actions to be taken between transitions. A policy for which there is a positive probability of an action
between transitions involves "hesitation." A form of the long range average income is the criterion
for comparing different policies. It is shown that there exists a nonrandomized stationary policy that
is optimal in the class of all policies for which the actions taken form a sequence. "Hesitation" can be
eliminated if the waiting time distributions are exponential. Howard’s policy improvement method
can be used to obtain an optimal policy.

1. Introduction. We are interested in a stochastic system which at any time
can be in one of a finite number of L states. In each of these L states, we have
K( <) alternative actions available to us. In state i, it costs c(> 0) to take action k

k per unit oftime, k__ 1 K,i= 1 L.and then the system earns at the rate ai
The probability of transition from state to state j, under action k, if there is no
further action before a transition, is denoted by pj. We have

(1.1)
p _>_ 0, for all i, j, k
L

Z Pi--- 1, for all i, k.
j=l

We assume that under action k in state the waiting time to transition, ifthere
is no further action before a transition, is a random variable with a continuous
distribution function with a finite mean and depending only on the current state
of the system (i) and the action taken (k). Unlike the models considered in [4],
[5] and [6], we have assumed these "waiting time" distributions to be independent
of the state to which the system makes the next transition. Let F(x) denote the
waiting time to transition distribution function if action k is used in state i. Then
assume

and
F(0) 0; F(x) > 0, for all x > 0

d
F(x) exists and is finite; k= 1,.--,K; i= 1,...,L.
dx x=O

We also assume that in each state i, 1, ..., L, there is at least one action kz
such that the resulting transition probability matrix P (p)) is the transition
probability matrix of an irreducible Markov chain. This assumption will be
discussed in the Appendix.

* Received by the editors July 16, 1968, and in revised form January 17, 1969.
-Hyderabad, A. P., India. This research is part of a doctoral dissertation submitted to the

Florida State University, Tallahassee, Florida 32306. This research was supported by the Office of
Naval Research under Contract NONR 988(13): NR 042-003.
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Similar systems have been studied in [4], [5] and [6], where the class of
stationary policies taking actions only at the instants of transitions is considered.
We are interested in the existence and nature of optimal policies in a wider class
of policies that allow actions between transitions.

Any policy S is a rule of action. If a policy S is such that there is a positive
probability of an action being taken between transitions, following [1], we shall
say that the policy S involves "hesitation." Let G(. be a distribution function
(on [0, oz]) such that G(t) denotes the probability that an action would be taken
by time since the previous action, given that there is no transition before then.
We shall refer to such a distribution G(. as a "hesitation distribution."

We shall restrict ourselves to the class of policies 5e where for any policy S
in ,, actions are necessarily taken at the instants of transitions and the actions to
be taken form a sequence with probability one. Thus, any policy S in 5e is of the
following type"

After any transition and when an action is to be taken before a transition,
S specifies

(a) the action to be taken, possibly randomized and depending on the past
history of the system; and

(b) a hesitation distribution, possibly depending on the past history of the
system and the action taken just now.

For any policy S in 55, the criterion of interest is I(S), given by
N, E.S))

(1.2) I($) lim inf I(S) lim inf

where i(S) is the income earned under the nth ation and T(S) is the time spent
by the system under the nth action of the policy S. In neral, I(S) depends on the
initial state of th system. However, we shall s later that for the policies we need
to consider, I(S) will be independent of th initial stat of th system. In view of
this, this dpndence of I($) on the initial stat has ben suppressed in th notation
throughout. Lt

(1.3) I* sup I(S).
Serf’

We are interested in the existence and nature of S* such that

(.4) *= I(S*).
A policy, S*, satisfying (1.4) is said to be optimal.
DEFIqITIOq. A hesitation distribution G(- is said to be a one-point distribution

if there exists an x, 0 -< x _<_ , such that

G(t)= { fort<x,

for >__ x.

We shall denote such a distribution by G(. ).
DEFINITION. A policy S is said to be nonrandomized stationary if for each i,
1, ..., L, S specifies a pair (k, G) such that, whenever an action is to be taken
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in state i, S prescribes the action ki and a one-point hesitation distribution G(. ).
DEFINITION. If, on some occasion, a policy S involves the hesitation distribu-

tion Go(. ), then we say that the policy S involves instantaneous hesitation on that
particular occasion.

Remark. Go(. is included only for mathematical convenience and would
never be used as costs of actions are positive.

Let So S be the subclass of nonrandomized stationary policies.
THEOREM 1.1. There exists a policy S* in &ao that is optimal in 6(.

COROLLARY 1.2. Ifall the waiting time distributions are exponential, hesitation
can be eliminated.

The proofs of Theorem 1.1 and Corollary 1.2 appear in 5. The remainder
of this section gives easily derived properties of an optimal policy. Section 2
develops some of the tools required when evaluating policies having hesitation.
Properties of the nonrandomized stationary policies are discussed in 3. The
approximation of the continuous time problem by a discrete time problem is
developed in 4. Section 5 contains the proof of the basic theorem and gives some
qualitative properties of the optimal policy, 6 deals with the equivalence of
different criteria for the class of nonrandomized stationary policies and 7 gives
a computational method to obtain an optimal policy. Required results from
Markov chain theory are in the Appendix.

Let
0* max O(i, k), 0, min O(i, k),

i,k i,k

k ka* max ai, a, min ai,
i,k i,k

k kc* max ci, c, min C
i,k i,k

and

I*- I(S*).

LEMMA 1.3. a, c*/O, <= I* <= a* c,/O*.
Proof. The proof is straightforward.
Let

C,(1.5) Po a* a, 4-c*/O,
LEMMA 1.4. Any policy S for which liminfN_oo{=lET(S)/N} < #o is not

optimal.
Proof. For any policy S we have

a* c,Iv(S) < N

ET,(S)/N

Let p(S) liminf_o{= ET.(S)/N}. Then
a* c,(1.6) I(S) <= (s)
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If #(S) < #o, we have

I(S) < a* c,
(from (1.6))

#0

a* (from (1.5))
0,

_<_ I* (from Lemma 1.3).

Hence the Lemma.
In view of Lemma 1.4, we shall only consider policies S for which #(S) >= #o.

2. Some preliminary formulas and theorems. F(.) is a waiting time distribu-
tion and G(. is a hesitation distribution. When F(. F(. ), F is replaced by
i, k in all expressions. Similarly, when G(. )= Gt(. ), a one-point distribution,
G is replaced by in all expressions.

(2.1) O(F) the expected value of a random variable with distribution
function F(. ), such that F(0-) 0

dF(t) (1 F(t))dt.

(2.2) r/(F; G)= expected time to the next action when the waiting time
distribution is F(. and the hesitation distribution is G(.

(2.3)

t(1 G(t))dF(t) + t(1 F(t))dG(t)

dF(t) (1 F(t))G(t)dt

(1 V(t))(1 G(t)) dt

ff { ff (1- F(t)) dt } dG(x).

r/(F; t) (1 F(x)) dx.

From (2.3) and the last form of (2.2) we obtain

(2.4) q(F G) r/(F; t) riG(t).
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(2.5) q(F; G) probability of a transition before the next action when the
waiting time distribution is F(. and the hesitation distri-
bution is G(.

(2.6) q(F t) F(t).

(2.7) N(F; G) expected number ofactions before the next transition when
we hesitate repeatedly with the hesitation distribution
G(. while the waiting time distribution is F(. ).

lq(V; G) + 2(1 q(F; G))q(F; G)

+ 3(1 q(F; G))2q(F; G) +

q(F G)’
if q(F;G) > O, that is G(. - Go(. ).

When q(F;G) 0, we have

(2.8) N(F G) .
(2.9) O(F;G) expected time to transition when the waiting time distri-

bution is F(. and we hesitate repeatedly with the hesita-
tion distribution G(. until a transition occurs

t(1 G(t))dF(t) + (t + O(F; G))(1 F(t)) dG(t)

q(F;G) + O(F;G)(1 q(F;G)).

Thus, when q(F G) > O,

O(F G)
rl(F G)
q(F G)"

(2.10) O(F’, t)= fo 1 F(t)F(x) dx
Note that O(F) O(F; v) r/(F; oe). We shall define O(F; 0) limt_o O(F; t).
Note that q(F;G)= 0 if and only if G(.)= Go(.). Hence, when q(F;G)= O,
we have O(F;G) 0(F; 0). Let _G(. and G(. be such that

(2.11) 0(F; _0 min O(F;G)

(2.12) 0(F; G) max O(F;G).
G

LEMMA 2.1. _0(" and (. can be taken to be one-point distributions.
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Proof From (2.9), (2.4) and (2.5), we have

O(F G) Jo /(F; t) dG(t)

o
F(t) dG(t)

fo O(F t)F(t) dG(t)

f/ F(t) dG(t)

Since O(F; x) is a continuous function of x, we can obtain Xo satisfying

(2.13) O(F;xo) min O(F;x).
x[O,o]

Then

(from (2.3) and (2.10)).

O(F xo) O(F G) fE F(t){O(F xo) O(F t)} dG(t)

f/ F(t) dG(t)

Similarly, if Yo is such that

(2.14)

< 0 for all G.

O(F Yo) max O(F x)
x[O,oo]

then O(F;yo) >-_ O(F;G) for all G. Take _G(. Gxo(" and G(-) Gro ). Hence
the Lemma.

THEOREM 2.2. Let G(. be a distribution function on [0, A], A _< , and let
h(. be a monotone continuous function on [0, A]. For any given

(2.15) 0-- o < < < N_ tN A,

there exists adiscrete distribution G.( with its mass at the points t, O, 1, ..., N,
and such that

A

fo(2.16) [ h(t) dG(t) h(t) dG,(t).
d0

Further, if m(. is a monotone continuousfunction such that

(2.17) [m(ti) m(t_ x)[ <= e, 1,--., N,

then

(2.18) m(t) dG(t) re(t) dG,(t) <= 2e.

Proof The proof is standard. It should be observed that G,(. does not
depend on m(. ).
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3. The class of policies 6o. Any policy.S in 6eo is specified by {(ki, Gi)},
where k is the action and Gg(. is the hesitation distribution prescribed by S in
state i,i 1, ..., L. In this section, we will allow policies in 6o with {G(.)}
general, that is, not restricted to one-point distributions. Theorem 3.2 will show
that this added generality is not advantageous. In view of Lemma 1.4, we can
assume q(i;Gi) > 0 for all i. Let Xn(S) denote the state of the system after the nth
transition, n 0, 1,2,-... (Xo(S) is the initial state of the system.) Let Y,(S)
denote the state of the system at the time of the nth action, n 1, 2,-... It is
easy to see that {Xn(S)’n 0, 1, 2,..- } and {Y(S)’n 1, 2,... } are Markov
chains with state space {1,-.., L} and transition probability matrices P (pike)
and P’ (pj) respectively, where

(3.1) P’ij pkijq(i; Gi) + tij(1 q(i; Gi)),

0, if/ #j,
(ij

1, ifi =j.

It can be further seen that both the Markov chains {Xn(S)} and (Y(S)} have the
same class structure. From the Appendix it then follows that we need only consider
policies S in Ae0 such that the Markov chains (Xn(S)} and { Yn(S)) have only one
positive class.

In 1 we have defined I(S), our criterion of interest for any policy S, by (1.2).
Now define

N

E(itn2)(S))
n=l(3.2) I()(S) lim inf

--,o
E(T,(S))

n’--1

where T2(S) is the time from the (n 1)th transition to the nth transition and
i2(S) is the income earned during this period.

THEOREM 3.1. For any policy S in o, I(S) It2)(S).
Proof. Since we shall be considering a particular policy S in 6o, we shall

drop the index k from all the parameters. Let Gi(. denote the hesitation distribu-
tion in state i, 1, ..., L. Let P and P’ be the transition probability matrices
associated with the Markov chains {Xn(S)} and { Y(S)} respectively. We then have,
from the Appendix,

L

E lr’i(aitl(i’, Gi) ci)
(3.3) I(S) i-

L

n’irl(i; G,)
i=1

and

(3.4) I(2)(S)

L

i(aiO(i; Gi) ciN(i; Gi))
i=1

L

E iO(i; Gi)
i=1
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where r/(i; Gi), O(i; Gi) and N(i;Gi) are as defined in 2; {zti} are the stationary
probabilities associated with P (Pij); and {rt’i} are the stationary probabilities
associated with P’ (P’ifl-

{rt} are given by the system
i=>O, i= 1,...,L,

L

2 i-- 1,
(3.5) i=

are given by the system

(3.6)

L

rej= rtiPo, j= 1,...,L.
i=1

i>0 i-- 1,... L
L

i--- 1
i=1

L

Vnj 7"(,iPij j 1, L.
i=1

From (3.1), (3.5) and (3.6), we obtain

(3.7)

Thus

rci/q(i G)
7r’i L

E rci/q(i; Gi)
i=1

i= 1,.-.,L.

L

rc’i(airl(i; G,) ci)
I(S) :i=l L

Z rc’irl(i; Gi)
i=1

L

rci(aiO(i; Gi) ciN(i; Gi)
i=1

I(2)(S).

L

rciO(i Gi)
i=1

THEOREM 3.2. In 6Vo we need only consider policies involving one-point hesitation
distributions.

Proof Let S be any policy in 6Co and let I(S) I. Let G(. be the hesitation
distribution in state under the policy S, 1,--., L. We then have, dropping
the index k from all the parameters,

L

Z 7z,{aiO(i; Gi) ciN(i; Gi))
I(S) I i--

L

2 7"ciO(i; Gi)
i=1



MARKOVIAN SEQUENTIAL CONTROL PROCESSES 375

Let xi, 1,-.., L, be such that

(3.8) O(i xi)(ai I) ciN(i xi) max O(i x)(ai I) ciN(i x).
xe[O,ml

Let S’ be the policy that differs from S only in that the hesitation distributions
Gi(. are replaced by Gx,(. ), 1,..., L. We then have

L

2 i(aiO(i; xi) ciN(i; xi))
I(S’) = ,.

tiO(i; xi)
i=1

It can be easily verified that
L

rri{(ai I)[O(i; xi) O(i; Gi)] ci[N(i; xi) N(i;
(3.9) I(S’) I i=1

L, rciO(i xi)
i=1

Now for each i, 1, .--, L,

(ai I)[O(i; xi) O(i; Gi) c,[N(i; xi) N(i; Gi)

f) o(i t)Fi(t) dG,(t)
I) O(i Xi)

Ft(t) dG,(t) Fi(t) dG,(t)

Fi(t){[(ai I)O(i; xi) ciN(i; xi)] [(ai I)O(i; t) ciN(i; t)]} dGi(t)

Fi(t) dG,(t)

In view of (3.8) this last expression will be nonnegative if dGi(x) 1, 1, ..., L.
Hence the theorem.

THEOREM 3.3. There exists an optimal policy in the class 5o.
Proof. From Theorem 3.2, we can restrict our attention to policies in 5go

involving one-point hesitation distributions. Let S be any policy in 5z0 involving
hesitation distribution G,,(. in state i, 1, ..., L. Let denote only the choice
of actions in various states dictated by S. Then, dropping the index k from the
parameters, we have

I(S) I(S l, tL)

7C ai
i=1 0

(1 F(x)) dx ,]/F,(t,)
i1 ri (1 Fi(x) dx/Fi(ti)
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All the F(. are assumed to be continuous for each $. As a function of
l, ..., tL, I(S; l, "’", tL) is continuous on (0, oe] x x (0, oe] and is bounded
above. Since, if any ti 0, I(S) oe, I(S 1, "’", tL), as a function of 1, "’", tL,
attains its maximum. Further, since there is only a finite number of different $,
the theorem follows.

Example. The continuity assumption for F(. used in the proof of Theorem
3.3 cannot be dropped.

Consider a system with two states and one action in each state. Let

Fl(x)= 1-e-x, O<=x < ,

ll-e-x, O=<x< 1,

Fa(x)= -e-l, 1 <_ x < 2,

1, x>=2,

aa > al, cl >ca, Pla 1 =pal.

We have O(F1) O(Fa) 1.
Since there is only one action in each state, any policy S in St0 is specified by

(tl, t2) if Gt,(" and Gt2 are the hesitation distributions specified by S. Thus
I(S) I(tl, ta). Since FI(" is exponential, I(tl, ta) -< I(o t2) for all t2. We have
I(oe, oe) {(al + aa) (cl + c2)}/2 I, say. Now

Hence,

0(;0 ( (xl)

{:’+(t_l)e-1/(l_e-1),
I + m(aa(t- 1)- ca)

1 +re(t- 1)

ift_< 1 or t>=2,

ifl<t<2.

ift=<l or t>=2,

ifl<t<2,

where m [2e(1 e-1)]-1. Since a2 > al, d I(, t)/dt > 0 for 1 < < 2. Thus,

I + m(aa cz)
sup I(oe, t) lim I(oe, t) > I
<t<2 t’-*2-" 1 4- m

since c > c2. Hence no optimal stationary policy exists.

4. An approximation theorem. For any e > 0, let N be a positive integer
such that O*/N < e. Let t(r) be such that

(4.1)
r

0rl(i, k; t(r)) - (t, k),

r 0,..., N; k 1,..., K;i= 1,..., L. Note that since r/(i,k;x) is a con-
tinuous, increasing function of x, for each (i, k), (4.1) has solutions. If there is more
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than one solution, we take (r) to be the largest solution. Further,

(4.2) q(i, k; tf(r)) rl(i, k; tk(r 1)) < e

for all r, for any given (i, k).
Let f#t denote the finite class of one-point hesitation distributions {Gx(" )},

wherex{t(r)’r=0,-..,Nt;k= 1,...,K;i= 1,...,L}.
Suppose under some policy S, at some stage, action k has been taken in state i,

and a hesitation distribution G(. is used. Then the probability of a transition

before the next action is given by F(t) dG(t) and the expected time before the

next action is given by (i,k; t)dG(t). From (4.2) and Theorem 2.2, there

exists a discrete distribution G,(. with its mass at the points t(r), r 0, ..., Nt,
such that replacing the hesitation distribution G(. by G,(-) does not change the
probability of transition before the next action and the expected time to the next
action is changed by at most 2e.

Since the probability of transition before the next action is not changed by
replacing G(. by G,(-), the distribution of the state at the time of next action
also remains the same when G(.) is replaced by G,(. ). Further, observe that
G.(. is a randomization over the class ct.

DEFINITION. A policy St will be said to be an e-approximation of a policy S if
I(S) I(S)I =< e.

THEOREM 4.1. For any policy S and any sufficiently small > O, we can find
a policy St, an e-approximation ofS, such that S, only involves hesitation distributions
that are randomizations over the class .

Proof. Let (n)th be the first action at which S involves hesitation with
positive probability and let G(-) be the hesitation distribution prescribed by S.
Let G,(. be a randomization over such that replacing G(. by G,(. does not
change the distribution of states at the (nt + 1)th action and the time spent by the
system under the (n)th action is changed by at most 2ez. Replace G(. by G,(.
and after reaching the (n + 1)th state, create by randomization the time that would
have been spent under the (n)th action if the hesitation distribution were G(" and
given the (n + 1)th state. Record this time as part of the "history" of the system.
With this partially artificial history, take the (n + 1)th action as prescribed by S
and proceed to follow S. If the (nz)th action is the next action that involves hesita-
tion with positive probability, again replace the hesitation distribution by a
randomization over as before and proceed similarly.

Repeat the same procedure at every step where hesitation is involved.
Let S’ be the resulting modified policy. Note that part of the history

maintained is artificial in that we are not recording the actual time spent by the
system under any action that involves hesitation but creating by randomization
the time that would be spent by the system if the hesitation distribution prescribed
by S were to be used--conditioned on the state of the system at the time of the
next action. Since replacing G(-) by a proper randomization over : on any
occasion does not change the distribution of the state of the system at the next
action, the distribution of the histories of the system under S’ at the time of any
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action is the same as that under S. Hence we have

E.(S’) ET(S) + ,
where -2e2 __< e, <_ 2ee, n 1,2,...’, and hence

Ei,,(S’) Ei,,(S) +
where a, is the earning rate of the nth action. Thus

N

Ei,,(S’)
.,’N’ N

y ET.(S’)
n=l

Z Ei,,(S)+
n=l n=l

E T.(S) + Z .
n=l n=l

N

(s) + y ..
n=l

Therefore,

II(S’)- (s)l

N

y ET.(S)
n-’l

N N

n=l n=l
N N

E(S)+ Z .
n=l n=l

2Nile2 + 2Nile2
N N

n=l n=l

Ern(S)
N

+

where a max,,k [al and nN=l e,,/N. Since lim infN-oo
> 0 and e2 __< __< e2, it follows that, for sufficiently small

I(S’)- I(S)l e.

Take S S’. Thus, S is an e-approximation of S.

n= 1,2,...,

ET,(S)/N] >= Po

5. Existence of an optimal policy. Theorem 5.1 is a slight modification of
Derman’s [3] Theorem 3. His theorem applies to the discrete time situation where
lbr each (i, j) there exists a k k(i, j) such that Pi > O.

TI-IEOgEM 5.1 (Derman). Let w’ik and W’i’,k > 0 be two sets of expected rewards
under action k in state i, k 1,...,K; 1,... ,L. (K < ,L < ). Let W,
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and W’ be the respective expected rewards ascribed to the n-th action jbr a fixed
policy S. Consider the reward criterion

N

Z w,.
=1 i=1, Ls(i) lim inf" u

n=l

when the initial state of the system is i. Then there exists a nonrandomized stationary
policy S* such that

s,(i) max s(i), 1,..., L,

where the maximum is taken over all policies.
Remark. /s(i) may depend on the initial state for a general policy S but

s,(i) is independent of i.

ProofofTheorem 1.1. For every e > 0, let = 5 denote the class of policies
involving hesitation distributions that are randomizations over . By virtue of
Theorem 5.1, there exists a nonrandomized stationary policy S* that is optimal
in . Let.So be the optimal policy in 5o (Theorem 3.3). Note that So is independent
of e and S* is in 5o Let 1" sups 1(S). Clearly,

(5.1) I* >__ I(So) >= I(S*) for all e > 0.

Let {Sm’m 1, 2, } be a sequence of policies in O such that

(5.2) I(Sm) T I*.

For a given e > O, we can find an M such that for m __> M, we have

(5.3) I(S,,) >= I* e.

Let S,,e2 be an e-approximation of S,, (Theorem 4.1). Hence

(5.4) I(Sm,e) I(Sm)- e.

We thus have

(5.5) I(S*2) >= I(S,,,) >= I(S,,) e.

Now from (5.1), (5.5) and (5.3) we obtain

(5.6) I* >= I(So) >- I(S*:) >= 1" 2e.

Since e is arbitrary, from (5.6) we obtain

(5.7) I*- I(So).

Take S* So. Hence the theorem.
Remark. We have seen earlier ( 3) that if the assumption of continuity of the

waiting time distributions is dropped, an optimal stationary policy may not exist,
and hence, an optimal policy may not exist. However, part of the inequality (5.6)
is still true, i.e.,

(5.6’) I* >= I(S*:)>= I* 2e.
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Thus, it follows that, even if an optimal policy does not exist, we can find a non-
randomized stationary policy that is "almost optimal."

Proof of Corollary 1.2. The corollary follows immediately from the fact that
for exponential distributions, O(i;t) O(i) for all t.

We see from Corollary 1.2. that when the waiting time distributions are
exponential, we can eliminate from consideration policies that involve hesitation.
A question that arises is whether the same remains true when the distributions are
not necessarily exponential. The following example answers this question in the
negative.

Example. Consider a system with two states, with one action in each state
and such that

x, O_<_x_<_ 1,
Fx(x)=

1, x> 1,

F2(x)= 1-e-, O<=x< ,
a 4, a2 2; Cl C2 1; Pt2 1 P21.

There is only one policy S in 5e0 not involving hesitation and

1(S)
t(aO(1) cx) + 7z2(a20(2 c2)

rex0(1) + rc20(2)

Since P12 P2I 1, we have rl re2 1/2. Also 0(1)= 1/2, 0(2)= 1. Thus
I(S) 4/3. Let S’ be the policy that involves the hesitation distribution G.s(" in
state 1 and no hesitation in state 2. We have

0(1" t) dx 1
2"

Hence, I(S’) 43/32 > 4/3.
THFORFM 5.2. Let S be an optimal nonrandomized stationary policy with

hesitation distributions Gt,(" ), 1,... ,L, and let I(S) I. Then if ai >= (<=)I and
Fi(.) is such that the expected time to transition in state cannot be increased
(decreased) by hesitation, then ti o.

Proof Let S’ be a policy, that differs from S only in that it involves no hesita-
tion in state i. Let I’ 1(S’). Then

I- I’= rci(O(i)- O(i; ti))(I- ai) cirti(N(i; ti) 1).
o(i) + 0(j’; t)

Now, if ai >= (<=)1, O(i; ti) <= (>=)O(i) and ti < oe, we shall have 1- I’ < 0, a
contradiction. Hence the theorem.

Remark. The result of the Theorem 5.2 also follows from the fact that the
hesitation distributions involved in the optimal policy are such that they maximize,
for each i, O(i t)(ai 1) ciN(i t) (Theorem 3.2).

THEOREM 5.3. Ifci C, ai a and O(i, k) Ofor all and k, hesitation can be
eliminated.

Proof. Let S be an optimal nonrandomized stationary policy. For simplicity,
we shall drop the superscript k from all the parameters. Let Gx,(" be the hesitation
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distribution involved in state i, 1, 2, ..., L. We then have
L., niN(i xi)

I(S) a c i=1L
rciO(i xi)

i=1

Let S’ be a policy that differs from S only in that it involves no hesitation. We then
have I(S’) a c/O and

I(S) I(S’)= c

L

reiN(i; xi)
i=1
L

riO(i; xi)
i=1

reiN(i; xi)(tl(i; xi) O)
i=1--- L

0 niO(i; xi)
i=1

Thus, unless xi c for all i, 1(S)- I(S’)< O, a contradiction. Hence the
theorem.

Note that if c c and O(i, k) 0 for all i, k but the a are not necessarily
equal, we have, for any nonrandomized stationary policy S,

L L

Z iaiO(i; xi) Z iU(i; xi)
I(S) i i--c

i=1 i=1

The first term lies between a, and a* and if c is large in comparison with

maxi.k ]a], the second term is the dominant term and we have
L

nN(i; x)
I(S) -c

nO(i; x3
i=1

Hence we can almost eliminate hesitation.

6. Equivalence of different criteria. I(S) and I(2)(S) have been defined in (1.2)
and (3.2). Now denote I(S) by I(1)(S) and define

N

i.(S)
I(3)(S) lim inf

2 T.(S)
n--1

N

i(.2)(S)
I()(S) lim inf g- Z T(,,)(S)
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Its)(S) liminf
Tc ’

I6)(S) lim inf
IT(S)

Too Z

EIT(S)

where IT(S) is the income earned up to time T under the policy S. Note that i(3),
I4) and i(6) are random variables. We then have the following theorem.

THEOREM 6.1. If S is any nonrandomized stationary policy such that the
associated Markov chain {X,(S)} has only one positive class, then with probability
one, I1)(S)= I(2)(S)= /(3)(S)"-- /(4)(S)- It5)(S)- I(6)(S).

Proof. From Theorem 3.1, we have

(6.1) ItI)(S)-- /2)(S).

From Theorem 1 of the Appendix, it follows that

/)(S) I3)(S) with probability 1,
(6.2)

I2)(S) I)(S) with probability t.

Now consider IT(S). Suppose the system starts in state which belongs to the
positive class of the Markov chain {X,(S)}. In terms of transitions, define a cycle
as the period between successive returns to state i. Since S is nonrandomized
stationary and the associated Markov chain has only one positive class, the
successive cycles are independently and identically distributed and with prob-
ability one, the number of transitions in a cycle will be finite. Let vi(#i) denote the
expected income (length) of each cycle. Let N(T) denote the number of complete
cycles in time T; V,(i), the income earned in the nth cycle and W,(i), the income
earned during the (n + 1)th incomplete cycle. We then have

(6.3)

i5)(S) lim inf E
T- Z

V(i) + WvT)(i)
Ln=

I(6)(S) lim inf
Too Z

V(i) +
L.=

The length of any transition is finite with probability one and so is the number of
actions to a transition. Hence, the income earned in any cycle is finite with
probability one. Hence limT_ WNT)(i)/T 0 with probability one. Thus,

(6.4)
I(5)(S) lim inf E VtT) V.(i)

T n=l T

I(6)(S) lim inf NT) V(i)
Too n=1 T
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It then follows from [7] that

ltS)(S
(6.5)

/i

I(6)(S v_[/ with probability one.

If G(. ), 1, .-., L, are the hesitation distributions prescribed by the policy S,
we have

#i O(i Gi) + rciO(j Gj)/rt
(6.6)

v, {a,O(i; G) c,N(i; G,)} + rcj{ajOq; Gj) cjNq; G)}/,.

Thus,

(6.7) I1)(S vi.

The theorem follows from (6.1), (6.2), (6.5) and (6.7).
Now suppose the initial state of the system does not belong to the positive

class of the Markov chain {X,(S)}. With probability one, the system will enter the
positive class in a finite number of transitions. Since the length of a transition and
the income earned during a transition are finite with probability one, we still have

i5)(S vj

I(6)(S v_j with probability one

for any statej in the positive class of the Markov chain {X,(S)}. Hence the theorem.
Remark. Although there is an optimal nonrandomized stationary policy for

I1) and the six criteria are equal with probability one for all stationary policies,
it has not been shown that there are optimal nonrandomized policies for i(2)
through 1(6).

7. Determination of an optimal policy. In view of Theorem 1.1 we shall
restrict ourselves to the class of nonrandomized stationary policies. Any policy in

x L where ki is the action prescribed by S inthis class is specified by ((ki, i))i=l,
state and Gx,(" is the hesitation distribution involved in state i, 1,..., L.
If S is such that the Markov chain {X,(S)} has only one positive class, then in view
ofTheorem 6.1 our system under the policy S is equivalent to the system considered
in [4] the mean waiting time in state is O(i;k, x); the reward due to transition
from state to state j is -c’N(i;ki, x); the probability of transition from state
to state j is pk); and the actions are taken only at the instants of transitions.
Corresponding to equation (37) of [4], we now have

(7.1) vi + gO(i" xi) a’O(i" x) ck’N(i" x) + pk,ijV,i’ i=I,...,L.
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Here vi vj can be interpreted as the limit, as T oo, of the difference between
the total expected income up to time T given that the system starts in states and j
respectively. Rewriting (7.1) we obtain

a’O(i" xi) ck’N(i" xi) + Pijvjk’ Vi
i=l L.(7.2) g

O(i ki, xi)

Note that adding the same constant to all vi does not alter (7.2). Hence, without
any loss of generality, we could take VL O.

Now assume that for every nonrandomized stationary policy S, the Markov
chain {Xn(S)} is irreducible. In view of the preceding identification of our system
with the system considered in [4], the iteration scheme described in [4] can be used
to obtain an approximation to an optimal nonrandomized stationary policy.

The iteration cycle is illustrated in Table 1.

TABLE
Policy evaluation

For the present policy {(ki, xi)} solve

v, + gO(i" ki, x,) aki’o(i" k, xi) c’N(i" ki, xi) + p,jk’vj,

i=I,...,L

with vL 0 for g, vl, "’", VL- 1.

Policy improvement

Find the alternative (k, x) in state that maximizes the test quantity m(i; k, x), where

aO(i" k, x) cN(i" k, X) -ll- 2 PijV Vi

m(i; k, x)
O(i k, x)

using the values vi of the previous policy. Make this alternative the new action in
state i. Repeat for all 1, ..., L to find a new policy. Do not change the old action
in any state unless another alternative has a strictly higher value of re(i; k, x).

Let {Sn} be a sequence of nonrandomized stationary policies such that S,
prescribes the action (k), x)) in state i; 1, ..-, L, n 1, 2,.... Let S be a
nonrandomized stationary policy that prescribes the action (ki, xi) in state i,
i=l,...,L.

DEFINITION. The sequence of policies {S,} is said to converge to the policy S
if there exists a positive integer N such that --i

ktn) ki, i= 1, ,L, for all
n -> N and x!) x as n -, o.

THEOREM 7.1. If for every nonrandomized stationary policy S, the Markov
chain {Xn(S)} is irreducible, then for any nonrandomized stationary policy $1, the
iteration scheme previously described generates a sequence of nonrandomized
stationary policies {S,,} converging to a nonrandomized stationary policy S* that is
optimal.
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Proof. For any policy S,, n 1, 2, ..., (7.1) can be rewritten as

(7.3) viS" + gS.O(i. S. "O(i" c"N(i" "- Z PijUSn,
where gS I(S,,)and $ refers only to the (k} of ((k, x)} of S..

As in [4, pp. 638-639], it can bc shown that

gS+ >= gS(7.4)

and

(7.5)

i= 1,...,L,

We also have
9" * * S* S*a O(i; S*) ci N(i; S*) + Pij 1)j l)

i=l L.(7.8) gS,
O(i S*)

From (7.7) and (7.8) we conclude that g* gS, and v’ v*, j 1, ..., L. From
(7.8) we obtain

(7.9) gS, < max 1 L.
k,x O(i;k,x)

L
s,+ O(i" Sn7i +1

gS,+ gS, i=1
L

s,+ lO( S, 1)i +
i=1

where {zs"} are the stationary probabilities associated with the Markov chain
{X,.(S,)} and

(7.6) d= max, O(i , x)

afrO(i; S) cfN(i S) + p v
O( S

i= 1,--.,L, n= 1,2,....
Since {} is a nondecreasing sequence that is bounded above (an upper bound
is a*= max, a), we have limgS= g,, say, and limgS,_ gS= 0.
Since *’ > 0 for all and n and inf O(i;S) > 0 for all i, from (7.5) it follows
that e 0 as n m. There exists a subsequence {S} of {S} such that

s=v], j=l LlimS=S*, limgS=g*, limv
For simplicity, we shall drop the subscript v and take the sequence {S,} to satisfy
the preceding conditions. We shall show that S* is optimal. Rewriting (7.3) and
taking the limit as n , we obtain

a 0(; S*) ci g(i’, S*) + -*"* v
(7.7) g*= i= 1 L.

O(i;S*)
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s. given in (7.6) we haveBy the definition of ei

(7.10)
cN(i’k x)+ Z ’ s

PijVj"

O(i; k, x) i

..,L, n= 1,2,...

Taking the limit as n -, oe, we obtain

aO(i k, x) cg(i k, x) + pij-vj vi
(7.11) gS. g. >= maXk,x -i ;-k-,--)

i--1,...,L,
Sn S*since ei 0 as n---, oe. From (7.9) and (7.11), we conclude that gS, and

j 1, ..., L, are a solution of the system of equations

afO(i" k x) cN(i" k,x) + k )Pijl)j(7.12) g=max i= 1 L
k,x O(i k, x5

Further, from (7.8) we see that in each state i, i= 1,-.., L, S* prescribes the
action (ki, x) that maximizes the right side of (7.12). Hence, as in Theorem 1.2
of [8], it can be shown that S* is an optimal policy and I(S*) gS,. Hence the
theorem.

Although we have shown that the sequence {S,} converges to an optimal
policy S*, we have not been able to say anything about the rate of convergence
to the optimal policy. Further, we cannot say when the successive policies obtained
by the described iteration method will prescribe the same k in state and differ
only in the x, 1,... ,L.

Theorem 7.1 has been proved under the strong condition that for every
nonrandomized stationary policy S, the Markov chain {X,(S)} is irreducible.
Suppose this condition is not satisfied. For any nonrandomized stationary policy
$1 such that the Markov chain {X,(S1)} has only one positive class, consider the
following modification of the iteration scheme just described. Let S’ be the policy
obtained from $1 by this iteration scheme. If {X,(S’)} has only one positive class,
take S2 Sio If {X,(S’)} has more than one positive class, modify S’ as in the
Appendix to obtain a policy Sz such that {X,(Sz)} has only one positive class.
Repeat the iteration procedure with $2. Let {S,} be the sequence of policies
generated by this modified iteration scheme. For each n, the Markov chain
{Xm(S,)} has only one positive class and it can be shown that I(S,+ 1) >= 1(S,) and
{S,} converges to a nonrandomized stationary policy S. We have not been able
to show that S is optimal, although we conjecture that this is so.

Appendix. Let {Xt, 0, } be a Markov chain with a finite state space
I and transition probability matrix P (Pij). We then have the following theorem.

THEOREM A.1 (K. L. Chung). If the Markov chain {Xt} is irreducible and
f(. is afunction defined on the states, then

T

(A.1) p-lim
1

f(Xt)= rcjf(j)= M (say),
To -t=0 jI
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where {rtj} are the stationary probabilities associated with P, i.e., the {r@ are
given by

rtj >= 0, jI,

2 7"I;j 1,
(A.2)

rtj pj, j I.
iI

Equation (A.1) implies that
T

(A.3) lim
1

Ef(Xt)= jf(j).
Too - t=0 jI

Now consider a Markov chain {Xt} which is not irreducible but A I is a
class of positive states and the rest of the states are transient. Then we can write- T- z 1 T )\1 o 1

f(X,)+ _.,f(X,f(x,)=,=o T T-,
(A.4)

T ,=

where, is the first time the Markov chain enters the class A. If z > T, we take the
first sum on the right side of the preceding equation to be from 0 to T and the
second term to be zero. Now for a given z, we have for Theorem A.1,

1 r
p-lim ., f(Xt) ., rc’ff(j) Ma (say),
Too T T t= jA

where {rt]} are the stationary probabilities associated with the reduced Markov
chain with state space A. Note that MA is independent of r.

Further, since is finite with probability one,

p-lim T-z_ 1 and p-lim
1’-1

r-+oo T r-+oo - f(X,) O.
t=0

Hence we have
T

(A.5) p-lim -1 f(X,) rt’ff(j) MA.
T-’+ 1 0 jA

Now consider a Markov chain {X,} such that its finite state space I consists of
two disjoint positive subclasses A and B and the rest of the states are transient.
Then (A.4) is still valid provided z is now defined as the first time the Markov
chain is absorbed either in the class A or the class B. Since is finite with prob-
ability one, we have

p-lim T-z_ 1 and p-lim
1

T.-,o T r--,oo " f(Xt) O.
t=O

Now, for a given r and given that the Markov chain is absorbed in the class A
at time , we have

1 T

(A.6) p-lim 2 f(Xt) 2 rc’ff(j) MA.
r r "c = A
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Similarly, for a given z and given that the Markov chain is absorbed in class B
at time z, we have

1 T

(A.7) p-limT_,oo T- z ,f(Xt)= rdf’f(j)= M (say),

where {n’} are the stationary probabilities associated with the reduced Markov
chain with state space B. Let p(pa) be the probability that the Markov chain is
absorbed in class A (B). We then have, from (A.6) and (A.7),

(A.8) lim
1 r (MA with probability p,

T,=o f(X) M with probability pa.

Now, for our problem, it has been remarked earlier ( 3) that with every
nonrandomized stationary policy S, there is an associated Markov chain { (S)}.
I(S), defined in (1.2), can be written as

N

Ef((S))/N
(A.9) I(S) lim inf N

Eg((S))/N

If { (8)} is an irreducible Markov chain using (A.3) in the numerator and
denominator of (A.9), we obtain

M* (say).I(S)
jeI

If { (S)} is a Markov chain such that A I is a class of positive states and
the rest of the states re transient, then, as in (A.5), we obtain

E  Tfq)
(A.11) I(S) a ngQ) M (say).

jeA

Next if a stationary policy S is such that the Markov chain { (S)} has two
disjoint classes A and B of positive states and the rest of the states are transient,
we have, as in (A.8),

(A.12) I(S) paM + pnM (where M] is analogous to Mn in (A.7)).

Hence I(S) max(M, M]). Suppose M > M.
In view of one of our assumptions ( 1), there exists at least one non-

randomized stationary policy So such that { (So)} is an irreducible Markov chain.
Let S’ be a policy that is identical with So until the Markov chain enters the
class A and then S’ is identical with S. For this policy S’, we have, as in (A.10),

I(S’) M > I(S).

Thus, any nonrandomized stationary policy S which results in the associated
Markov chain { (S)} having more than one positive class need not be considered.
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A LYAPUNOV CRITERION FOR THE EXISTENCE OF STATIONARY
PROBABILITY DISTRIBUTIONS FOR SYSTEMS PERTURBED

BY NOISE*

MOSHE ZAKAH

1. Introduction. Consider a randomly perturbed dynamical system described
by the It6 stochastic differential equation

(1) dx(t) m(x(t)) dt + G(x(t)) dw(t),

where x and re(x) are vectors in the Euclidean n-space E, G(x) is an n x q matrix-
valued function of x and w(t) is the standard q-dimensional Brownian motion. We
will assume throughout this note that m and G satisfy a global Lipschitz condition;
namely, for all x, y in E,

(2) Im(x)- m(y)l + IG(x)- G(y)I =< clx Yl,

where, for vectors Iml (im)1/2, and for matrices IGI (Zi,jG) 1/2. By c we will
denote the differential operator associated with (1)

(3) cff mi(x +
_

go(x)

where gij is the ijth element of GG’.
Following results of Kashminskii [1], Wonham established the following

results [2], [3]. The results require that for some cl > 0, y’G(x)G’(x)y >_ cy’y for
all x, y in E; let V(x) be nonnegative and twice continuously differentiable in
D {x; [xl > R} for some R < c and V(x) as Ix[ --, if N V(x) =< 1 for
all x e D, then the process possesses an invariant probability measure [2]. In [3]
it was shown that under the preceding conditions if, for all x in E, fqV(x) <= k L(x)
and L(x) >= 0 then E{L(x(t))} <= k where E{.} is the expectation with respect to
the invariant measure. The results of [1] (and consequently those of [2] and [3])
were based on the assumption that the x(t) process is strongly Feller (namely, for
all > 0 and all bounded and measurable functions f(x), Exf(xt) is continuous
in x). It was shown in [2] that the requirement y’GG’y >= cy’y is sufficient to assure
that the solution to (1) is strongly Feller. However, simple examples (such as
dx(t) y(t) dr, dy(t) dw(t)) show that this is not a necessary condition; necessary
and sufficient conditions for the solution of (1) to be strongly Feller seem to be
unknown at present. Furthermore, the problem of the existence of invariant
measures remains meaningful for processes which are not strongly Feller (for
example, dx(t) 0). Recently Bene established several equivalent necessary and
sufficient conditions for the existence of regular invariant probability measures for

* Received by the editors October 1, 1968, and in revised form February 24, 1969.
]" Faculty of Electrical Engineering, TECHNION--Israel Institute of Technology, Haifa, Israel.
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Feller (but not necessarily strongly Feller) processes. Following the results of
Beneg and the mean ergodic theorem, we will establish in this note (Theorems 1
and 2) the condition of [2] for the existence of an invariant probability measure2

and the bound of [3] without the additional restrictions on GG’.
The requirement y’G(x)G’(x)y >_ cly’y together with the existence of an

invariant measure implies ([2], [1]) that the process x(t) has useful ergodic 1,
Theorem 3.1] and mixing [1, Theorem 3.4] properties. In many important appli-
cations this additional requirement on GG’ is not satisfied; Theorem 3 gives
other conditions under which x(t) has these properties. Of particular interest in
many important control vibrational and oscillation problems are equations of the
type

(4)

dxn(t mn(x x(t), x2(t), Xn(t)) dt +

It is shown in Theorem 4 that if the process defined by (4) possesses an invariant
probability measure, then the conditions of Theorem 3 are satisfied.

2. Finite invariant measure. In [4] Beneg considered Markov processes x(t)
taking values in a -compact metric space X and derived necessary and sufficient
conditions for the existence of regular invariant probability measures under the
following assumptions:

(a) x(t) is a Feller process, i.e., the operators T defined by

Tf(x) fxf(y)P(t x, dy)

take bounded continuous functions into bounded continuous ones.
(b) For any > 0 and any compact K"

(5) lim P(t, x, K) O.

One of the results of [4] is the following. Let x(t) satisfy (a) and (b). Then a
necessary and sufficient conditionfor the existence ofa regular invariant probability
measure is the existence ofa finite regular positive measure #

+ on the state space of
the process and a compact set K such that

(6) lim sup
1 fl,-.oo -[ U# + (K) ds > O,

We have been informed by a referee that the results of [4] have been improved by F. D. Santilles
Proc. Amer. Math. Soc., to appear.

In a recent report [15] (which came to our attention after this note was written) Kushner replaced
the restrictions on GG’ by weaker assumptions. However, the main results of [15] are for equations of
the particular form dx Ax dt + Bg(x) dt + B dw, where A and B are n x n and n x q fixed matrices
and g(x) together with :its first derivatives are bounded.
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where

Ud2(K) fx p(dx)P(s, x, K).

A condition analogous to (6) was derived by Oxtoby and Ulam for the
nonstochastic case [5]; Foguel derived this condition for time discrete processes
[6]. For x(t) satisfying (1), x(t) is a Feller process [7, Theorem 11.4] and in order
to apply the criterion (6) to (1) we have to verify (5). Equation (5) implies, in the
terminology of Dynkin, that x(t) is a ( process. It was shown in [73 (final assertion
of Theorem 11.4) that for x(t) satisfying (1) with [m(x)[ and [G(x)[ bounded, (5)is
satisfied. We prove now that the same result but without the restriction on
and IGi.

LEMMA. Let P(t, x, A) be the transition probability of the process satisfying (1).
Thenfor every > 0 and every compact set K in E, (5) holds.

Proof Obviously,

(7) Prob {Ix(t)l < R x(0)= x} __< E 1 + Ix(t)l/R
Let O(x)= (1 + R-alxle)-, applying It6’s formula [7, Theorem 7.2] and the
vanishing of the expectation of the stochastic integral (or by Dynkin’s formula,
[7, Theorem 5.1 ])

(8) EO(x(O) O(x) + E O(x(s)) as.

It follows from (2) that

Im(x)l _-< c(1 + Ix12)/,

Ig(x)l _-< c2(1 + Ix12),
and since (c3/cqxi) 2xik2(x)R 2 and

6ij2O2(x)R , we have for R > 1

(9) I’(x)l =< 7q,(x).

From (8)and (9)we have

Therefore,

(10)

Ex$(X(s)) as <= iI(x e-,t.

and since $(x) --+ 0 as Ixl --+ oo, equation (5) follows from (10) and (7).
We shall consider functions V(x) with the following properties:
(A) V(x) is real-valued, nonnegative and twice continuously differentiable

in E.
(B) Let f(a,t) stand for any of the functions E.V(x(t)), EalV(x(t))], or

E.](c3V(x(t))/cxi)Gij(x(t))l 2. Then f(a, t) is, for each a in E, bounded in
in any bounded interval.

(21fi/Xi(3Xj) 8xixjlfi 3(x)R-4

ex(X(t)) <= (x) e’’
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It follows directly from [8] that if x(t) satisfies (1), then Ea[x(t)l p, p > 0, is bounded
in any bounded interval. Therefore condition (B) is satisfied when V, [V[ and
[(? V/cxi)G,j[ are dominated by polynomials. It should be pointed out that assump-
tion (B) was not made in [2] and [3]; on the other hand the condition V(x) ov
as Ix[ --, oe was imposed in [2] and is not required here.

THEOREM 1. Let x(t) satisfy (1) and V(x) satisfy (A) and (B); also, assume that
there exist numbers Ro < o and k > 0 such that

(11) V(x) <= -k
for all x satisfying {x] > Ro. Then the process defined by (1) admits an invariant
probability distribution, and if denotes the first passage time from x to the sphere
Ix[ <= Ro then for all x with Ix[ >= Ro
(12) E() < V(x)

k

Proof By assumption (A) we may apply It6’s formula; therefore

V(xt) V(a) + ff V(x(s)) ds + cx G(x(t)) dw(t).

By assumption (B), the expectation of the stochastic integral is zero and

(3) eV(x(t)) V(a) + FCV(x(s)) ds.

Let M be the maximum of ffV(x) over Ix[ __< R0 then, by (11)

EfV(x(s)) <= M Prob{[x(s)[ __< Ro[x(0)= a} k Prob{[x(s)[ > Ro[x(0)= a}
(14)

k + (M + k)Prob{lx(s)l _>_ Rolx(0) a}.
Let #+ be any finite Borel probability measure on E with a compact support
(# / (K) #

+ (E) 1, K compact). Consider (1) with # / as the distribution of x(0),
taking expectation over the initial distribution, (13) becomes

then, since V(x) >= 0,

and by (14)

ev(x(t)) eV(x(O)) + V(x(s))

-i eCV(x(s)) as

1EV(x(O))t + k < (M + k)- Prob {Ix(s)[ =< R} as.

The existence of an invariant probability follows by comparing the last equation
with (6).

In order to prove (12) we consider x(t A z), the x(t) process stopped at the
boundary Ix] Ro. Applying It6’s formula to the integral representation of the
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stopped process I7, Theorem 11.6] we obtain, in analogy to (13),

ExV(x(t A z))= V(x) + Ex V(x(s))ds

<= V(x)- kEx(t A z).

Since V(. is nonnegative, Ex(t A z) <= V(x)/k and (12) follows by monotone con-
vergence.

Remarks. (i) It is easy to construct processes possessing an invariant probability
measure but which do not satisfy (12) (for example, dx(t) 0); it follows, therefore,
that (11) is a sufficient but not necessary condition for the existence of an invariant
probability. Note that if x(t) is strongly Feller then (11) is necessary and sufficient
[1]. (ii) In [9] we considered the condition aV =< kl k2 V and V(x) as
ix] therefore the conclusions of Theorem 1 apply to all the results of [93.

3. A Lyapunov method for estimating an expectation.
THEOREM 2. Let x(t) satisfy (1). If there exists a function V(x) satisfying (A) and

(B) and a positive constant k such that for all x in E

(15) V(x) <= k L(x)

and L(x) >__ 0; then, for any invariant probability measure v(dx) of (1), the stationary

expectation E{L(x(s))} j L(x)v(dx) satisfies

(16)

Let

Therefore,

E{L(x(s))} <= k.

Proof By (13) and (15)

E L(x(s)) ds <= V(x) + kt.

L(x), Ixl =< R,
LR(X)

(0, Ix] < R.

1 fo V(x)
ExL(x(s)) ds < +k

or

(17)

Let

lim sup
1 fl,- - ExLR(X(S)) ds <_ k.

f(x) LR(y)P(t, x, dy) dt,
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then 0 <__ f(x) <_ R; since ExLR(X(S))is measurable in x, s

(18)
1

ExLR(X(S)) ds
1

Ef(x(r))
/ nr=

and, since v(dx) is an invariant measure, we also have

(19) E{f(x(s))} E{LR(x(s))}
By the mean ergodic theorem [10, p. 382]

(20)
1

Ef(x(r)) f*(x)
/r=l

in the mean (L2(E, B, v)) and

fE f(x)v(dx) fE f*(x)v(dx).

Considering a subsequence of n for which (20) holds for almost all x(v(dx)),
it follows from (17), (18) and (20) that E{f(x(s))} <= k and (16) follows from (19)
and monotone convergence.

Remark. The result of Theorem 2 is for E{L(x)} only;the following example
shows that E{V(x)} may be infinite. Let dx(t)= -2x(t)(1 + xZ(t))-1 dt + dw(t)
and V(x) x4, the invariant density is 2(1 + x2) 2 therefore E V(x)

4. Some consequences of the existence of an invariant measure for a particular
class of equations.

THEOREM 3. Let the process x(t) satisfy (1) and possess an invariant probability
measure. Also assume that the transition probability function of x(t), P(t, x, A), is
equivalent to the Lebesgue measure of E for all > 0 and all x in E. Then, (a) the
invariant probability measure is equivalent to the Lebesgue measure and is unique.
(b) Let v’(x) denote the density of the invariant measure (with respect to the Lebesgue
measure) and let f(x) denote a real-valued function integrable with respect to the
invariant measure. Then, for all x E and T

(21) Prob f(x(t)) dt f(y)v’(y) dy x(O) 1.

(c) For any Borel set A in E, and any x E as

(22) P(t, x, A) f v’(x) dx.

Proof Let p(t, x, y) denote the density of P(t, x, A) and let v(A) be an invariant
measure; then

(23) v(A) fr v(dx)(fa P(t, x, y) dy

Since for each t, p(t, x, y) can be chosen to be measurable in the pair x, y[11, p. 196
and supplement], Fubini’s theorem is applicable to (23) and therefore v(A) is
absolutely continuous with respect to the Lebesgue measure. Conversely, if the



396 MOSHE ZAKAI

Lebesgue measure of A is positive, the P(t, x, A) is positive for all > 0 and x E,
and it follows from (23) that v(A) > 0. This proves the equivalence between the
Lebesgue measure and the invariant measure, and we will use "almost all x"
without specifying the measure to mean almost all x with respect to v(dx) and the
Lebesgue measure. The uniqueness of the invariant measure will follow from (21).

Let A be an invariant set; namely for almost all x in A we have P(t, x, A) 1.
We also assume v(A):/: O. Therefore P(t,x, Ac) 0, by the equivalence of the
measures P(t,x,A), the Lebesgue measure and v(A) it follows that v(A) 0;
hence, v(A) 1. Therefore, if A is invariant then v(A) 0 or 1 and the stationary
random function satisfying (1) with x(0) distributed accordingly to v(dx) (and
independent of the w(t) process) is metrically transitive, hence, ergodic. Therefore,
(21) holds for almost all x in E. Let S be the set of x for which (21) is not true and let
Xo S; then the Lebesgue measure of S is zero; therefore Prob {x(1) S]x(0) Xo}

1. But, if x(1)e S then Prob {(r- 1)- f(x(s))ds f(x)v(dx) x(1)e S}
1; hence (21) holds for all x. Equation (22) follows from [12, Theorem 5].
Remark. The assumption that the measures P(t, x, A) are equivalent to the

Lebesgue measure can be replaced by the assumption of "asymptotic equiva-
lence," namely, that there exists an increasing sequence t, such that if P(t, x, A)

P(1)(t, x, A) + P(S)(t, x, A), where P(S) is the singular part of P(t, x, A) with respect
to the Lebesgue measure, then P()(t,, x, E) 0 and similarly if L(S)(t, x, A) is the
singular part of the Lebesgue measure with respect to P(t, x, A) then L()(t,, x, E)
--+0.

THEOREM 4. For the process defined by (4), for all > O, x E, P(t, x,A) is
equivalent to the Lebesgue measure on E.

Proof Consider equation (4) and a modified equation obtained from (4) by
setting m,(. 0; also assume x(0) x for both equations. By a result ofSkorohod
[13, Chap. 4, 4] the measure induced by (4) and the modified equation are
equivalent. It follows that, in particular, the transition probabilities corresponding
to (4) and to the modified equation are equivalent measures on E. In order to prove
the theorem it is, therefore, sufficient to prove it for the special case m,(. 0.

Let

clx(t) Cx(t) clt + clw(t),

where C and B are constant n x n and n x q matrices respectively. It is easily
verified that

x(t) eCx(O) + eC(-S)B dw(s)

and, therefore, P(t, x, A) is Gaussian with mean eCx and covariance matrix

(24) eCtt-S)BB ec’(t-) ds.

Therefore, P(t, x, A) is equivalent to the Lebesgue measure on E if and only if (24)
is positive definite. Hence, P(t, x, A) is equivalent to the Lebesgue measure if and
only if the pair (C, B) is controllable (namely, if the column vectors of the n x nz
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matrix [B, CB,..., C"-1B] span the space E) [14, p. 499]. It follows by a direct
calculation that for (4) with m,(. 0, the pair (C, B) is controllable which proves
the theorem.

Theorem 4 can easily be generalized to a collection of subsystems of the form
of (4) and coupled through the m,(. term. To avoid clumsy notation we give a
representative example of this generalization:

x(t) x(t) at,

dxe(t) m2(xl(t), x2, X3, X4) dt + dw2(t),

dx3(t) x4(t) dr,

dx4(t) m(xl, x2, x3, x) dt + dw4(t).
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time to, through

(4) y(t) W(t, "c)u(’c) dr.

The natural question arises as to whether there are connections between external
and internal stability.

Without further constraints on the matrices in (1), the answer is no [1]. This
is because knowledge of W(.,. in (3) conveys no knowledge at all about (.,.
and thus F(. ). In fact, a so-called separable W(t, ) may be realized as the impulse
response of a system of the form (1), with the F matrix being quite arbitrary,
except for a constraint on its order.

In an effort to obtain connections between internal and external stability,
various extra constraints can be used. When W(.,. is time invariant, in the sense
that W(t, ) W(t ), the natural constraint to impose on F, G and H is that
they may be time invariant. Then it can be shown that if the eigenvalues of F all
possess negative real parts, corresponding to exponential asymptotic stability in
the sense of Lyapunov (abbreviated EAS), the system (1) is bounded-input,
bounded-output stable (abbreviated BIBO). Conversely, if (1) is BIBO and
completely controllable and observable, then it is EAS.

For time-varying systems, it is not so clear what constraints should be
imposed in order to yield equivalences between the two types of stability. Amongst
constraints which have been used, we note those implicit in Perron’s work [2].
He was essentially concerned just with (la) and found conditions such that EAS
led to bounded-input, bounded-state stability (BIBS). (A system is BIBS if, with the
states as outputs, it is BIBO.) His conclusion was that with the elements of F and
G bounded, and with G possessing an inverse with bounded elements, EAS and
BIBS were equivalent. The nonsingularity of G constituted a major drawback;
in [3], the difficulty was partly removed by showing that with G a column vector,
consisting of all zeros save for a one in the last place, and F in companion matrix
form, EAS and BIBS were equivalent. These special forms of F and G were shown
to arise naturally from the representation of some differential equations in the
form of (1).

More significant are the results of [4], which essentially include those of [2]
and [3]. The initial restriction is made that the elements of F, G and H are bounded.
The following results are then demonstrated:

(a) EAS implies BIBS and BIBO;
(b) BIBS and uniform complete controllability (see [4]) imply EAS;
(c) BIBO and uniform complete observability (see [4]) imply BIBS.

Thus under the boundedness assumption, EAS implies BIBO, and with the
additional assumptions of uniform complete controllability and uniform complete
observability, BIBO implies EAS.

In this paper we improve on the results of [4]; we are mainly concerned with
eliminating the boundedness requirement on the elements of F, G and H. It turns
out that to do this at the same time to obtain meaningful results, it is necessary to
modify the requirement ofboundedness ofinput and output in the BIBO definition
in this modification, it is required that the "energy content" over a fixed-length
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interval of the input and output should be bounded, independently of the position
of the interval. The principal conclusions are then that internal (EAS) stability
and external stability, in an appropriately modified form, are equivalent under
uniform complete controllability and observability.

Section 2 is concerned with definitions and a preliminary lemma. Included in
this section are precise statements of what we mean by the modified form of
boundedness discussed above and a review of the uniform complete controllability
and observability concepts.

Section 3 is concerned with (la); in this section EAS is related to a modified
form of BIBS stability. Section 4 examines the system defined by both (la) and (lb)
and achieves results relating EAS to modified BIBO stability.

Finally, two related results are presented in 5. The first establishes a class of
state feedback laws under which uniform complete controllability is invariant;
the second result presents a time-varying version of a lemma due to Lyapunov
which is well known for time-invariant systems.

2. Definitions and preliminaries. The concepts of uniform complete con-
trollability and uniform complete observability appear to have been introduced
originally in [5], in order to guarantee the solution of certain time-variable
quadratic variational problems. Equation (la)is uniformly completelycontrollable,
or the pair [F(t), G(t)] is uniformly completely controllable, if any two of the
following three conditions hold for some 6c > 0 (any two imply the third, see [5]):

(5) tlI <- M(s 6c, S) <= 02I for all s,

(6) 3I <- C(s 6, s)M(s 6, s)cV(s 6c, s) <= I for all s,

(7)
where

II(t, z)l[ < 5(]t zl) for all and z,

(8) m(s , s) f t
(s, t)G(t)G’(t)O’(s, t) dt.

The quantities al, a2, a3 and a4 are positive constants, and as(" maps R into R
and is bounded on bounded intervals. The notation X >_ Y (X > Y) for symmetric
matrices X and Y means X- Y is nonnegative (positive) definite. For an n-
dimensional vector x, Ilx[I is ( x)/2 the usual induced matrix norm applies.

Several points should be noted; first, a sufficient condition for (7) is that F(.
should be bounded; one way to see this is to use the Gronwall-Bellman inequality
[6]. Second, if (5), (6) and (7) hold for some 6, they hold for all 6 > 6 (see [5]).
Third, there is a consequence ofthe right-hand inequality of(5) which will be of use.
It is based on the inequality

(9) IlAxll 2 _-< IIA’AII Ilxll 2 )max(A’A)llxll 2 <= (tr A’A)Ilxll 2.
This consequence, following from (5), (8) and (9), is

(10) lie(s, t)G(t)ll 2 dt <= n2.
Uniform complete observability is defined for the pair of equations (la) and

(1 b), or the matrix pair IF, HI. The system of equations (1) is uniformly completely
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observable if any two of the following three conditions hold for some 6o > 0
(again, any two imply the third [5]):

(11) 6I < N(s,s + (50) < ovI foralls,

(12) aI <- qp’(s, s + 6o)N(s, s + 6o)(I)(s, s + (50) =< 9I for all s,

II(I)(t, )ll _-< (It l) for all and z,

where

(13) N(s, s + o) f+o O’(t, s)H(t)H’(t)dP(t, s) dt.

The quantities 6, (7, (x8 and (x9 are positive constants.
The remarks made above concerning uniform complete controllability carry

over mutatis mutandis to uniform complete observability.
One of the consequences of uniform complete controllability is contained in

the following lemma, a minor variant on a result of [4].
LEMMA 1. The realization (la) is uniformly completely controllable if and only if

there exist a (5 > 0 such that for every state and for any time s, there exists a
minimal energy input ul transforming the system (la)from the zero state at time
s 6c to the state at time s, and a minimal energy input u2 transferring (la) from
the state at time s (5c to the zero state at time s, such that for positive constants

(14a) xollll 2 fs u’(t)ul(t)dt <= 1x11112,

(14b) 211112 u’2(t)u2(t)dt <= x31lll 2.

The energy associated with ul over (s 6c, s) is the value ofthe integral appearing in

(14a); ul is a minimal energy input if no other input taking the zero state at time
s 3 to the state at time s has an associated smaller energy.

Proof Suppose the realization is uniformly completely controllable. Now from
[7], M(s 3, s) is nonsingular and there exist minimal energy controls u and u2
achieving the desired state transfer. The controls u and u2 are uniquely defined,
except for a set of measure zero, by

(15a) ul(t)= u2(t)=0, <s-re, >s;

(15b) ul(t) G’(t)@’(s, t)M- l(s (5 s), S--c<t<s
(15c) u2(t)= -G’(t)dP’(s,t)M-l(s 6c, S)(s,s 6c), s-6<=t<=s.
The fact that u 1(" and U2(" will effect the transferral is readily established using
(15), (8) and the formulas

(16a) alp(s, x)G(x)u l(x) dx,

(16b) 0 O(s, s 6) + (I)(s, z)G(z)u2() dx.
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Application of (8), (15) and (16) yields

(17a) ui(t)u(t) dt ’M- (s , s),

(17b) u’2(t)Uz(t) dt t’(s, s 6c)M- X(s 6, s)O(s, s 6).

Equations (5), (6) and (17) then imply that (14a) and (14b) are satisfied.
Conversely, suppose existence of minimal energy controls satisfying (14).

Controllability of the state for arbitrary implies M(s 6, s) is nonsingular,
which in turn implies that the minimal energy controls are unique (except on a set
of measure zero) and are given by (15) (see [7]). Equations (14) and (17) now hold
simultaneously and imply (5) and (6).

The form of (15b) suggests in contrast to [4] that to hope for the existence of a
control bounded only in terms of which effected the state transferral would be
too much, at least when G, say, is not assumed bounded. This together with (14)
suggests that to discuss the external stability of (1), the normally assumed bounded-
ness of the input or output should be replaced by the following definition.

DEFINITION. The vector function w(. with piecewise continuous components
is termed bounded* if, for some positive 6b and all s,

(1 w’(t)w(t) dt <__ ,
where is a positive constant.

Of course, if w(. is bounded in the usual sense, w(. is then bounded*. It
should also be noted that if (18) holds for some it holds for all positive , greater
or less than (with, in the case of > 6, perhaps being replaced by a greater
constant depending on 6).

Analogously to the abbreviation BIBO for bounded-input, bounded-output
stability, we shall use the abbreviation B*IB*O to denote bounded*-input,
bounded*-output stability. Thus a system is B*IB*O if for all inputs u(. such that

(19) u’(t)u(t) dt <= 4
for some 14, some fib and all s, there exists 5, depending on 14 and fib, with the
zero-state response y(. satisfying

(20) f--Oh
y’(t)y(t)dt <= 0xs(0,, 6b)

for all s. (Note that earlier stated constraints guarantee that the components of
y(. are piecewise continuous.)

The definition of B*IBS proceeds analogously to the definition of BIBS,
modification being made to the class of inputs considered. Thus for all inputs
satisfying (19), we require the existence of a constant 6, depending on 4 and
6b, such that

(21) Ilx(t)ll 16(14, b) for all

when the system is initially in the zero state.
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LEMMA 2. The system (1) is B*IBS ifand only iffor all bounded* inputs satisfying
(19), there exists a constant 17, depending on i4 and 6b, for which

(22) Ilk(t, )G()u()ll d <= for all t.

Proof. We first show that (22) implies B*IBS. Suppose the system is in the zero
state at initial time to. Then

IIx(t)ll _-< (t, z)G(z)u(z) dz

<- IlO(t, z)G(z)u(z)ll dz

5 017.

Now suppose (la) is B*IBS, with (21) holding; suppose too that (22) fails.
Then there exist times to and and a bounded* control u (satisfying (19)) such that

’ II(t, :)G(’c)u(’c)ll d’c > N//016;
o

and then for some i, say I,

I((t, z)G(z)u(z)),l dz
t

OXk(tl, Z)Gkt(’C)Ut(’C)
k,l

dr > 16"

Now define/l(" by

arbitrarily taking sgn {0} 1 if required. Then (. ), the vector with /th entry
(. ), is bounded* because (. is, and the-same constants and e14 apply. Also,
the response 2(. to (. has

x(tx) fi , xk(t ,z)Gu(z).l(Z)dr

OXk(tl, Z)GkI(Z)UI(Z) dz
k,l

This contradicts (21) i.e., the assumption that the system is B*IBS. Thus the lemma
is proved.

3. Relations between LyalmnOV and Iouaded*-inlmt, Iounded-state stability. In
this section, attention is focused on (la). By analogy with time-invariant systems,
we seek relations between external stability and internal asymptotic stability;
in time-invariant systems the asymptotic stability, because it is uniform, is also
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exponential. Here also, it is convenient to specialize to exponential asymptotic
stability. The main result is contained in the following theorem.

TUEOREM 1. Suppose (la) is uniformly completely controllable. Then it is B*IBS
if and only if it is EAS.

Proof We show first that EAS implies B*IBS. Suppose the system is excited
with a bounded* input commencing at time to, being initially in the zero state.
Then

(23)

x(t) do(t, z)G(z)u(z) d,c
to

+ c
do(t, to + bc) do(to + 6c, ,C)G(,C)u(,C) d,c

ro + 2c
+do(t, to + 2c5c) do(to + 2C5c, ,c)G(,c)u(,c)d,c +

d to + c

+do(t, to + kt$c) fto+kac
to + (k ),

do(to + kt$c, "C)G(’C)u(,C) dz

+ do(t,
to + kc

with the integer k being chosen so that 0 < (to + kfc) <= 6c. Consider now the
following sequence of inequalities for a typical integral on the right of (23)"

to+ jtc

+ (j
dO(to + jc ,C G "c u ,C d"c

<- (n214) 1/2.

Here we have identified, as is legitimate, the 6b of the bounded* definition with
the 6 of the uniform complete controllability definition; as earlier pointed
out, ifa vector function satisfies (19) for one pair 6b, CX14, it will satisfy it for arbitrary
positive 6b and some new 14.

Because (to + k6) <= 6c, the same bound exists on the absolute value of
the last integral in (23) as on the first k integrals. Also

IID(t, to + j6c)ll :< IIO(t, to + kcSc)ll [IO(to + kgc, to + j6c)ll
(24b)

=< Ildo(t, to + kfc)llls exp {-9(k j)6}

for some positive constants 0lS, 0a9 existing because of the EAS assumption.
Using (24a) and (24b) in (23), we then have

(25)
IIx(t)ll < a811(t, to -+-

[exp { x9(k |)c} q" exp 9(k 2)c} q-- q- 1].
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The geometric series has a sum bounded independently of k. Also, because
0 __< (to + k3 _-< 6, II(t, to + k311 is bounded independently of t, to and k;
hence IIx(t)ll is bounded, as required.

We now turn to proving that B*IBS implies EAS. Let 2(. be a vector function
such that 2(s) has unit norm for all s. By uniform complete controllability, there
exists a control us(. taking the zero state at time s 6c to the state (s) at time s.
One such control is given by (see (15))"

(26a)

(26b)

Then

and thus

Us(t)=O, t<S--6c, t>s,

us(t) G’(t)’(s, t)M- X(s 6c, s)2(s), s-fc<__t<=s.

(s, "c)G(’c)us(’c) dr

II(t, s)2(s)ll IlO(t, )a()Us()ll &.

Integrating with respect to s, we have

II(t, s)2(s)ll ds ds II(t, z)G(z)u(z)ll dz.
0 c

By defining a new variable r s + 6, it follows that

ll(t, s)2(s)[l ds ds ll(t, r + s 6)G(r + s 6)Us(r + s 6)1 dr
to

dr Ilk(t, r + s- )(r + s )u(r + s )1 ds.

Now define a new variable again by r + s to obtain

(27) II(t, s)2(s)ll Ms dr II(t, )G()u-.+0()ll &.
tO + c

Our aim is to demonstrate that the right-hand side of this inequality is bounded.
Note that

+ 6c

(28) IlO(t, )G()u-,+()ll & IlO(t, )G()u-+()ll &
dto+r--c o+r--c

because, as is evident from the interval of integration with respect to r in (27),
0r6c, andsot+r-6c t.

From Lemma 2, it follows that the right-hand side of (28) is bounded if
v(z), defined by v(z) u_+(z), is bounded* for fixed arbitrary r. (Note that for
fixed s, u(z) is a bounded* function of z,. but this certainly does not itself imply that
u_+(z) v(z) is bounded*3

An explicit formula is available for v(’c), following from (26), for all z"

v(z)= G’(z)O’(z r + c,z)M-(z r,z r + 6)A(z r + 6), O r
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Evidently for arbitrary s,

{,’( r + fi)M-(z r,r r +v’,()v,() d
c

1
sup

c<-<s

2 sup 15(P--<
This bound is evidently independent of s and r.

II(s, r)G(z)l] e d

Hence, by Lemma 2, for some positive constant 0{17 independent of t, to
and r,

and thus in (27),

o+r-c

(t, s);t(s) dsll acetic.

Since 2(s) in the above derivation has only been restricted to have unit norm, we
may at this stage further restrict it so that II(z, s),(s)ll is maximized. Since this
maximum is precisely II(t, s)l], we then have

(29) II(t, s)ll ds ac0lT.
to

The following bound on (.,. is derived below, where o is a positive
constant"

(30) IIO(t, to)ll =< 0{20 for all to, > to.

The proof of this statement follows by noting from Lemma 1 that there exists
a control which is bounded* independently of to, taking the zero state at (to 6c)
to state 2(to) at time to, where 2(to) is an arbitrary vector of unit norm. Set the
control equal to zero for >_ to. Then over [to ic, oo) the control is bounded*,
independently of to, while for _> to,

x(t) (t, to)2(to).

The B*IBS constraint implies x(t) is bounded independently of to and thus yields
(30).
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Arguments as in [8] then establish that (29) and (30) together imply EAS;
thus Theorem 1 is proved.

It is important to note that [8] shows that for a bounded matrix F, (29) alone
implies EAS. Actually the boundedness of F is only used to deduce (30) hence the
applicability of our proof. It is also interesting to note that, although EAS and
boundedness of the matrices F and G imply BIBS (see [4]), EAS does not itself
imply B*IBS, but requires the addition of the uniform complete controllability
constraint, though to be sure, not all the uniform complete controllability conditions
are used. Those conditions which are used amount to a generalization of the
boundedness constraints on F and G and do not include the left-hand inequalities
of (5) and (6).

4. Relations between Lyapunov and bounded*-input, bounded*-output stability.
Hitherto, we have been concerned with relating the control and state variables;
in this section, we are concerned with relating the state and output variables.
Because the relation (1 b) between them is nondynamic, and thus does not involve
derivatives or integrals as the relation (la) does, the results are much simpler to
achieve. The key theorem is as follows.

THEOREM 2. Suppose the system(I) is uniformly completely observable. Then
it is B*IBS if and only if it is B*IB*O.

Proof. We prove first that B*IBS implies B*IB*O. Observe that
+6

fs
s+6

y’(t)y(t) dt x’(t)H(t)H’(t)x(t) dt

+6

2’(t)O’(t, s)H(t)S’(t)d(t, s)2(t) dt,

where 2(0 is defined in the interval Is, s + 5o] by 2(t) (s, t)x(t). (Note 2(t) is
not a state vector.)

If x(t) is bounded, (t) is bounded as follows:

II:(t)ll sup
0_<0__<60

Denoting the bound on 1t2(t)ll by (Z21 we have that

+,o

y’(t)y(t) <dt 0221n07,

i.e., y is bounded*. Since any bounded* input results in a bounded state by assump-
tion, and since bounded states imply bounded* outputs by the above, we have
that bounded* inputs imply bounded* outputs.

Now suppose that (1) is known to be B*IB*O. Suppose also it is not B*IBS.
Then there exist an input u and constant 14 such that

+
u’(t)Ul(t) <-- 14 s,dt for all

such that, with y the corresponding output,

yi(t)yl(t)dt (15((14),
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and such that for some T,

Ix(T)ll >
/ 06

Now replace Ul by u, where u(t) Ul(t) for =< T, and u(t) 0 for > T. Then
s+

u’(t)u(t) <_ o:, s,dt for all

and thus, with y the corresponding ouput,

+
(31) y’(t)y(t)dt o1 for all s.

Also, of course, since x(t) x(t) for =< T,

(32) Ilx(T)ll >
(X6

Now use the fact that u(t) is zero for > T to obtain
+ fT

’’+

y’(t)y(t) dt x’(T) *’(t, T)H(t)H’(t)*(t, T)dt x(T)

(33) >= o6x’(T)x(T)

> 015.

The first inequality follows from the uniform complete observability assumption,
the second from (32). Equation (33) now is in contradiction to (31). Hence B*IB*O
must imply B*IBS. This completes the proof.

The arguments above may be used to conclude a result similar to that of
Theorem 2, with bounded inputs replacing bounded* inputs. It is as follows.

COROLLARY 1. Suppose the system (1) is uniformly completely observable.
Then it is BIBS if and only if it is BIB*O.

The connection between internal and external stability for the system (1) is
obtained by combining Theorems 1 and 2. The proof of the following result,
obtained from these theorems, is trivial.

THEOREM 3. Consider the system (1), assumed uniformly completely controllable
and uniformly completely observable. Then it is B*IB*O if and only if it is EAS.

It is interesting to note that the result of Theorem 2 cannot be improved
upon to the extent of deducing that B*IBS implies B*IBO, though of course
B*IBO implies B*IBS. Construction of a counterexample is easy. Suppose first
that F and H are constant matrices such that [F, Hx] is completely observable
(and thus uniformly so). Define F(t)and H(t) by

F(t) Fx,

H(t) H1 (t <= 0, n 1 =< __< n 1/n2)

nH (n 1In2 <_ <= n)

for n 1,2,.... Then it is readily verified that F(t) and H(t) are a uniformly
completely observable pair, while evidently the addition of a G so that
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Fx + Gxu is B*IBS does not imply that, with y H’(t)x, the mapping from
u to y is B*IBO. This mapping is of course B*IB*O.

The uniform complete observability assumption is required in going both
ways in Theorem 2; this is in contrast to the result that for a bounded realization,
BIBS implies BIBO [4]. The explanation is that in establishing that B*IBS implies
B*IB*O, not all the uniform complete observability conditions are used, but only
those reflecting a natural generalization of boundedness constraints on F and H.

5. Some additional results. In this section, we present two additional results
which generalize material of [43 and [93 and which are in part based on the earlier
materials. The first extends a well-known result for time-invariant systems and
can be of use in establishing whether a given pair IF, GJ is uniformly completely
controllable. Hence we include the result here.

THEOREM 4. Uniform complete controllability in a realization (1) is invariant
under state variable feedback of the form
(34) u(t) K(t)x(t) + g(t),

where the entries of K(. are continuous functions,

(35) IlK(t) 2 dt <= 22(ac) for all s
tc

and some constant 22, and g(. is the input to the closed loop system.
Proof. Let (1) be uniformly completely controllable. Then by Lemma 1 there

is a 6c > 0 and a minimal energy input u l, which transfers the zero state at time
s 6c to the state at time s, such that

(36) f u’(t)u(t) dt <= ocxllll 2

for all s. It is readily verified that if

(37) g(t) Ul(t K(t)x(t)

is the input to the closed loop system, where Xl is the trajectory of the open loop
system due to u, then z x(S 6c) 0 and z (s) , where z is the trajectory of the
closed loop system due to g (in fact, z(t) x(t) for all (s 6c, s)).

Using (15b) and (37), we have that for all (s 6c, s)

[Ig(t)ll =< lux(t)ll / IK(t) q)(t,z)G(z)G’(z)’(s,z)dz

Ul(t) +

(s, )a()a’()’(s, )d
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The integral in the above equation has an upper bound of M(s 6c, s), and thus
using the bounds on M and M- 1, we have

llg(t)ll _-< llu(t)ll / sup (p)llll llK(t)ll.

Thus

fs’ {fs’ --22 sup = (p)l, ll2f ..K(t),.2dt}.(38) g(t)]l 2 dt __< 2 ]ul(t)ll 2 dt +
o<=p<=oc6c 6c 6c

This means that, with (35) and (36) satisfied, Ilg(t)ll dt is bounded above by a

term 211112o A fortiori, the energy of the minimal energy control transferring the
zero state to the state is bounded above by 0alllt .

We now show that for the closed loop system,

(39) McL(s 6c, s) OCL(S, t)G(t)G’(t)O’cL(s, t) dt
tc

is bounded above, where OCL(’," is the transition matrix of the closed loop
system given by

d
-;-OcL(S, t) [F(s) G(s)K(s)]OcL(s, t), Oci_.(t, t) I.

If we define

(40) Y(s, t) O(s, t) Oct(S, t) OcL(S, z)G(z)K(z)O(z, t) dz,

the differentiation yields

dY(s,t)
Y(s, t)F(t),

dt

while inspection of (40) shows that Y(t, t) 0. This means that Y(s, t) 0 for all
and s. Thus

O(s, t) OcL(S, t) -OCI_(S, z)G(z)K(z)O(z, t) dz 0

or

OcL(S, t)O(t, S) I OC|_(S, Z)O(Z, S)O(S, z)G(z)K(z)O(z, s) dz.

This means that

[IOCL(S, t)O(t, s)ll I -- OCL(S, )O(, S)[I O(S, z)G(v)K(v)O(v, s)ll

which implies that

(41) ct(S, t)O(t, s)[I < exp ](s, z)G(z)K(z)(z, s)l[ dz
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from a trivial extension of a result in [6, Theorem 2, p. 134]. With in the range
S--c<t<s

II(s, r)G(r)K(z)(r, s)[[ dr

sup as(p) II(s, r)G(r)[[ 2 dr IIK(r)ll dr
0-50 -< 6c 6c

which is bounded independently of s and by the uniform complete controllability
of the open loop system and the restriction on K. Then from (41),

linch(S, t)(t, s)ll 2(c)

for s 6c =< t<_ s and some positive constant a2, independent of s and t. Now
observe that in (39), we may rewrite Mci as

Mc_.(s c, s) OcL(S, z)@(z, s)(s, r)G(r)G’(r)dP’(s, r)O’(z, s)(I)’ cL(S, r) dr

and thus

[[McL(S 6c, s)[I < 0,(6c) I[(S, r)G(r)[[ 2 dr.

Thus we have established that McL(S 6, s) is bounded above if the open loop
system is uniformly completely controllable.

By using (17a), the above result implies that the minimum energy control u3
taking the closed loop system from the zero state at time s 6 to the state at
time s satisfies the inequalities

0 < c211112 Ilu3(t)l[ 2 dt,

where ez5 is a positive constant independent of s.
We have shown earlier that the energy associated with the minimum energy

control is also bounded above. Upper and lower bounds may also be established
in a similar way for the energy of a minimal control taking the state at time
s 6 to the zero state at time s. It then follows by Lemma 1 that the closed loop
system is uniformly completely controllable, and the theorem is proved.

As a comment on the application of the above theorem we note that the
problem of deciding whether a prescribed pair F(t), G(t) is uniformly completely
controllable is often difficult; it may require calculation of the transition matrix.
However, the fact that F(t) may be replaced by F(t) G(t)K(t) for a large class of
matrices K(t) may reduce the difficulty, as occasionally K(t) could be taken such
that F GK was constant.

We now turn to an extension of the time-varying version of the lemma of
Lyapunov as discussed in [9]. In particular, boundedness constraints are removed
and appropriate modifications are made.

THEOREM 5. Consider the system

d
(42) td--Zx(t)= F(t)x(t)



412 B.D. O. ANDERSON AND J. B. MOORE

and let L(. be a matrix such that IF, L] is uniformly completely observable. Both
F( and L(. have entries which are continuous. Then

(i) If F is exponentially asymptotically stable, there exists a matrix P defined by

(43) P(t)-- lim H(t, T),
T-

where H(t, T) in turn is defined by

(44) -lI HF + F’H + L’L, H(T, T)= 0.

Moreover,

V(x, t) x’(t)P(t)x(t)

is a Lyapunov function for (42), and finally P is given by the formula

(45) P(t) lim ’(2, t)L’(2)L(2)(2, t) d2.
T-

(ii) Ifthere exists a symmetric matrix P( and positive constants and such
that for all

(46) 0 < flxI P(t) f12I <
and such that

(47) -P PF + FP + L’L,

then V x’Px is a Lyapunov function such that for some positive f13, o and all t,

t+ 6o
AV /V -.

(This condition corresponds to EAS.)
Proof of (i). The solution of (44) can readily be verified to be

H(t, T) ’(2, t)L’(2)L(2)O(2, t)d2.

Since IF, L] is uniformly completely observable,

(48) 0 < fl4I ’(2, t)L’(2)L(2)(2, t)d2 < flsI <

for all and some positive constants fl, fls and 5o. This means that

IIn(t, T)[I fls[1 + [[O(t + 60, t)[[ 2 + [[(t + 260, t)[[: + + [[O(t + k6o, t)[[ 2]
for some k using arguments similar to those in the proof of Theorem 1. Since F is
EAS, positive constants a s and a 9 exist such that

Jill(t, T)]] 5 fls{1 + a,s[exp (-a925) + exp (-a,945) +

+ exp (-a92kS)]}.
Using the nontrivial arguments as in the proof of Lemma 1, it becomes

apparent that ]]H(t, T)]] is bounded above independently of and T. This result
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together with the result that I-I(t, T) monotonically increases as T increases means
that the limit (43) exists and is bounded independently of t. The lower bound on
P(t) follows using (45), (48) and the observation that

’(), t)L’()OL(2)a#(2, t) d2 <= ’(2, t)L’(2)L(2)(2, t) d2.

With V x’Px, by using (45), l? x’L’Lx which is plainly nonpositive. This
proves (i).

Proof of (ii). Equation (46) guarantees that V as distinct from l? satisfies the
necessary requirements for it to be a Lyapunov function. Since using (47) we have
l? -x’L’Lx, it follows that stability, as distinct from EAS, of F is established.
To establish EAS we compute the change in V along a length 30 of trajectory.
Thus

t+6o

AV l? dt

(I)’(2, t)L’(2)L(2)(2, t) d2x(t).

Since IF, L] is uniformly completely observable,
t+6o

AV <= fl4x’(t)x(t)

and

t+o
AV IV <__

Simple arguments may be used to show that EAS is implied, and the proof of
part (ii) is completed.

6. Conclusions. This paper has shown that in developing a number of linear
time-varying system stability results, the usually imposed boundedness restriction
on the elements of the system matrices is not essential. Of particular interest is the
result that internal and external stability are equivalent for uniformly completely
controllable and observable systems, provided that in defining external stability,
modification is made to the usual requirement of boundedness of inputs and out-
puts.
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AN EFFICIENT COMPUTATIONAL PROCEDURE FOR A
GENERALIZED QUADRATIC PROGRAMMING PROBLEM*

ROBERT O. BARRy"

1. Introduction to the basic problem (BP). Many problems in optimal control
(see 1], [2 and [3]) have as their essence the following basic problem (BP)"

Given K a compact, convex set in E". Find a point z* K such that [z*l 2

minzK[zl2 (here l. [denotes Euclidean norm).
The constraint set K in this quadratic programming problem, in constrast to

the quadratic programming problems usually treated in the literature (e.g.,
[4], [5], [6], [7] and [8]) need not be specified by some set of functional inequalities.
It is required only that there be a known contact function of K, i.e., a function s(.
from E" to K such that the scalar product y. s(y) maxKy, z. For the convex
sets K which occur in a wide variety of optimal control problems, a contact
function is the only available characterization of K. The connection between BP
and optimal control problems as well as techniques for evaluating a contact
function in specific problems is given in [1], [2] and [3]. Some other optimal control
references ([9], [10], [11], [12], [13], [14], [15] and [16]) give computing procedures
which also utilize the convexity of K.

This paper presents an iterative procedure for solving BP. The procedure
extends the method of E. G. Gilbert [1] so that on each iteration a quadratic
minimization problem is solved on a convex polyhedron instead of on a line
segment. As with Gilbert’s procedure, convergence is guaranteed and computable
error bounds are available. However, the results of many computations for a
rather general example using both Gilbert’s method and its extension indicate that
the extended procedure converges much more rapidly. In fact, under certain
conditions on K, the convergence is not only rapid but finite.

For these algorithms the importance of a contact function cannot be over-
emphasized. The availability of a contact function implies that given K,

0, a point s(-) on the boundary of K can be determined such that an inward
normal to the boundary at that point is parallel to . It is the utilization of this new
point which yields a smaller value ]zl 2.

It should be observed that if R = E" is closed and convex but not necessarily
bounded, then the intersection of K" with a closed sphere around the origin and
containing at least one point of is a set K satisfying the requirements for BP.
Any solution z* of BP satisfies ]Z*[ 2 minzglz[ 2.

The paper is organized as follows" In 2 the iterative procedure (IP) and con-
vergence theorem are stated; in 3 certain results and solution techniques are
presented for the subproblem which occurs on each iteration of IP in 4, 5 and
6 the convergence theorem is proved, several variations of IP are discussed,

and conditions guaranteeing finite convergence are established; and in 7 some
numerical results are exhibited.

* Received by the editors April 2, 1968, and in revised form March 5, 1969.

" Systems Science, College of Engineering, Michigan State University, East Lansing, Michigan
48823. This research was supported in part by the United States Air Force under Grants AF-AFOSR-
814-65 and AF-AFOSR-814-66 and by the National Science Foundation under Grant GK-726.
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Some notation useful in the sequel is presented here. For x, y, z e E", scalar co,
set X, and compact convex set C define" N(x; co) {z’lz xl < co}, co > O,
the open sphere with center at x and radius co; /(x; co)= {z:lz- xl-< co},
the corresponding closed sphere; Q(x; y)= {z’z.y x. y}, y O, the hyper-
plane (dimension n- 1) through x with normal y; Q(x; y)= {z’z.y < x. y},
y 4= 0, the open half-space bounded by Q(x;y) with outward normal y;
QC(x; y) {z’z ..y >_ x. y}, y v O, the closed half-space bounded by Q(x; y) with
inward normal y; 8X, the boundary of X; dim X, the dimension of X; Pc(Y)

{z’z.y maXxcX, y}, y O, the support hyperplane of C with outward
normal y.

2. The iterative procedure (IP) and convergence theorem. It should be noted
that since [z[ is continuous and K is compact, a solution z* to BP exists. Further-
more, z* is unique; z* 0 if and only if 0 e K; and for 0 q K, z* K. The unique-
ness of z* is an obvious consequence of the strict convexity of [z] 2.

The geometric significance of a contact function s(. of K is illustrated in
Fig. l: for y - 0, s(y) lies on the intersection of K and the support hyperplane
Pr(Y). The figure shows that for certain y v O, s(y) may not be uniquely deter-
mined. However, the iterative procedure requires only that a method be available
for computing one value of s(y) for each given y. Such a method is available for
many optimal control problems [1], [2], [3], and no assumptions of "normality"
or "unique maximum condition" are necessary.

Consider now the iterative procedure for solving BP.
ITERATIVE PROCEDURE (IP). Let s(.) be an arbitrary contact function of the

set K. Take z0 K and choose a positive integer p. Then a sequence of vectors
(Zk+ 1}, k 0, 1, 2, ..., is generated as follows:

Step 1. Select any p vectors y(k), y2(k), ".’, y,(k) in K and let

Hk A{yx(k), y2(k), "", yp(k), S(--Zk), Zk}

(A denotes "convex hull of").
Step 2. Find zk+ Hk such that

[Zk+ 12 minlzl2.
zeHk

Steps 1 and 2 constitute one iteration, called iteration k, of IP.

s(y)

Y

(a) K strictly convex (b) K convex

FIG. 1. The contact function s(y)
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Gilbert’s procedure [1] (with parameter 6 1) differs from IP in that Zk+
is obtained by minimizing over the line segment A{s(-z), z} instead of over the
convex polyhedron H. Extensive computational results, some of which are shown
in 7, indicate that for many sets K the rate of convergence for Gilbert’s procedure
is slow. Propitious choice of the points y:(k), yz(k), yp(k) in Step 1 of IP can
notably accelerate convergence. Several selection rules for choosing these points
are discussed in 5 and the improved convergence properties of the resulting
versions of IP are treated in 6 and 7.

It is important to note the distinction between BP and the subproblem in
Step 2 of IP, both of which are quadratic programming problems on a compact,
convex constraint set. The set K in BP is described only by a contact function s(-
of K, whereas the set H in Step 2 is the convex hull of p + 2 known points. Thus
the subproblem is simpler than BP. It is shown in 3 that standard quadratic
programming techniques can be used to solve the subproblem.

Before stating the convergence theorem for IP, it is convenient to introduce:

(1)
(z) Izl- z. s(- z), Izl>0, z,s(-z) > O,

=0, z=0 or Izl>0, z.s(-z)O,

(2)
#(z)- Izl-z. s(-z), z O,

=0, z =.0.

Thus ;(- and/(. are scalar functions which are defined on K. Figure 2 indicates
their geometric significance for the case [z[ > 0, z-s(-z) > 0" 7(z)z is the inter-
section of the line through 0 and z with the support hyperplane P(- z) ofK having
outward normal -z; ]#(z)] is the Euclidean distance from the origin to PK(-z).
The function ,(. is useful in computing error bounds for IP and #(-) forms the
basis of selection for several versions of IP which exhibit good convergence (see

5). Gilbert [1] has proved the following properties of (z), z K" 0 _< (z) <_ 1
if 0 e K, 7(z) 0; if 0 K, (z) 1 if and only if z z* /(z) is continuous. Now the
principal convergence theorem is stated.

THEOREM 1 (Convergence theorem for IP). Consider the sequence {Zk}
generated by IP. For k >= 0 and k "(i) zk K;

z /o-- oiin

Iz-’ (z)=

s (-z)

FIG. 2. Geometric significance of (. and l(.

z)
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(ii) the sequence {[Zk[ } is decreasing ([Zk[ __> [Zk+ lJ), [Zk[ [Z*[, and [Zk[ [Zk+ 1[
implies zk z*;

(iii) Zk -- Z*"
(iv) [Zk[V(Zk) <--[Z*[ and [Zk[7[(Zk) [Z’l;
(V) [Zk- Z*] X//1 V(Zk)[Zk[ and x/ V(Zk)JZk[ --* O;
(vi) Is(--Zk)- z*l _--< [S(--Zk)- 7(Zk)Zk[.
The results of the theorem are identical to those stated by Gilbert 1] for his

iterative procedure. Since the bounds given in parts (iv), (v) and (vi) are computable
as the iterative process proceeds, they may be used to generate stopping criteria
for the termination of the iterative process. Example problems show {]Zk[V(Zk)} is
not necessarily increasing. Thus [Zk[- maxi<__klZilY(zi) is more satisfactory as an
upper bound for [Zk[ [Z*[ than [Zk[ [Zk[V(Zk).

3. Subproblems I and 2. The proof of Theorem is deferred until 4 so that
certain preliminary results for the subproblem in Step 2 of IP can be established.
This subproblem will be considered in the following form.

SUBPROBLEM 1. Given H, the convex hull of m points Y l, Y2, Y from En.
Find a point y* H such that [y,[2 min]y[2.

Since H is compact and [y[ is a continuous function of y, a solution y* exists.
THEOREM 2 (Solution properties for Subproblem 1).

(i) y* is unique;
(ii) [y*[ 0/f and only if 0 H;

(iii) for ]Y*I > 0, y* OH;
(iv) for lY*I > O, y y* if and only if y Pt(- Y) ["1 H;
(v) for ly*l O, y* has a representation y* ’= iYi, where = lri-- 1,

r >= 0 (i 1, 2, m), and no more than n oj’the tri are positive.

Proof Gilbert [1] has shown that z*, the solution to BP, has properties similar
to (i) through (iv) of Theorem 2. For example, when [z*[ > 0, z z* if and only if
z PK(- z) f’l K. The proof of parts (i) through (iv) is omitted since it requires only
slight modification of the corresponding proof by Gilbert [1].

Consider part (v). Since H c E", H is the union of a finite number of convex
polyhedra each having dimension __< n 1. Moreover, the set of extreme points of
each of these convex polyhedra is a subset of {y, Y2, Ym}" From [y*[ > 0,
y* OH. Thus the Caratheodory theorem [17], [18] implies that there exists a
subset X of (y l, Y2, Ym} containing q points such that y* AX and 1 =< q < n.
It follows that y* has the required representation.

Since the iteration of IP requires the solution of Subproblem 1, it is important
that methods exist for readily computing its solution. The standard quadratic
programming techniques described in the literature (e.g., [4], [5], [6], [7] and [8])
cannot be directly applied since they begin by assuming the constraint set is de-
scribed by a set of linear equations and/or inequalities rather than by the points
whose convex hull is the constraint polyhedron. Determining from yx, Y2,
a description for H in terms of linear equations and/or inequalities presents serious
computational difficulties.

There is an alternative method of attacking Subproblem 1 which makes
possible the use of the standard algorithms. It will be shown now that the solution
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to Subproblem 1 is given by the solution to another quadratic programming
problem, Subproblem 2, which has a constraint set described by linear equations
and inequalities. Subproblem 2 is solvable by any of the well-known quadratic
programming techniques such as that due to Frank and Wolfe [4], which was used
for the computations in 7.

x 1 x > O,Each y e H has the representation y = x’y, where
i= 1,2,...,m. Thus

(3) lyl z
i=lj=l

If x is the m-vector (x 1, X2, Xm) and D is the m m symmetric matrix with
elements d. Yi" Yj, then

(4) lyl 2 x. Dx.

Since lYl 2 >_ 0, the quadratic form x. Dx is nonnegative definite, a fact which implies
it is a convex function of x on E". Consider now Subproblem 2.

SUBPROBLEM 2. Given D, an m x m symmetric nonnegative definite matrix,
and the constraint set

X eE Xi-- 1,xi>= 0, 1,2,-’-,
i=

Find a point x* X such that x* Dx* minxxX. Dx.
If D [dij] [Yi" Y], Subproblem 2 is said to be associated with Sub-

problem 1. For this case, (4) implies that minimization of x. Dx on X is equivalent
to minimization of ly[ 2 on H. Thus, if x* solves Subproblem 2, the solution y* to
Subproblem 1 is given by

(5) y*= x*%.
i=1

4. Proof of Theorem 1. Since yl(k),y2), ..., yp(k), and S(--Zk) are points
in K, it follows from the convexity of K and the definition of convex hull that
Zk K implies Hk K and Zk + K. Thus by induction z0 K proves part (i).

The inequalities in (iv), (v) and (vi) follow by the same arguments used in the
proof given by Gilbert [13 for the corresponding parts of his convergence theorem.
Gilbert’s proof also yields the inequality

(6) 0 =< [z z*[ 2 =< r(z), z K,

where the function F(z) is defined by

(7) r(z) Izl 2 Iz*l 2, zK.

(8)

Now consider part (ii). Given a Zk e K, let k+ A{S(-- Zk) Zk} be such that

Ik+ 112 min Izl 2.
A{s( z), z}



420 ROBERT O. BARR

Since Zk+ is obtained by minimizing over Hk and A{s(- Zk) Zk} C Hk, it follows
that

(9) IZk+ 112 _--< ]k+ 112.
Then (7) and (9) imply

(lO) r(z) r(z+ ) _> r(z) r(/ ).

But from (4.20) of Gilbert’s paper [1

(11) F(Zk) Fffk+ 1) => rain {1/4p-ZFZ(zk), 1/2F(Zk)} >_-- 0,

where p maxzl,z.rlzl Zzl. Thus (10) and (11) yield

(12) F(Zk) F(Zk+ 1) >_-- min {1/4p-2F2(Zk), 1/2F(Zk)} _>-- 0.

Therefore the sequence (F(Zk)} is decreasing and, since it is bounded below by
zero, has a limit point. Thus passing to the limit on the left side of(12) gives zero and
from the right side F(Zk) 0. By (6), (7) and (12) this proves (ii) and (iii).

The second result in (iv) and the second result in (v) follow from y(z*) 1,
the continuity of y(. ), and (iii).

5. Selection rules for IP. In this section several rules for selecting the
vectors yl(k), yE(k), yp(k) K in Step 1 of iteration k of IP are presented. The
symbols Yk and Sk are used to denote the sets:

(13) Yk {yl(k), yz(k), "’", yp(k)},
(14) Sk {yl(k), y2(k), "’", yp(k),s(--Zk)}.
Since the goal is to choose Yk SO that IP will converge more rapidly than Gilbert’s
procedure [1], some preliminary comments are appropriate. Attention is focused
on the case z* e OK which is most important in applications.

Numerical results are exhibited in 7 for the set

(15) K Z’Z = V "-1- - (zi)2./- Z < 10
i=2

where v, 22,23, ..., 2 > 0 and z (zl, z2, ..., z"). The optimum is z*= (v,
0, ..-, 0) and the 2 are the principal radii of curvature of 0K at z*. Since many
other convex sets K have a boundary surface which is closely approximated by a
similar representation in the neighborhood of z*, this example is of general
interest.

The numerical results indicate that slow convergence is obtained with
Gilbert’s procedure when the surface OK at z* has at least one principal radius of
curvature large compared with [z*[. For problems in which the set Pr(-z*) K,
z* 0, contains more than one point (this may occur when K is not strictly convex),
convergence is especially poor. If is chosen so that after a few iterations of IP the
surface OHk in the vicinity of Zk+ closely approximates 0K in the vicinity of
z*, then it is likely that IP will exhibit improved convergence. For OHk to approxi-
mate OK, the dimension of Hk must be sufficiently large, namely n, and Yk must
include boundary points of K. To illustrate these remarks, consider Fig. 3 which is
K of (15) with n 2, v 1, 22 1, z* (1, 0). In Fig. 3a Gilbert’s procedure is
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0 Origin

(a) Gilbert’s iterative procedure [1]

O=Origin

(b) IP, Selection Rule A, p 2

FIG. 3. K of (15) with n 2, v 1, 2 1, z* (1, 0)

shown, where dim Hk 1 and convergence is slow. In Fig. 3b IP with Selection
Rule A (to be described subsequently) is shown, where dim Hk _<_ 2 and con-
vergence is notably improved. An even more startling improvement is exhibited in
Fig. 4 for which K A{(1, 1), (-1, 1), (0,2)), z* (0, 1) and Pt(-z*) f) K is the
line segment A{(1, 1), (-1, 1)}. Theorem 5 shows that when K is a convex poly-
hedron, IP (with a suitable selection rule and contact function) converges in a
finite number of iterations. Furthermore, the extensive numerical results of 7
provide strong evidence that IP is far superior to Gilbert’s procedure.

Let the p points in Y be contact points of K. Observe that OH is a better
local approximation to OK for larger values of p. However, the larger p is, the more
difficult it is to solve the Subproblem 1 in Step 2 of IP. The computational results of
7 indicate that convergence is good for p n and little improvement is obtained

for p > n. The desirability of choosing p n is also evident from the finite con-
vergence material in 6.

In optimal control applications [1], [2], [3] it is advantageous to limit the
number of times the contact function is evaluated. Thus in the selction rules which
follow Y/ 1, k >_ 0, contains every point in Y except perhaps one. There remains
the question of how to reject one contact point in favor of another. The approach
in the selection rules given here is to use #(z) as an indication of the quality of the
contact point s(-z), z K. Roughly speaking, contact points corresponding to
larger values of #(. are preferred. Other quantities, e.g., Is(-z)[, Izl, (z), may be
suggested for judging the merit of s(z). However, careful examination of example
problems such as K of (15) with n 3, 22 >> 23 shows that these quantities are
less desirable than #(z).

It is convenient to view each selection rule as several phases, which are to be
used sequentially.
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0 =Origin

ZI( /5 /H2
S(-zo) =s (-z=)s (-z) --

(a) Gilbert’s iterative procedure 1-1]

* 0 Origin

s(-z ,)
z= zz s (-zo)

(b) IP Selection Rule A, p 2

FIG. 4. K A{(1, 1), (1, 1), (0,2)}, z* (0, 1)

Selection Rule A.
Phase A0. For k 0, set yi(0) s(-zo), 1, 2,..., p, and define scalars

/, #2, ,/p equal to #(Zo).
Phase A1. For 1 =<k=<p, set yi(k)=y(k- 1), i- 1,2,...,p. Then set

yk(k) s(- zk_ ) and/ p(z_ ).
PhaseA2. For p +1 =<k, set y(k)-y(k-1), i= 1,2,...,p. Then let

p__ min {#1, #2, "’",/,} and letj be the smallest integer in [1, p] for which #j =/.
Whenever/j =</(z_ 1), replace yj(k) by s(-z_ ) and #j by #(zk_ 1).

In Phase A2 there is nothing crucial about the way of handling the possibility
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of two or more Pi, 1 _< _<_ p, being equal to/. Moreover, # < (zk_ 1) may be
used as the condition for replacement instead of # __< l(Zk- 1).

For selection rules such as A in which Yk / is a subset of Sk for all k _>_ 0, it is
possible to state additional results. Consider the determination of Zk / in Step 2 of
iteration k of IP. Since Zk + Hk, it has a representation" Zk + ,-+- x’yi, where
Yi-yi(k), i= 1,2,...,p, Yp+l s(-zk), yp.2 Zk, Zf_+_2Xi= 1, X >=0,

1, 2,’’’, p 4- 2. Let Ik be the set of superscripts i, 1 __< __< p 4- 2, for which
x 0. Observe that Ik may be empty. The following results hold.

THEOREM 3. Consider the sequence {Zk} generated by IP.
(i) Suppose the selection rule is such that Yk / Sk for all k >__ O. If in Step 2

of iteration k, k > 0, the integer p 4- 1 Ik, then zk Zk+
(ii) Suppose p is chosen so that q p 4- 2 n >= O. Then in Step 2 of iteration

k, k >_ O, either zk+ 0 (which implies z+ z* O) or there exists a
vector x (x 1, x2, xp+ 2) such that the corresponding Ik contains at
least q elements.

Now assume z+ v z* for some >= O. Then for all k, 0 <__ k <__
(iii) Yk Sk Hk Qc(zk+ l"Zk+
(iv) if Y+ S, s(-z+) Q(z+ ; z+ );
(v) if Y1 So, $1 contains two distinct points;
(vi) if Yk + Sk, Yk + contains every point in Sk except one, and Sk contains

distinct points (1 <_/ __< p + 1), it follows that there are at least distinct
points in Sk+

(vii) if Phases A0 and A1 are used and Zp v z*, Sp contains p + 1 distinct points.

Proof. Consider (i). Note that k > 0 and let H A{yl(k 1), y2(k 1), ...,
yp(k 1), s(- Zk- 1), Zk}. Since H = Hk- and Zk H, ]Zkl min,lzl. But
p+ lIk and Yk cSk-1 imply z+lg and IZk+11 >=min,lzl. Thus by
part (ii) of Theorem 1 [Zk[ [Zk+ 11 and Zk Zk+ Z*. In (ii) suppose Zk+ V O.
Part (iii) of Theorem 2 yields Zk + OHk. Then part (v) of the same theorem and
p + 2 n >= 0 imply that a vector x with the desired property exists. Consider (iii).
Since z+ 4: z*, part (ii) of Theorem 1 implies IZk[ > Iz*[ >-- 0 for all k, 0 =< k <=
+ 1. Hence, for 0 __< k __< , the hyperplane Q(Zk+l; Zk+ 1) is defined. By part (iv)
of Theorem 2 it follows that Zk+ Pn(--Zk+ 1) Q(Zk+ 1; Zk+ 1). Thus Hk is
contained in the closed half-space Q(Zk+ Zk + 1) and (iii) is true. In (iv) suppose for
some k, 0 <= k <__ 1, S(--Zk+I)Q(Zk+a;Zk+I). Then S(--Zk+I)Q(Zk+I;Zk+I),
and by (iii), Q(Zk+; Zk+ ) also contains Sk and Zk+l. Since Yk+l Sk, Hk+l

Q(Zk+ Zk+ 1) and IZk+ 11 [Zk+ 21. By part (ii) of Theorem 1 this implies Zk+
Z* for some k, 0 =< k <_ , which contradicts Iz[ > [z’l, 0 =< j __< + 1, and

thus establishes (iv). From (iii), (iv) and Y1 = So it follows that Y1 Q(zl ;z 1) and
s(-z) Q(zl;zl). Hence $1 must contain two distinct points. Similarly (iii), (iv)
and Yk+ Sk imply Yk+ Q(Zk+ 1; Zk+ 1) and S(--Zk+ 1) Q(Zk+ 1; Zk+ 1), which
means s(-Zk+ 1) is distinct from the points in Yk + 1. If Yk + contains every point in
Sk except one and Sk contains fi distinct points, then there are at least/ 1 distinct
points in Yk+ 1. Since Sk+ is the union of Yk+ and S(--Zk+ 1), the conclusion in (vi)
is true. Consider (vii). From zp # z*, it follows that (iii) and (iv) hold for 0 __< k
=< p 1. Thus Yk + = Sk and 0 _< k =< p 1 imply s(-Zk + 1) is distinct from the
points in Yk+ 1. For Phases A0 and A1, Y1 and So contain only s(-Zo); Y2 and S
contain only s(-zo) and s(-zl); ...;Yp and Sp_ contain only s(-zo),
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s(- zl), "’", s(- Zp_ 1). Consequently the fact that s(- Zk / 1) q Yk / applied
successively for k 0, 1, ..., p 1 yields the result" s(- z0), s(- zl), s(- Zp)
are distinct. Since Sp is the union of these p + 1 points, (vii) holds and the proof
is complete.

Now consider two additional selection rules.
Selection Rule B. (Assume that p >__ n and that in Step 2 of every iteration k of

IP a vector x is determined such that the corresponding Ik contains at least
p / 2 n integers. By part (ii) of Theorem 3 such an x must exist or Zk+ O.

Z* 0) orTerminate IP in Step 2 of iteration k if Zk + 0 (which implies Zk+
if p + 1 Ik (which implies Zk Zk+ Z*).)

Phase B0. Use Phase A0.
Phases B1 and B2. Proceed as in Phases A1 and A2 except that if p / 2 1i

for some k, define k’ max {k + 1, p + 1} and for k >__ k’ use Phase B2’.
Phase B2’. Set yi(k) yi(k 1), 1, 2, ..., p. Let/__’ minf_ ,, p+ 1, p+ 2i

and letj be the smallest integer in Ik- for which #j g’. Replace yj(k) by s(- Zk- 1)
and # by #(Zk-x).

For a particular problem it is possible that the condition p + 2 e I for
entering Phase B2’ may never be satisfied. In that case Selection Rules A and B are
identical. The computational experience with IP indicates, however, that this
condition is satisfied after only a few iterations for a broad class of problems.

Selection Rule C. (Assume that p _>_ n, that z0 s(-z_ 1) for some z_ K
and that in Step 2 of every iteration k of IP a vector x is determined such that the
corresponding Ik contains at least p + 2 n integers. By part (ii) of Theorem 3
such an x must exist or Zk / 0. Terminate IP in Step 2 of iteration k if Zk + 0

z* 0) or if p + 1 e Ik (which implies Zk Zk+ Z*).)(which implies Zk +
Phase CO. For k=0, set yl(O)=zo=s(-z_l), set yi(O)=s(-zo),

i= 2, 3,..., p, and define P #(z_l), P p(Zo), i= 2, 3,.-., p.
Phase C1. For 1 _<_ k <_ p- 1, set y(k)= y(k- 1), i= 1,2,.-., p. Then

set Yk+ l(k) s(-zk- 1) and #k+ (Zk- 1).
Phase C2. For k _>_ p, use Phase B2’.
The assumption p >__ n is required for Selection Rule B and Selection Rule C

so that the set (i’i Ik_ 1, =/= p / 1, p / 2} which occurs in Phases B2’ and C2
is not empty. Since p + 2 n __> 2, Ik_ contains at least 2 integers in 1, p + 2].
Moreover, p + 1 q Ik_ or IP would have terminated in Step 2 of iteration k 1.

THEOREM 4. Consider IP and assume that Selection Rule B or Selection Rule C
is used.

(i) If zp v z*, Sp (with Rule B) and Sp_ (with Rule C) contain p + 1 distinct
points;

(ii) Let c be the first k >__ 0for which p / 2 Ik if Selection Rule B is used and
let f 0 if Selection Rule C is used. Then in Step 2 ofiteration k, all k >= f,
Subproblem 1 can be solved on ASk instead of Hk. That is, let zk + satisfy
Zk+ ASk, [Zk+ 11 minz asklZ[ and find a vector x (x 1, X2, Xp+2)

p+ 2such that Zk+l A.ai=X xiyi where yi= yi(k), i= 1,2,.-., p, Yv+l
?+2xi 1, xi>0, i= 1,2,... p +1 x+2 =0.S(--Zk) yp/ 2 Zk, /4=

Proof For (i) note that with Selection Rule B or C, Yk+ c Sk and Yk+
contains every point in Sk except one for all k >= 0. Thus, the argument for part (vii)
of Theorem 3 can be essentially repeated to prove (i). Consider (ii). Since



GENERALIZED QUADRATIC PROGRAMMING PROBLEM 425

p + 2 e I (with Rule B) and Yl(/) z (with Rule C), on iteration Subproblem 1
can certainly be solved on AS instead of H. Thus z+ AS. Now I+ S.
Furthermore, I+ contains every point in S except one which has a coefficient
of 0 in the convex combination expression for z+ . Hence z+ AI+ and
AS+ H+ , so that on iteration + 1 Subproblem 1 can be solved on AS+
to yield z+ 2 AS+ . By induction Subproblem 1 can be solved on ASk instead of
Hk for all iterations k, k _>_ . This completes the proof.

Note that it is simpler to solve Subproblem 1 on ASk rather than on Hk"
the constraint set for the quadratic programming problem is the convex hull of
only p + 1 points instead of p + 2. It will henceforth be assumed that whenever
Selection Rule B or Selection Rule C is used in IP, Subproblem 1 is solved on ASk
for all k > .

Section 7 contains computational results for IP with Selection Rules A and B.
These results indicate that it is good to choose p n and that the rate of conver-
gence of IP, which is about the same using Rule A or Rule B, is significantly faster
than Gilbert’s procedure [1] for a broad class of problems. Selection Rule C is
identical with Selection Rule B for k >= max { + 1, p + 1}, where is the first
k >= 0 for which p + 2 e Ik when Rule B is used. For all the computations in which
Selection Rule B was used (e.g., see Table 5), was observed to be very small.
Thus it can be stated that IP with Selection Rule C also converges much more
rapidly than Gilbert’s procedure.

From part (ii) of Theorem 4 Selection Rules B and C have an advantage over
Rule A in that for iterations k, k => ., Subproblem 1 can be solved on the convex
hull ofp + 1 points instead ofp + 2. However, the requirement with Rules B and C
that Ik contain at least p + 2- n integers adds complexity to the solution of
Subproblem 1 in Step 2 ofevery iteration k, k _>_ 0. Selection Rule C is most desirable
for guaranteeing finite convergence in certain problems (see 6) and Rules B
and C are advantageous for certain optimal control applications [1], [2], [3].

6. A finite convergence theorem. The following theorem gives a sufficient
condition for IP to exhibit finite convergence.

THEOREM 5. Let s( be an arbitrary contactfunction of the set K specified in BP,
choose p >= n, and consider IP with Selection Rule C. Assume that the range of s(y)
for y E is Ct finite set of points. Then the sequence {z} generated by IP converges
in a finite number of iterations.

Proof Let 31, g2, "’", denote the points in the range of s(y), y E and
define {31, g2, "’", gl}. Suppose that convergence of IP is not obtained in a
finite number ofiterations. By part (ii) ofTheorem 1, Iz/ 11 < Izl for k 0, 1, 2,
However, by part (ii) of Theorem 4, Izl is the value obtained by minimizing Izl 2
over the convex hull of p + 1 points contained in S. Since there are only a finite
number of ways of choosing p + 1 points from $, there are only a finite number of
possible values of Izl as k runs through the nonnegative integers, contradicting
Iz+ xl < Izl for k 0, 1, 2,.... This completes the proof.

If the range of s(y) for y E is a finite set of points, then K is a convex poly-
hedron. However, for a convex polyhedron K in E", n _>_ 2, it does not necessarily
follow that the range of s(y), y E, is finite. For example, in E3 an entire edge ofK
could lie in the range of s(y), y E3. Nevertheless, if the set of extreme points of a
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convex polyhedron K is a known set, say , then it is possible to choose a contact
function s(y) of K whose range for y e E" is a finite set of points. This follows from
the fact that a contact function of ; is also a contact function of K. Thus, for many
convex polyhedra K such as those which arise in optimization problems for linear
sampled-data systems, Theorem 5 can be used to guarantee finite convergence.

Note that Theorem 5 holds for IP with Selection Rule B if there exists k > 0
such that the condition p + 2 e Ik is satisfied in Step 2 of iteration k.

The assumption in Theorem 5 may be replaced by the following less re-
strictive assumption: there exists e > 0 such that for z K and Izl Iz*[ < , the
range of s(- z) is a finite set of points. Then the sequence {Zk} generated by IP with
Selection Rule C converges in a finite number of iterations. This result follows from
part (ii) of Theorem 1 and arguments similar to the proof of Theorem 5.

.1

.01

10-3

-4
i0

0 i0 20 30 40 50

FIG. 5. Izkl- Iz*l for n 3, Zo (6,2,2), v 1, 2 100, 23 10" (A) IP Selection Rule A,
p 3" (BI Gilbert’s procedure [1]
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7. Some numerical results. This section contains some results of numerical
computations for the general set K defined by (15). Data for Gilbert’s procedure
[1] and for IP with Selection Rules A and B are presented.

In optimal control applications the evaluation of a contact function is the
most time-consuming part of the iterative procedure. Since such an evaluation is
required on each iteration, the number of iterations to satisfy certain error criteria is
used as a measure of the speed of convergence.

Figure 5 and Tables 1 and 2 present results for n 3 using Gilbert’s procedure
and IP with Selection Rule A (p 3). The data indicate that the speed of conver-
gence for Gilbert’s procedure depends strongly on the parameter v-1, where

TABLE
Number of iterations to satisfy IZkl Iz*l =< e" n 3, Zo (6, 2, 2), v

Gilbert’s Procedure

10 10

10
100

1,000
100

1,000
1,000
1,000

10
100

1,000
10

10
100

4
10
82
11
14
83
81

28
59

216
27

218
229
197

41
111
340
81

321
359
358

IP Selection

Rule A, p

10-3

3 7
4 9
4 10
6 17
6 11
7 20
8 23

10-6

12
13
12
32
17
29
32

TABLE 2
Number of iterations to satisfy Iz*l IzklT(Zk) " n 3, Zo (6, 2, 2),

10
100

1,000
100

1,000
1,000
1,000

10
100

1,000
10

10
100

Gilbert’s Procedure

10

20
18
81
14

146
88
80

10-6

37
58

165
51

235
264
196

IP Selection

Rule A, p

10-3

6
8
8
16
10
14
16

10-6

11
12
11
31
16
28
30

/ max {2i}, convergence being slow when ,v- is large. For IP the convergence is
much more rapid and shows very little dependence on iv-1. The behavior of
[zk[- [z’l, [Zk Z*[ and [z*l -Izl(z) is typical: ]z*[ -]Zkl(Zk) decreases most
rapidly, followed in order by Izl Iz*l and IZk Z*I.
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TABLE 3
Number of iterations to satisfy Izl- Iz*l _<-e" n 3, Zo (5, 4,2), /2 1,000, 2a 100,

IP Selection Rule A and Gilbert’s Procedure

\
0.1 0.01 10- 10 I0- 10

0 53 77 138 202 241 298 366 ,5.3

30 52 97 134 171 249 293 319.1
2 9 15 27 36 46 52 58 75.9
3 9 16 23 26 29 33 36 50.1
4 8 14 17 24 27 32 37 77.8
5 8 13 16 23 26 31 35 90.3

Notes. (i) p 0 corresponds to Gilbert’s Procedure.
(ii) actual computing time (seconds) for IBM 7090.

TABLE 4
Number of iterations to satisfy Izl -Iz*! =< e" n 4, Zo (6, 1, 2, 2), 22 1,000, 2a 500,

2,, 100, IP Selection Rule A

0.1 0.01 10 10 10 10

23 67 107 152 185 226 264 331.1
19 38 79 101 127 141 158 211.4
15 27 36 46 62 74 78 123.1
12 18 25 29 37 48 53 86.6
11 17 22 30 39 49 57 113.3

Note. actual computing time (seconds) for IBM 7090.

TABLE 5
Number of iterations to satisfy [Zk[ Iz*l =< e

3 100 50
3 100 90
3 1,000 100
4 100 50 10
4 100 90 10
4 1,000 500 100
5 100 70 50
5 100 90 80
5 1,000 900 500
6 100 90 70
6 1,000 90 70

10
70
100
50
50

10
10

Notes. (i) k the first k for which p + 2 Ik with Rule B.

IP Selection

Rule A

10-3

7 18 30
6 17 31
8 23 32
7 29 49
7 28 48
10 31 48
9 39 66
10 38 70
17 43 79
12 45 91
14 59 94

7
6
9
8
7

10
8
9
15
11
15

IP Selection

Rule B

10-3 10

31
29
32
51
47
5O
63
69
74
92
94

21
19
23
30
28
35
36
37
42
49
60

(ii) For 3, Zo (6, 2, 2); for 4, Zo (6, 2, 2, 1); for 5, Zo (5, 3, 1, 1.8, 2.6); for 6,
zo (4, 3, 2.6, 2.6, 1.8, 1.8).
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Tables 3 and 4 show the effects of changing p. Note that convergence is good
for p n and little improvement is obtained for p > n. The desirability of choosing
p n is also indicated by the actual computing time required to satisfy
[Zk[ [Z*I _<-- 10-6.

Table 5 gives results for n =p 4, 5, 6 with IP Selection Rules A and B.
Observe that the rate of convergence is about the same for both selection rules.
Furthermore, the rate of decrease of Izl Iz*! for IP is, roughly speaking, depend-
ent on n alone. The number of iterations per decade after a few initial iterations is
approximately 2 for n 2, 4 for n 3, 6 for n 4, 9 for n 5 and 13 for n 6.

8. Acknowledgment. The author wishes to thank E. G. Gilbert for his many
helpful comments and enthusiastic support.
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SOME PRACTICAL REGULARITY CONDITIONS FOR
NONLINEAR PROGRAMS*

DAVID W. WALKUP AND ROGER J.-B. WETSt

1. Introduction. Theorem below gives sufficient conditions for a program
with linear constraints and a convex objective with range in the extended real
numbers to have well-behaved duality properties. The principal ingredient in the
proof of Theorem is Theorem 2, which considers the properties of the optimum
value of a (not necessarily convex) program under perturbation of the linear
constraints. The terminology used in Theorem 1 is adapted from [1], [2], [3],
where the close relationship between properties of the variational function and the
duality properties of a program have been discussed at some length. Briefly a
program is solvable if the value ofthe infimum is finite and achieved for some value
of the variables, it is dualizable if there is no duality gap, and it is stable if there
exist (optimal) nontrivial Lagrange multipliers. The definitions of convexity and
lower semicontinuity for functions into the extended real numbers will be reviewed
in the next section.

At the end of 2 an argument will be given suggesting that Theorem 1 is the
best possible from the viewpoint of practical applications. Finally, Theorem 1 will
be applied in 4 to show that a broad class of stochastic programs with recourse
have desirable duality properties.

THEOREM 1. Consider the nonlinear program
(1) inff(x), Ax b, x >= O,

where the objective f is convex in the sense of functions into the extended real
numbers.

(i) Iff is lower semicontinuous in the sense offunctions into the extended real
numbers and the constraint set K {x]Ax b, x >= 0} is bounded and
contains at least one point wheref isfinite, then (1) is solvable and dualizable.

(ii) If f is + v except on a closed convex polyhedron where it is finite and
Lipschitz, and if (1) has a finite value, whether achieved or not, then (1)
is stable.

THEOREM 2. Consider the function ok(u)= inf {f(x)[x c(u) where (u)
{x]Ax b u, x >= 0} and f is a function with range in the extended real

numbers.
(i) Iff is convex, so is
(ii) Iff is lower semicontinuous and to(u) is compact and nonempty for some u,

then d? is lower semicontinuous.
(iii) If f is + except on some closed convex polyhedron where it is either

finite and Lipschitz or identically -, then the same holds for dp.

2. Proof of Theorem 2.
DEFINITIONS. Let f be a function with R for its domain and the extended real
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numbers R U {+ co} U {-co} for its range. The set

epi f {(z, x)lz e R, x R", z >= f(x)}
is called the epigraph of f. The function f is said to be convex if its epigraph is a
convex subset of R"+ or equivalently if

f(xx) f[(1 2)Xo + 2xl] =< (1 2)/(Xo) + 2f(x)

for all 2e [0, 1] and Xo,Xa R", where the conventions 0. co 0 and (+ co)
+ (-co) + co apply. The function f is said to be lower semicontinuous if

lim inff(xi) >= f(lim xi)

for every convergent sequence (xi) in R", or, equivalently, if epi f is a closed subset
of R"+ 1. If the function f is finite on some subset S of R" and B is a real number
such that

If(x)- f(x’)l =< nllx- x’ll
for all x, x’ in S, where is the Euclidean norm in R", then f is said to be Lipschitz
on S with constant B.

The following two lemmas represent an application of results in [6] to the
special situation of Theorem 2. (An inconsequential difference is that in [6],
x(u) is a section of P rather than its projection into R".)

LEMMA 1. Let P {(x, u)lAx + Du b, x >= 0}, x(u)= {xlAx b- Du,
x >- 0}, Q {u]x(u) is nonempty}, and let P Po + C be the representation of
the polyhedron P as the vector sum of a bounded polyhedron Po and a (unique)
polyhedral cone C with apex at the origin. Then Q is a polyhedron, and for each
u Q, x(u) Xo(U) + C’, where Xo(U) is a bounded polyhedron depending on u and C’
is the polyhedral cone {xl(x, 0) C}. In particular, to(u) is bounded for all u in Q
if it is bounded for some u in Q, for in this case C’ {0}.

LEMMA 2. Let x and Q be defined as in Lemma 1. Then there exists a constant
B such that for any two points u and u2 in Q

d[lc(u),tc(u2)] <- n]lul u2ll,

where d[.,. denotes the Hausdorff distance between sets in R".
Observe that Lemmas 1 and 2 apply directly to Theorem 2 if u is taken to be a

vector in R and the matrix D is the identity. Accordingly, let P and Q be defined
in this manner, and consider part (i) ofTheorem 2. NowP is convex, and by assump-
tion epi f is a convex subset of R x R". Hence (epi f R") f’l R P is a convex
subset of R R" R and its projection onto the space R R is a convex set. But epi q is just the vertical closure of cg, i.e., the union of and any missing
endpoints of "vertical" line segments in cg. This proves part (i) of Theorem 2.
Also, Q is closed and q(u) + co if u is not in Q. Thus, in order to prove part (ii)
of Theorem 2 it suffices to show

lim inf dp(ui) >- (Uo),

where ui 6 Q and lim ui Uo Q. By Lemma 1 each x(u) is compact, and hence the
lower semicontinuous function f attains a minimum on x(u) at some point, say x(u).
Also, it follows from Lemma 2 that x(u) is uniformly bounded for u in some compact
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neighborhood N of Uo, i.e., P (q JR" x N] is compact. Hence the sequence of
points x(ui) has at least one limit point Xo e tC(Uo). Then

lim inf b(ui)= lim inff(x(ui)) >-f(xo) >= f(x(uo)) cb(Uo),

where the first inequality follows from the lower semicontinuity of f and the
second follows from the optimality of X(Uo) on (Uo). This proves part (ii) of
Theorem 2.

We shall begin the proofofpart (iii) ofTheorem 2 by establishing the following
special case.

LEMMA 3. Under the conditions of Theorem 2, iff is finite and Lipschitz through-
out R", then either dp is identically -ov on Q or ck is finite and Lipschitz on Q.

Proof. Let u and u’ be any two points of Q, let (x) be a sequence of points in
(u) such that lim f(xi) 4(u), and let x’i be the point of (u’) closest to xi. Then

dp(u’) f(xi) <= f(x’i) f(xi)

(2) <= Bllx’i-
BBllu’-

where B is the Lipschitz constant for f and is the constant of Lemma 2. Now
b(u’) may be -ov or finite, and lim f(xi)= qS(u) may be o or finite. But (2)
shows that b(u) implies b(u’) ;hence b is identically onQ or
4) is finite on Q. And if 4) is finite on Q, then (2) implies b(u’) b(u) __<
By the symmetry in u and u’ it follows that 4) is Lipschitz with constant B.

Now suppose, as assumed in Theorem 2, that the range of f is contained in
the extended real numbers, and the set K {xif(x) < + v} is a closed convex
polyhedron. Then b may be defined by the program

(3)
q(u) inff(x),

Ax=b-u, x>O xK.

Since K is a polyhedron, (3) may be rewritten

(4)
q(u) inff(x)+ 0x’,

Ax b-u, A’x+x’=b’ x’=x>0, >0.

The set Ko {ulb(u) < + oo is exactly the set of u for which the constraints of
(3) or (4) are feasible; hence this set is a polyhedron. Moreover, iff is -oo on K,
then b is oo on Ko. This establishes a portion of part (iii) of Theorem 2. The
remaining possibility is that f is finite and Lipschitz on K. Now f may not be
finite and Lipschitz where (4) is infeasible, and u does not perturb all constraints of
(4), but clearly the proof of Lemma 3 will apply to (4), with a different choice of D
in Lemma 1, and yield the remainder of Theorem 2.

Strictly speaking the requirement that {xlf(x) < + oo} be a polyhedron is
not essential to Theorem 2. The proof ofLemma 3 clearly establishes the following
more general result.

LEMMA 4. Suppose f is finite and Lipschitz everywhere, K is a closed convex
subset of R" x R", dp(u) inf{f(x)[x to(u)}, to(u) {x[(x, u) K}, and Q {u[(u)
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is nonempty}. Then dp is either o on Q orfinite and Lipschitz on Q provided there
exists a constant B such that

(5) d[(u), (u’)] __< Bllu u’ll

for all u, u’ in Q.
However, it is difficult to see how this more general result can be applied to

practical problems. For, consider a program of the form

b(u)=inff(x), Ax b u, x K,

where K is a convex set. Surely any practical condition to be imposed on K ought
not to depend on the particular form of A. But it is shown in [6] that if K is not a
polyhedron there even exist a l, -.’, a, such that

(u) {xlax + + a,x, Ul, X g}

fails to satisfy (5) for any B.

3. Derivation ofTheorem 1. For easy reference, we repeat the convex program
of Theorem

(1) inff(x), Ax b, x >= O.

The basic duality properties of this program are conveniently represented in an
equivalent infimum problem

(6) inf r/, (r/, u) 5a f) ,
where &o is the vertical line {(q, u)lr/ R, u 0} and cg is the convex set whose
vertical closure is the epigraph of 95, as described in the proof of part (i) of Theorem
1. The program (1) will be solvable, i.e., have a finite optimum value b(0) f(x)
achieved by some feasible x, if and only if &o I"l is a closed half-line.

A natural dual to the infimum problem (6) is the supremum problem"

sup#, #=<q+u*u for all(r/,u) e.
(,u*)

The infimum problem asks for the infimal height r/of points on inside .
The supremum problem asks for the supremal height # of points on through
which can be passed nonvertical hyperplanes (i.e., those not containing any line
parallel to ) bounding . The supremum problem can be recast in the form

sup#, /f(x)+u*(b-Ax) for allx>=0,
(t,u*)

where the role of u* as a row m-vector of Lagrange multipliers is apparent.
It is natural to say that the infimum and supremum problems are dual or that

(1) is dualizable if sup/ inf r/, i.e., if there is no duality gap. We shall say that the
program (1) is stable if the supremum problem is solvable, i.e., has a finite optimum
which is achieved for some u*. Thus (1) is stable if there is a nonvertical hyperplane
supporting c at the point (b(0), 0) on . Equivalently, (1) ia stable if there exist
Lagrange multipliers which convert it into an equivalent unconstrained problem.

The above discussion of duality properties of (1) follows the approach to
mathematical programming in abstract spaces given in [3] which is closely related
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to the more extensive development given by Rockafellar in [1,2]. Theorem 1
now follows easily from the above discussion, well-known properties of convex
sets and their supports,-the simple relationship between and the epigraph of b,
and from Theorem 2.

Remark. It is clear that if th(u) is locally Lipschitz at u 0, then the convex
program (1) is stable. However, Example 1 in the Appendix shows that part (ii) of
Theorem 1 can fail if "Lipschitz" is replaced by "locally Lipschitz."

4. Applications to stochastic programs with recourse. In this section we
shall use Theorem 1 to show that fairly broad classes of stochastic programs with
recourse have well-behaved duals. The necessary results on the objective functions
ofsuch programs have already been proved in earlier papers [4], [5]. We shall make
liberal use of the notation and terminology introduced in [4], [5], [8].

THEOREM 3. If the value of a stochastic program with recourse is finite and the
first stage feasibility set K {xlAx b, x >- 0} is bounded, then the equivalent
convex program is solvable. Moreover, either the equivalent convex program is
dualizable or the objective takes the value at points belonging to K1 for arbi-
trarily small perturbations of b, i.e., there is an infinite duality gap.

Proof It is shown in [5] that the objective z(x) of the equivalent convex pro-
gram is either lower semicontinuous as a function into the extended real numbers
or takes the value at some point. The second part of the theorem follows
immediately from this and Theorem 1. Now let K be the set on which z(x) is
less than + and let M be the affine hull of the intersection ofK and K. Since z
is convex, so is K, and hence K f’l K has an interior with respect to M. Since
the restriction zt of z to M is convex, and since it is finite on K fq K, it follows
that it is nowhere . The results of [5] apply equally well to zt and show that
it is lower semicontinuous. A straightforward application of Theorem 1 completes
the proof.

THEOREM 4. If the value of a stochastic program with recourse is finite, the
recourse matrix W is.fixed, he second-stage feasibility set K2 is a polyhedron, and
the random variables have finite variance, then the equivalent convex program is
stable.

Proof Theorem (4.5) of [4] shows that under the second and fourth hypotheses
either the objective ofthe equivalent convex program is throughout K2 or it is
finite and Lipschitz on g2. The rest follows from Theorem 1.

It is worth mentioning that Proposition 3.16 of [4] gives practical conditions
which insure that K2 is a polyhedron. In addition, Corollary 4.7 of [4] gives some
alternate conditions on the distribution of under which the conclusions of
Theorem 4.5, and hence the above theorem, remain valid.

Examples 2 through 5 in the Appendix demonstrate that various qualifying
statements in Theorems 3 and 4 cannot be omitted.

Appendix.
Example 1. Let f(x, y) be the function whose epigraph is the closed convex

hull of the union of the following two sets:

{(z, x,y)lx 0,y >__ 0, z >__ (y + 2)/(y + 1)},

{(z, x, y)lz O, y >- O, x >= 2/(y + 1)}.
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Then f(x, y) is Lipschitz on any bounded subset of K {(x, y)lx O, y 0} but

b(u)=inff(x,y), x+0y=b-u, x>0, y>0
Y

has a finite discontinuity at u b.
Example 2. Consider the special class of stochastic programs considered in

detail in [7], for which W [I, I] and only the right-hand sides are random.
It is easy to construct examples in this class such that the random variables have a
distribution possessing all moments, and the value of the infimum if finite, but the
program is not solvable. To do so, however, it is necessary to make K, and the
support of the random variables unbounded. Thus boundedness of K, cannot be
omitted from the first part of Theorem 3. Note also that in such an example the
objective will be finite for every choice of x, and hence, by Theorem 4, such an
example will be stable, i.e., dual solvable, even though it is not solvable.

Example 3. Consider the following variational form of a stochastic program
with recourse"

b(u) inf- x,

x x2

1x1
2x2

+ E{min(y)},

-Y,

=0--U,,

--0

-Y3 O,

Xl ,X2, Y*, Y2, Y3 > 0

where , is distributed continuously on [1, oo) with density 7 2 and 2 1 1.
It can be verified that K2 is a polyhedron, namely, {xlx, >= O, x2 >= 0}, and the
bracketed term, i.e., Q(x, ), is given by

Q(x, ) max {0, {1x1 2X2}
provided { e .. and x e K2. Making use of the equations 2 1 I and x, x2

u,, we may write b(u) inf,, >_ t f(x 1, u), where

f(x,,u) x, + (- {,u, + x, + u,){7 2

M max {0, -u}, and L is +oo or (u + x)/u according as u, =< 0 or u, > 0.
Then

(7)

and

f(x,,u) 0

u, ln[u 1/(Ul q- X 1)]

if//1 " 0, X1 )’

ifu,--0, x, >0,

iful >0, x>0

b(u) inf f(x u) 0
x>__M

if u, <0,

if Ul O,

if Ul >0.
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This example shows that the second half of Theorem 3 need not hold if K is
unbounded.

Example 4. Consider the problem in Example 3 above with the additional
first-stage constraint x 1 u2. For this new problem b(u) can be derived easily
by determining the values of u which yield a feasible stochastic program and
substituting xl 1 u2 into (7). Thus

ul ln[Ul/(1 + ul /’/2)] if/’/1 > 0, /’/2 1,

qS(U)--- 0 if U 0, U2 =< 1,

+ otherwise.

It can be verified that the gradient of b(u) is unbounded as u decreases to 0 along
the line u2 0. This example shows that even ifK is bounded and b(u) > ,
the assumption that has finite variance cannot be omitted from the statement of
Theorem 4.

Example 5. The stochastic program

b(u) inf E{-y),

X =0,

ex --y O,

x>__0, y->-O,

where is distributed on [1, ) with density -2, shows that the alternative at the
end of Theorem 3 cannot be omitted.

Remark. Example 3 shows that a stochastic program with recourse can exhibit
an infinite duality gap, even if the objective of the equivalent convex program is
nowhere -. In addition, Example 1 shows that the more general class of
problems of type (1) can easily exhibit finite duality gaps. However, we do not
know whether a stochastic program can exhibit a finite duality gap.
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ON THE STRUCTURE OF MULTIVARIABLE SYSTEMS*

W. A. WOLOVICH" AND P. L. FALB:

1. Introduction. The primary purpose of this paper is to state and prove a
structure theorem for time-invariant multivariable linear systems. The theorem
can be used for controller design and synthesis and is applied here to the problems
of realization [1] and decoupling [2], [3]. These applications are illustrative of
the ways in which the structure theorem can be used.

We consider systems of the form

(1) : Ax + Bu, y Cx,

where x is an n-vector, called the state, u is an m-vector, called the input, y is a
p-vector, called the output, and A, B, C are constant matrices of the appropriate
dimension. We assume that the matrices B and C are of full rank. Now, it is well
known [4], [5] that if the pair {A,B) is controllable, then there is a Lyapunov
transformation Q such that the system

(2) QAQ-z + QBu, y CQ-lz

is in "companion" form. The systems (1) and (2) are equivalent and have the same
transfer matrix T(s). In 2, we shall show that if state variable feedback of the form
u Fx + w (or u FQ-lz + w) is applied to (1) (or (2)), then the resulting
transfer matrix TF(S) is of the form S(s)6 l(s),,, where t2,/]m are constant
matrices, S(s) is a matrix of single-termed monic polynomials in s, and 6F(S) is a
matrix of polynomials in s whose coefficients depend on A + BF. This result is
generalized to systems which are not completely controllable in 3 and applied to
the problems of realization ( 4) and decoupling ( 5).

2. A structure theorem for controllable systems. Suppose that the system (1) is
completely controllable. Let K [B, AB,..., A"-1B]. Then the n nm matrix
K has rank n and it is possible to define a lexicographic basis for R, consisting of
the first n linearly independent columns of K possibly reordered (cf. [5]). We let
L be the matrix whose columns are the elements of the "lexicographic" basis so
that

(3) L [bl,Abl, A’-lb b2, A.2-1b2, A*"-ibm]1,

where b1,..., bm are the columns of B. Setting

(4) do 0, dk Z ai, k 1, 2, m,
i=1
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and letting 1, be the dkth row of L- 1, we can see that the matrix Q given by

(5) Q

generates a Lyapunov transformation for which (2) is in companion form [4],
[5]. More precisely, if we let ft. QAQ-1, QB, and ( CQ-1, then (2)
becomes

(6) z +/u, y (z,

where .3, (lij) is a block matrix of the form

(7) A

All A1,

with ii a ai x ai companion matrix given by

(8) /]i

0 0

ta,a_ + ta,a- + 2 ta,a_ ta,a

and ij a ai x aj matrix given by

(9) Aij
0

adi,dj- +

0 0 0 0

0 0 0 1
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for 4: j and with/ ([gij) an n x m matrix given by

(10) B

0 0 0 0

)d,,2 d,,3 d,,m
0 0 0 0

0 d2,3 d2,m

0 0 0 1

We now have the following proposition
PROPOSITION 2.1. Let u Fx + w /z + w, where . FQ-1. Then the

transfer matrices of the systems (A + BF)x + Bw, y Cx and 2

+ Bw, y Cz are the same.

Proof Simply note that C(sI- A- BF)-IB= CQ-1Q(sI- A BF)-
x Q- 1QB CQ- 1[(si QAQ -1 QBFQ- 1)l- 1QB (sI

Since / as given by (10) has zero rows except for the dlth, d2th, ..., d,,th
rows, we need only calculate the corresponding columns of (sl )-1 in
order to obtain the transfer matrix Tv(s)= C(s!- A BF)-1B (sI-

//)- 1/. Moreover,/1 has zero rows except for the dlth, d2th, dmth rows
and so fi +// is again a block matrix of exactly the same form as .. In other
words, +// (bij) is a block matrix of the form

(11)

where (ii is a O" X O"

(12) (ii

011 Olin1
021 (I)2m

A + B F

i(ml (mm
companion matrix given by

0 1

0 0 0

0 0 0

_)di,di- + di,di- + 2

and Oij is a ai x a matrix given by

0 0

(13) ij
0 0

)di,dj- + )di,dj- + 2

0

i,dj
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for # j. These two simple and obvious observations are basic to the structure
theorem, Theorem 2.2.

THEOREM 2.2. Suppose that the pair (A, B) is controllable and let TF(S) C(sI
--A- BF)-IB be the transfer matrix of the system (A + BF)x + Bw,
y Cx. Then

(14) T(s) S(s); l(s)Jm,

where _, CQ- , S(s) is the n x m matrix given by

(15) S(s)

1 0 0

s 0 0

Sal 0 0

0 1 0

0 s,2- 0

0 0 s’’’-

F(s) is the m x m matrix (bF,is(s)) with entries given by bv.u(S)= det (sI, ii)
and bt,is(S) dPa,,as_ + sdpa,,as_ + 2 s,- qba,a for :/: j, and m
is the m x m matrix given by

(16) B
0 1 d2m

0 0 1

where QB ([h).
Proof. In view ofProposition 2.1, we need only show that (sI . )-

_,S(s)6 l(s)/ To do this, it will be sufficient to show that

(17) (sI- t )-1 S(S) I(S)J
or, equivalently, that

(18) (sI- - P)S(s)= //, fF(S).

But (18) is an immediate consequence of the definitions of S(s) and )F(S). Thus the
theorem is established.

This seemingly innocuous and easily proved theorem has, as we shall see, a
number of significant consequences. For a beginning, we note that (, S(s) and
/m are invariant under state feedback and that if p m, then the inverse system
[6] to (1) exists if and only if C*(s) S(s) is nonsingular.
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COROLLARY 2.3. Let At(s) det (sl A BF). Then At(s) det (6r(s)) and
ifp m, then

(19) det Tv(s)= det C*(s)/Av(s),

where Tr(s Nr(s)/Ar(s) (i.e., Nr(s) is the numerator of the transfer matrix).
Proof. By the definition of Tr(s), we have Tr(s) Nr(s)/Ar(s). It follows from

the theorem that

(20)
Nv(s) C*(s)Dv(s)
At(s) det (fir(s))

where 6 l(s)= Dr(s)/det (fir(s)). However At(s) and det (fir(s)) are both monic
polynomials of degree n and the entries in Nr(s) are polynomials of at most degree
n 1. It follows that At(s) det (fir(s)), and hence, that (19) holds (since det (67 l(s))

1/det (fir(s)) and det/m 1).
COROLLARY 2.4. fir(s)-- 6o(S)-
Proof. From (18), it follows that/]/ 16o(S S(s) =//] 16v(s). Equating

the nonzero rows in this equality gives us the corollary.
We observe that entirely analogous results can be obtained for observable

systems by a consideration of the dual system [1], [7]

(21) A’x + C’v, y B’x

which is controllable if and only if (1) is observable. While we shall not derive the
results for observable systems here, we shall use them without further ado in the
sequel.

3. A general structure theorem. Consider the system (1) and again let
K [B, AB,..., A"-B]. However, we no longer assume that (1) is controllable,
and so the n x nm matrix K has rank r with r _< n. To obtain a structure theorem
in this general context, we shall consider a controllable extension of (1) and apply
Theorem 2.2. With this in mind, we let q n- r and W be the r-dimensional
subspace ofR, spanned by the columns ofK. Denoting the orthogonal complement
of W by W+/- so that R, W W- and letting 11, "’", I be a basis of W+/-, we
consider the system

(22) k Ax + BeY, y Cx,

where B is the n x (m + q) matrix given by Be [B I11"’" lia]. The system (22) is
controllable and there is a Lyapunov transformation Qe which carries (22) into
block companion form. We note that Qe is a nonsingular n n matrix. It follows
that the system

(23) 2 2z +/u, y z,
where Q 1AQe, B QeB, and ( CQf is equivalent to (1). Moreover, the
matrix/] is in block companion form, the last n r rows of/ are 0, and the lower
left-hand (n- r) x r block of is 0. Thus, the last n r rows of cannot be
altered by state variable feedback of the form u =/z + w. We now have the
following theorem.
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THEOREM 3.1. Let Tv(s)= C(sI A BF)-1B be the transfer matrix of the
system (A + BF)x + Bw, y Cx. Then

(24) TF(S
S(s)Av’u(s))-’c (S)m

A,.(s)
where CQ 1, S(s) is the n m matrix given by

(25)

1 0 0

S(s)

s 0 0

s- 0 0

0 0 Srm-

0 0 0

(with bl Abl A1- lb A"", 1, ", -lb a ’lexicographic" basis of the range of
K so that ’= i r), AF,,(s) det 6F,,(S), 6F(S) is the (m + q) x (m + q) matrix

(6F,ij(S)) with entries given by 6F,ii(S)= det (sI- ii) and 6F,ij(S)= --a,,aj-l+
s-laiyfor i:/:j, where dk==lai, ai-- 1 for i=m+ 1,...,

m + q, and ,3. + BF (i) [tI)i] so that

F,11(S) (F, lm(S) F,l,m+ 1(’ (F,l,m+q(S)

(Flml(S) (F,mm(S)
v(s)

(26)
tF,m+ l,m+ l(S tF,m+ l,m+q(S)

tF,m + q,m + q(S)

and where m is the m x m matrix consisting of the nonzero rows of.
The proof is a simple application of Theorem 2.2 and is left to the reader.
COROLLARY 3.2.. Av,,(s is independent of F and the uncontrollable poles of the

system (A + BF)x + Bw, y Cx are the zeros ofAv,,(s)[= Ao,,(s)].

6F,cu(S) involves only constant terms, and the off-diagonal terms in fiv,,(s) are constant.
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Corollary 3.2 is simply a statement of the fact that the uncontrollable poles
cannot be altered by state variable feedback. We also note that the factorization
(24) involves the well-known pole-zero cancellation of the uncontrollable portion
of the system [8].

COROLLARY 3.3. The matrices , S(s) and m are invariant under state variable
feedback.

COROLLARY 3.4. Let p rn and C*(s) S(s). Then the inverse system to (1)
exists ifand only if C*(s) is nonsingular.

COROLLARY 3.5. Let p rn and let Av(s)= det6v(s). Then det(Tv(s))
(det C*(s))(AF,(S))/AF(S), where At(s)= AF,(S)AF,(s).
We again observe that entirely analogous results can be obtained for systems

which are not observable by a consideration of the dual system (21). We use these
results without further ado in the sequel.

4. The problem of realization. We now apply the structure theorem to obtain
an algorithm analogous to that of Mayne [10] for solving the problem of realiza-
tion [1], [9]. More precisely, we consider the following problem.

REALIZATION PROBLEM. Let T(s) be a p m matrix whose entries tq(s) are
rational functions of s. Suppose that ti(s)= ni(s)/di(s), where ni(s) and di(s)
are relatively prime and deg ni(s) < deg d(s). Then, determine a triple {A, B, C
of matrices such that

(7 7"(s C(s- -,
{A, B} is controllable and {A, C} is observable. Such a triple is called a minimal
realization of r(s) (see [1], [9]).

Kalman and B. L. Ho [9] proved that the realization problem has a solution
and provided a constructive procedure for determining a minimal realization.
Mayne 10 obtained a constructive algorithm for determining minimal realizations
using the ideas of [1]. Here, we present an alternate derivation based on the struc-
ture theorem. A computer program has been developed for applying the algorithm.

The basic steps in the algorithm are now given.
Step 1. Calculate the least common multiple of the denominator polynomials

{dlj(S), dpj(S)} in each column of T(s).
Step 2. Construct a standard controllable realization {A, B, C} (not neces-

sarily minimal).
Step 3. Construct a minimal realization by applying a suitable transformation

to {A;, C’,
We shall examine each of these steps in detail paying particular attention to

Step 2.
Now let gj(s) be the least common multiple of the denominator polynomials

{dl,i(s), ..., dpj(S)} (which are assumed, for convenience, to be monic). Let hj
denote the degree of gj(s) and let T*(s) be the p x m matrix given by

nT (S)/g (S) n,,(s)/g,,(s)

(28) r*(s) [
n*pa(S)/g(s) n,,,(s)/g,,(s)A
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where n.*,j(s)= nij(s)gj(s)/dij(s). In other words, T*(s)is obtained from T(s) by
multiplying each numerator nij(s) by gj(s)/dij(s) and replacing each denominator
dij(s) by gj(s). The construction of T*(s) completes Step 1.

Let n jm=l h and Pk ] hi. Since gj(s)is the least common multiple of
{dlj(s), dvj(s)} and deg nij(s) < deg dij(s) and the dij(s) are assumed monic,
we have

(29)

(30)

g s Sh "Jc S -1 .Af_ ....qt.. 7
-2l(S) ]2ijl Shj -Af_ ];ij2shJ AI- At- ];ijhj

for all i, j and suitable constants jk, Vijk" Let Acj be a companion matrix correspond-
ing to gj(s) so that

0 0

(31) Ac,j

0 0 0

0 0 0

_-- "jhj "jhj- ’jl_

and let A be the n n block diagonal matrix given by

c,1 0

Ace
(32) Ac

If Bc is the na x m matrix with zero entries in all but the Pkth rows, each of which is
zero except for a one in the kth column, then the pair {Ac, Be} is controllable. We
now have the following proposition.

PROPOSITION 4.1. Let Cc be the m x n matrix given by

P1 lhx P1 lhl

1;2 lhl P2 lhl

P12h2

P22h2

Plll

(33) Cc
P211

Pplhx Pplh Ppl

P121

F221

Vp2h Vp21

Then Ac, B, C, } is a controllable realization of T(s).

l;lm

P2ml

Ppml

Proof Since {Ac, Be} is controllable, it follows from the structure theorem,
Theorem 2.2 and the definitions of A, Be, Cc, that

(34) Cc(sI Ac)- XBc C* (s)d- (S)c,,,,
where /,m Ira, 6-X(S)= diag [1/gl(s),..., 1/g,,(s)], and C*c(S)= (n(s)). Since

n(s)/gj(s) nij(s)/dij(s), we deduce that Cc(sI Ac)-Xnc (nij(s)/dij(s))= T(s).
Thus, the proposition is established. This propositidn completes the description of
Step 2.
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With regard to Step 3, we consider the triple {A’c, C’c, B’c} and apply a Lyapunov
transformation Qe to it of the type used in 3. Letting n be the rank of
[C’ A’C’c... A’-1C;] and setting ’ QeA’Q21, ’c QeCc, ’ BcQe 1, we
have

(3) ;=
0n-.,. 0._.,.

and /’c= [B’ * ,] where C’ is n p, A’ is n n and B’ is m n. Sincem,n

T(s) C(sI- A)-Bc,itfollowsthat T’(s)= ’(sI- ’c)-aC’c B’(sI A’)-C
or, equivalently, that T(s)= C(sl- A)-lB. Thus, {A,B, C} is a realization of
T(s). But {A, B, C} is both controllable and observable, and hence is a minimal
realization [9]. The triple {A, B, C} is in "observable canonical form." The actual
available program also produces a minimal realization in "controllable canonical
form" as well as all the relevant Lyapunov transformations. A sample of the com-
puter program print-out for an example by Kalman [1, p. 182] is given in the
Appendix. A detailed write-up and listing of the program can be obtained from the
authors.

5. The problem of decoupling. We now apply the structure theorem to obtain
some results related to the problem ofdecoupling. This problem has been examined
previously by a number ofauthors (e.g., [2, [3) and a number of relevant questions
have been resolved. Here, our main emphasis will be on the question of pole
assignability. More precisely, consider the following problem.

DECOUPLING PROBLEM. Let Ax + Bu, y Cx be an m-input, m-output
system. Does there exist a pair of matrices (F, G} such that the transfer matrix

(36) C(sI- A- BF)-1BG TV,G(S)

is diagonal and nonsingular? (i.e., does the state variable feedback u Fx + Gw
"decouple" the system?).

A necessary and sufficient condition for the existence of a decoupling pair was
first given in [2]. In particular, it has been shown that the system

(37) zt Ax + Bu, y Cx

can be decoupled if and only if B* is nonsingular, where B* is the m m matrix
given by

(38) B*

with ci the ith row of C, and f min [{j:ciAJB :/: 0}, n 1]. B* and the f can
also be characterized in the following way (cf. [3]): let TF,G,i(S) be the ith row of the
transfer matrix TF,G(s) then f/= min [{j :lim_ s + 1TF,,i(s) - 0}, n 1 and
B*G lims_o A(S)TF,(s), where A(s) is a diagonal matrix with entries s’+ .
It can be shown [2], [3] that B* and thef are invariant under state variable feedback.
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Here, we shall use the structure theorem to answer the following questions.
Question 1. Assuming that (37) can be decoupled, what is the maximum

number ofclosed loop poles which can be arbitrarily specified while simultaneously
decoupling the system?

Question 2. Assuming that (37) can be decoupled, which closed loop poles are
invariant under decoupling state variable feedback?

Question 3. How can a decoupling pair which specifies the maximum number
of closed loop poles be implemented?

While these questions are to some degree resolved in [2] and [3], we provide a
complete and elementary answer to them here.

Let T(s) be the transfer matrix of (40). Then T(s) C*(s)(A,(s)/A,(s))f,(s)m,
where C*(s) S(s) and A,(s) A0,,(s by the structure theorem, Theorem 3.1. We
recall that C*(s) and A,(s) are invariant under state variable feedback. Now we let
p(s) be the greatest common divisor of the polynomials which are the entries in the
ith row C.*,(s) of C*(s). We note that p(s) is invariant under state variable feedback.
We let ri be the degree of pi(s) and we use the notation Op to denote the degree of a
polynomial (thus, r t?p,). We now have the following theorem.

THF,ORF,M 5.1. Suppose that the system (37) can be decoupled. Then (i) the
maximum, number v of closed loop poles which can be arbitrarily specified while
decoupling is given by

(39) v= Z (ri+fi+ 1)
i=1

and (ii) the invariant poles under decoupling feedback are the zeros of Au(s) and
{det C*(s)}/Hi:m p,(s).

Proof. Let {F, G} be any decoupling pair. Then Tv.G(s) C(sI A BF)-
is a diagonal matrix with entries n,(s)/d,(s), where n,(s) and du(s) are relatively
prime. We note that, since f min{j "lims-. sJ+ 1Tv.G.i(s) - 0},z c,,, cd,, f 1.
It follows from Corollary 3.5 and the definition of the p(s) that

A.(s)nu(s) 1--I pi(s)det C(s)Av(s) det G,(40)
i= du(s) i=

where C(s)is the matrix with rows C,i(s)= (1/pi(s))C.*,(s). Since Av(s)
A,(s)Av.c(s), we have

(41) OF,c (r, + f + 1) + ?,
i=1

where c] is the degree of det C](s) and (F,c is the degree of AF,(S). Now, it is clear
from Theorem 3.1 that
(42) Tt,,i(s)G-, lit,(S C.*,(S),

and hence that nu(s) is a common divisor of the entries in C(s) (since nii(s) and
du(s) are relatively prime). In other words, nu(s) must divide pi(s), and so t?,,, =< ri.

Since no more than ’= c3d,, poles are assignable through {F, G} and ’=x 3,,
"=x (c3,i + f/+ 1), we deduce that at most v ’=1 (r + fi + 1) poles are

assignable while decoupling.

Note that B* is nonsingular.
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Writing TF,G(S) as a diagonal matrix with entries qu(s)/AF(S)= nu(s)/du(s),
we deduce that qu(s) must divide pi(S)AF(S) or, equivalently, that

qu(s) Pi(s)
(43)

Av(S q(s)

for i= 1,-.., rn and polynomials qi(s) with c3qi ri +f + 1. It follows that
s qi(s) and hence, from (40), thatdet Tv.G(s) [-I’[’= P,( )/1-[,=

(44)
Av(s) det C(s) A.(s) det G [-I qi(s)

i=1

det C*(s)
A.(s)det G 1-I qi(s).H?=I Pi(S) i=1

Since C](s) is invariant under decoupling feedback, it follows that the zeros of
Au(s) and det C](s) are invariant poles under decoupling feedback.

-Thus, to complete the proof we need only construct a decoupling pair {F, G}
such that the resulting polynomials q(s) are arbitrary polynomials of degree
ri + f + 1. To begin with, we note that the transfer matrix

T(s) t ts)u(fN-,)(s) P(s)C(s) ,J(S)Bm,

where P(s) is a diagonal matrix with entries p(s). Setting

(45)

we can easily see that ri + f/= min {j’limoosJ+lTn,ds):/: 0} and that BI
lims_. An(s)Tn(s) B*, where An(s) is a diagonal matrix with entries sr’+ I,+ 1.

(Note that the p(s) are monic.) Moreover, as C*(s) is given by S(s) and pds) is the
greatest common divisor of the entries in C’(s), we can write C?ii(s) in the form
nS(s) for some constant matrix 12n (where S(s) is given by (25)). In other words,
Tn(s) is the transfer matrix of the system i Ax + Bu, vn Cx, where Cn (?n
(nQ (and Q is the Lyapunov transformation corresponding to (37)). Since

P(s) is diagonal, it will be sufficient to construct a decoupling pair {F, G} for the
system

(46) k Ax + Bu, Yn Cnx
such that the closed loop poles are arbitrarily placed. However, letting di r + f
and applying the synthesis procedure of [2, p. 655], we find that (46) can be de-
coupled and all its closed loop poles assigned. To be more explicit, if q(s) sd’+

’-- o mjs,3 then the decoupling pair is given by

(47) F= B*-[ M,C,,A’- A*] G= B*-’

Clearly, it is enough to consider the case of a monic q(s).
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where d max di, the M are diagonal matrices with entries m (i.e., Mk,..., .An‘+ ) (i.e., the ith row of A* is given bydiag[mk m’]) and A* (C.,,
C.,iA’+ ). This completes the proof.

Appendix. A sample of the computer print-out for an example by Kalman
[1, p. 182] is given here. See Table 1. The transfer matrix is given by

3(s + 3)(s + 5) 6(s + 1) 2s + 7 2s + 5

(s + (s + 2) (s + 4) (s+2)(s+4) (s+3)(s+4) (s+2)(s+3)

2 2(s + 5) 8(s + 2)
(s+3)(s+ 5) s+3 (s+ 1)(s+2)(s+3) (s+ 1)(s+3)(s+5)

2(sz + 7s + 18) -2s 2(5sz + 27s + 34)
(s+ 1)(s+3)(s+5) (s+ 1)(s+3) s+3 (s+ 1)(s+3)(s+5)

TABLE

FORH"

-0.39650-13 -0.83573D -061752D
-O,l07D"O2"--’-"O’-155----3D-I "0o86597D-1

0.10000 -0.7_8..__-_j7__7_ -0,528.. -0.11670-!. "O,9,FLL
0.2220"D-i5 0.1323-1 0.1b39D 0.317D-1

-0,1190D-13
-0,2665D .0.255

-0,33.307.D-15 28189.D-10 -.0j55_5..1.-16

DETERMINANT

THE INVERSE TRANSFORMATION

-0.3.?.D 0.12111b
0.606000 0.3q210

O.Zl.p o.alaao

-0.1.9U0 -n.20370D



STRUCTURE OF MULTIVARIABLE SYSTEMS 449

TABLE (cont.)

SY-TEM-’-I-N-’I6E..It’I’ ’-OICA trOR

O.,,..,L,t.-.
O,B3t50O

-0,650-_,.

O,lZ510 OL---O-dJL75,1D-Q2--._-O..(aOOOOIL.OL O3,ia_:

z.oo6o 6;o o.ooo--x0,ooo0
-2.U090.1L0____Ud/Q09E0__5,.IZ0.0flOfl

tooooo

;oo0;oo o,oooo0o o600oo
LLLgE___XILLIOD0.O..__1L.O0000.0_._2.,.I.0.0.6000
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TABLE (cont.)

o.nanoO_-L.n,a0noo-a& n,anoo-a a,DoRoo0a n-gnpapp-a
o.ogoo-aa o.oooooo-3a o.oooooo-aa o.oooooo-a8 o.oooooo-a o,oooooae

0,100000 0.000000-38 0,00000D-38 O,O0000D-

0,00000-38 O,O0000D-8 0,000000-8 O,O0000D-8

0,000000-38 O,O0000O-3e
38,.aO0.OO,OOOL

0,000000-38

0,000000-38 O,O0000D-

O,O0000D-8 a,O000
o,o0o0o-38 o,oocoo-8 O;oOb:8 o,oooooo-s o.oooooo-

0,0000D-38 O,O0000D-8 O,O00003B
l.non-n

:n0qg-3 :no9-
o.oooeoo-aa o.,oooooa-aa o,oooooo-aa 0,00000

0.00000D-38 o,oooooo-a
0_._0-30 UU0O3LJ0OOL

a.ooa_._o.o.aa o.oaa
0,000000-387 0,000000=38

o,ooooo-aa o,ooooo-aa

O0Ou.O3.OO_OO_aOL
-O,IO000D :O,O0000D-8 0,000000-8

O,O0000O-B 0,000000-

0,000000-8 0,100000

o,oooooo-aa o,oooooo-a
O,O0000D._ .O,.O0_.O. O,.O.O.O_O.OO.____O.,.O.OOOOOO

’E-’-,,:,;(

OuOuO-3 O,OObO0,,-3a .O.qOOE:.O38 .00000D-38
b,b5;- O;Ooo-a. EL.Er)

_
__.O.OqOD=36 ,.:.OP3E

O,uOO-5
0...- 0..03 ,9.000D=36 6,.OOOODr38
0U-36 00(,0-3 OOqOD-8

_._UV. .g.t..OO=r OOOa.O..B
UuOuD-3 OGOOOU-3b 0,000000-38 O0CUD-3R

O,OUUOud-3 O00t:.U-3

;’bUOObO=3 U,OOUOOb-38 0,00000D-38 ,O00rOD-3

O,OUUb-38 O.O00r:OD-38

O,uOOu9 U,_X_gd_.O:.._O_2_ J).,Z-5...O..O.g._O.. ._O_..1.;.O[:f). j2 O.,.O.U.Uu...b.J, .O,ZbOOQD ..OZ O,U.O000_.O O.,.7.0_OOD_...O.Z_

U,.I.uOOUI:J d,q’bUO’J’J C.I(tOOD 0,200(OD 01 O,OOUOUb-38 Oo3OOUD 0o32000D 02 O,80000D 01
.o_., ..u_..r.
-,-’b6tiOJ 0,13fOOf2 U,2t3.00 02 0,20000D O,UOOUUO-38 "O,lbOOOD -0,120000 02
.-..9..:_.0_0_9.y u.Z. _.*.9"..0.._q9_a..... _O_,..l_,.tO:)...e2 ,.7..3. UD. 01 0,...0....X. _9,_.X.6_Og_U__O. 0.,...1.7_6_00... .O_.7O.O.QO. .0.;
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TABLE (cont.)
THE LYAPUNOV TRNSOR|^TIUI

O.bI6D..OZ ,7712.3 ,1615’ 0,61.17’0
U*7227-05 -n,59273U-03 -0o8850D- -fl,3U’U ’n,132t-OP 0;03 "120D-

-U,b9393p-01
O.16.SbOrO 0,61170-U3 O,b3O-a -0.170
0.10869D -t.23bO-U3 -.99R2D-nb 0.66970"01 .12OKO-O 0".26’0- .33
55bD..OO

0o7752-0
-0.,.572003 ,26590-02 b,22aO-ne 0,,1620-05 -0,51.7280 00.. -0,76100- .-0,3nOP9-0.2..-n.3TqD.03

-Uo107950-02
o.7996bD.=05.. -09U92=g3 -003927D-3 -00267880"0 U,71bSD-01 -0*2380-02 -O,3q2BD2 O,p2027D=05

00 ,855210-02 )oOl5bD- 0o6650"0
t35598D-..O

Uo81b66-05
0J.5_05.0.DZ fl,15.970 U0 -0,5590 0,bdSO 00 n,u02.nO. 0,B6-l -n,56tO
-0,1368p Ou n,lZtbqO -11,15uRUD-oZ -n,Jqlqo =n,bfiOnD-Ol -0,8nTlf=ni. n’9525
O.rl.l./n_.O_

IgUSbO-lb n.1985U-16 O,ZbRD -U.llb6Onl n,,sa on 0*311-in-01 -n;,03O
-U.’_I..L6_3.D__.L .U. O...b.OO O.,IUD 0._ 5171n-nl -n120! -Q,572nn-1 n7017 O0
golllqSO Ob
.99bD1__7_. =0..25R0-17 -0.983ZD-1 0o715920-01 ,tt176D-01 0.119,6n-01

,1.9.qD1
016163-16 nl511D-16 -915BoD-I6 -O!9abgo-l

--_’.0.9D.1.. .lblPD-/ O08765Ob.." 016650"1 0,135Rq-16
0,62Z O0 -,5’7’= "tl,bqCD’Pl 0,a286’0’" 0,1o21-nl Lo,15D on 0,132 -n,716aD-nt

rO,500.76DO.L
"U,6990-1b 31510-16 -O?6D’b -0183930"1 no17OTD-l 0906801 -n.86q nO

-U*2362bD-01
U36.513D.I.Z, 0,2325216 -I].7506UD-1b n,1812qD-l -0.6195-16
-Oobfi20U O0 -0.108050 1.2iO -0.3981D -n,lObnU O 0.3#09D00
O3b7bD.01
"0ob6853C-17 .77b00-17 I).867-17 32856b-16 258D-17 0.8636’17 -noiTRO-17
-0o92UD OU

0o1021-1b .312350-U1 -(I.937D’L 0.8111.b -n.1561b-01 -n.tSAD
U.2167D_00

DETERMINANT -0.22b,-5
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A GENERALIZED TRANSFORM THEORY FOR
CAUSAL OPERATORS*

P. L. FALBf AND M. I. FREEDMAN

1. Introduction. Let G be a locally compact Abelian group and let H be a
complex Hilbert space. Here we develop a transform theory on L2(G, H) and
LI(G, (H, H)) (where 5(H, H) is the space of bounded linear maps of H into
itself). We were naturally led to the problem of developing such a theory during
the course of obtaining stability theorems for systems defined on locally compact
Abelian groups [1].

We shall assume that the reader is familiar with the standard transform theory
for LI(G, C) and L2(G, C) (see [2]) and is familiar with the theory of integration
of Banach-space-valued functions [3]. Moreover, we shall suppose that the reader
knows the Gelfand theory for commutative Banach algebras and shall use this
theory freely [2]. Let # denote Haar measure on G and let t denote the character
group of G. Elements of t are usually denoted by y and their action on G is written
as (y, g). We recall [4] that t is also a locally compact Abelian group with respect
to the topology of uniform convergence on compact subsets of G. We let m denote
Haar measure on t.

We begin our analysis in the next section with a discussion of the notion of
causality. Then, in 3, we develop the basic transform theory. We next introduce
two Banach algebras, Be and Wp, with B, the algebra of causal operators in
La(G, (H, H)) O) {A} (A an identity) and Wp an algebra of causal operators from
L2(G, H) into L2(G, H) (see 4). In 5, we prove the following theorem which is
our main result.

THEOREM. Let be an approximable element of Bp. Then

SPECw (I) 1,3 spec (M) SPEC (I),
M ///

where o/is the maximal ideal space of a suitable Banach algebra, the ’" indicates
a suitable Gelfand representation, and the "spec’s" indicate suitable spectrums.

Approximability means, loosely speaking, that (I) is a limit offinite-dimensional
maps. The theorem is used to obtain a generalized circle criterion for stability
in [1. Finally, we present some illustrative examples and make some concluding
comments in 6.

2. Causality. We now introduce a generalization of the notions of truncation
and causality.

DEFINITION 2.1. Let P m G be a semigroup of positive Haar measure and let
P’ be the negative ofP in G (i.e., P’ P). Let P’ + go be the subset of G given by

(1) P’ + go {g6G:g g, + go,gx 6P’},
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and let ggo be the characteristic function of P’ + go- Iff is a measurable map of
G into H, then the truncation off at go, fgo, is given by

(2) fgo(g) {f(g)’ g e P’ + go,

0, gP’ + go;

i.e., fo :of.
With a notion of truncation at hand, we can define causality.
DEFINITION 2.2. Let be a map of L2(G, H) into L2(G, H). Then is called

causal with respect to P (or simply causal) if

(3) (X)o(.) ((xA.)).o
for all go in G and x in Lz(G, H). 2

We observe that if G R (R the real numbers) and P 0, oo), then Defini-
tion 2.2 coincides with the usual notion of causality or nonanticipativeness [5].
We also observe that if and W are causal with respect to P, then OW is causal
with respect to P as

({l}X)go(") ((l}{X})go(") ((l}{lllXgo(")}go)go ({l}lllXgo("))go"
Example 2.3. Let N be a map of H into H with IN(h)l-_< C]hl for all h in H

(where ]. denotes the norm on H). Then the map N of L2(G, H) into L2(G, H)
given by (Nx)(g) N(x(g)) is causal.

Example 2.4. Let q be an element of L1((3, SO(H, H)) with support contained
in p.3 Then the map of L2(G, H) into L2(G, H) given by

(x)(g) f qt(g g’)x(g’) d#

is well-defined and causal with respect to P. The integral converges by virtue of
Fubini’s theorem [3].

3. Transform theory. We now develop the rudimentary transform theory on
Lz(G, H) and LI(G, &’(H, H)). We observe, first of all, that if x is an element of
L2(G, H) and h is an element of H, then xh(" (x(.), h) is in Lz(G, C) and thus
has a transform 2h(. in L2((, C). This leads us to the following definition.

DEVINITION 3.1. Let x(-) be an element of L(G, H). Then the Fourier trans-
form of x(. ), in symbols, (. ), is an element of L2(0, H) such that h(" (" )h
for all h in H (i.e., ((.), h) 2h(. )).4

We then have the following proposition.
PROPOSITION 3.2. Let x(. be an element of L2(G, H). Then (i) (. is defined,

(ii) (-)is unique and (iii)IIx(" )112 I1(" )112 (Parseval).
Proof Since x(- is essentially separably-valued [3], there is a closed separable

subspace H1 of H with H containing the range of x. Let A1 {ei:i 1,.-.} be
an orthonormal basis of H and let H2 be the orthogonal complement of H in H.

Strictly speaking, we should write fo,e since truncation depends on the semigroup P. However,
we usually deal with a fixed P and so the distinction is unnecessary.

Note that if x is in L2(G, H, then Xo is also in L(G, H) for all go in G.

This means that p(pc f’l {g :if(g) 4: 0}) 0, where pc s the complement of P in G.
’ This is often called the Plancherel transform.
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Then

x(g) (x(g), ei>ei Xe,(g)ei, g G,

(4) Ix(g)l 2 IXe,(g)l 2 g G

IIx(. )112 Ix(g)l 2 d/ IXe,(g)l 2 d/ < o0,

since x(. ) L2(G, H). Now let YCe, denote the transform of Xe,(" and let us set

(5) .(,) YCe,(2)ei

P
for y in d. Since JG Ixe’(g)12 d/ JG 12e,(Y)l 2 dm (see E2]), it follows that

(6) I1(" )112 I(y)l 2 dm Ie,(W)l 2 dm IIx(" )111,

and so (5) defines an element of L2(d, H) for which (iii) holds. Now let h be an
element of H. Then h h: + h2, h e H, h2 e H2 and (x(.),
since h2 is orthogonal to H. However, the range of is contained in H and so
we need only show that h,(" (" )h,. In view of (4), (x(.), h:) Xe,("
(e, h ), and so

(7) ,(.) 2 ,(.)<e,h)= 2,(.)e,,h

which establishes (i). Since (ii) is obvious, the proof is complete.
Cooa 3.3 (Plancherel). Let x, y be elements of L(G, H). Then

(8) (x, y) fa (x(g), y(g)) d fo ((), p(y)) am (,

where , are the Fourier transforms of x, y.
Proof The proof is an immediate consequence of (iii) and the well-known

formula 4(x,y) {llx %Yll 2 IIx yl 2 } + i{llx + iyl 2 Ix iyll 2}
We note that since d G, the Fourier transform of an element of 2(, H)

is an element of L2(G, H). Moreover, if x e L2(G, H), then xh(g)= h(-g), and
so x(g) (-g) from which it follows that the Fourier transform has an inverse.
We shall make use of this observation in } 4.

Let g(d, (H,H)) denote the space of continuous functions from into
(H, H). We then have the following definition.

DEFIIVIO 3.4. Let (. be an element of L,(G,(H,H)). Then the Fourier

transform of, in symbols, (. ), is the map of d into (H, H) given by

(9) (y) _(jy,g)(g)
where (y, g) denotes the action of y on g.
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PROPOSITION 3.5. Let O(. be an element of LI(G, ’(H, H)). Then (i) )(. is
in c(d, (H, H)), (ii) (. is bounded and (iii) the bounded bilinear map Tr of
H H into C given by

(10) T(hl, hE)

is uniquely represented by ()for all in , i.e., Tr(hl, hE) (t(),)hl, hE).
Proof. Since 1(7, g)l 1 for all /and @(. is in LI(G, (H, H)), it is clear that

(-) is well-defined and that

(11) 114)()11 =< I(, g)l

so that 4)(. is bounded. Moreover, we have

(12) I1(1) (72) =< sup 1(71, g) (/2, g)l IlO(" )llx.
geG

Since I1(" )11 is in LI(G, C) and the topology on ( is that of uniform convergence
on compacta, 4)(. is uniformly continuous. The assertion (iii) is obvious.

We observe that (iii) implies that the mapping q9 of G into C given by o(g)
(@(g)h 1, h2 ) for fixed h 1, h2 in H has the Fourier transform q3() (4)()h 1, h2 )

(note that q9 is in LI(G, C)). We also note that if G is not discrete and if q3(,) is a
constant, then b()= 0 for all in ( (see [2]) and, hence, that if (()hl, hE)

2 (hi, hE) for all hi, h2 with a constant, then () 0 for all 7. This observa-
tion will be used in the proof of Lemma 4.1.

Now suppose that x is in LE(G H) and that @ is in LI(G, a(H, H)). Then the
integral

(13) f. (g g,)x(gl) d ( * x)(g)

is defined almost everywhere and is an element of L2(G, H) with

(14) I1(O * x)(. )11 --<_ I1(" )llxllx(" )11

provided that G is a-finite. Since/ is translation-invariant, we can replace (13) by

(15) ( * x)(g) f (g’)x(g g’) d#.

We then have the following lemma.
LEMMA 3.6. Ifx L2(G, H), LI(G, L’(H, H)) and G is a-finite, then ( * x)(g)

is defined almost everywhere and is an element of L2(G, H) which satisfies (14).
Proof. Formally, we have

I1( * x)(g)ll 2 d/
(16)

fo ( f g,) dU(gl), f g2) d (g2)) d/a,

5 IIO(" )111 is the LI(G, Z’(H, H)) norm of O(. ).
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and so it will be enough to show that the right-hand side of (16) is finite as this
will imply that (I), x is defined almost everywhere and is in L2(G, H). Now

(17) I1(" )ll 12 x(. )11:-- " f I[(D(gl)[[ [[(I)(g2)ll- IIX(" )l[ 2 d/-/(g 1) d/z(g2)

(18)

(19)

fG fG IIt(gl)ll llt(g2)ll( fG Ix(g gl)l tx(g g2)i dp} dp(gl)dp(g2)

>- fc, fG f IIO(gl)ll Ix(g-gl)l IIO(g2)ll Ix(g-g2)] dp(gl)d//(g2)dp

(20) >-- fG f fG ((l)(gl)x(g gl), (g2)x(g g2)) dp(gl) d/./(g2) d/./

by virtue of Holder’s inequality, the Fubini and Tonelli theorems [3] and the
Schwarz inequality. But,

(21)
faf( f ((I)(g)x(g g), (I)(g2)x(g g2)) d/-/(gl)dp(g2)

since _t._t. (dP(gl)x(g-gl)’(g2)x(g-g2))dlt(gl)dp(g2) exists almost every-

where by the Fubini and Tonelli theorems and satisfies the relation

afG

(q(g,)x(g gl), q)(g2)x(g g2)) d#(gl) d#(gz)

(22) fa { ( fa(gx)x(g g,) d/(gl),eO(gz)x(g g2)) } d(g2)

=faeo(gl)x(g-gx)d!a(gl),fa(g2)x(g-g2)d/a(g:)).
Thus, the lemma is established.

In view of the lemma, we have, for G a-finite, the following definition.
DrlNTION 3.7. If x L2(G, H) and e L(G, if(H, H)), then * x is called

the convolution of and x.
POPOSITIO 3.8. If x L2(G, H) and L(G, (H, H)), then ( * x)y)

(y)(y)for all y in . (The hat. accent to the right of the parenthesis indicates
the Fourier transform of the entire expression.)

Proo Since x(.) and {* x)(.) are in L:(G,H), the transforms and
( * x)" are defined and, since &(. is bounded and continuous, (. )(. is in
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L2(( H). Now let h be an element of H. Then

((. x)’(.),h) (((* x)(.),h))

(23)

Since x(. is essentially separably-valued, there is a closed separable subspace
H of H with H containing the range of x(. ). Let {ei’i 1,...} be an ortho-
normal basis of H. Then

(24) x(gl) (x(gl),ei)ei xe,(gl)ei
i=1 i=1

for all gl in G. It follows that

(((I) * x)( ),
i=

(25)
(((.)e,, h))e,(.

i=1

since .t.. ((g gl)ei, h)x,(gl)dp is the convolution of elements of Lt(G, C) and

L2(G, C). But ()(.)ei, h) ((( )ei, h))’and so,

(26)
(( * x)’(. ), h) )(" i=IZ e,(" )e,, h

()(.)92(. ), h)

in view of the proof of Proposition 3.2.
We shall next show that convolution can be defined for elements of

LI(G, q(H, H)). To begin with, we have the following lemma.
LMMA 3.9. Let dO, tp be elements of L(G, ’(H, H)) with G a-finite. Then the

function d(g gl)tP(g) is an element of LI(G x G, (H, H)).
Proof Suppose, for the moment, that O(g g)tP(gl) is measurable on G x G.

Then, since

(27) f { fll@(g- gx)ll d(g)} ll. (gx)ll dp(g) <= ll(.)llllg(.)l,,

it will follow [3, Corollary 15, p. 194] that (g gl)W(gl) is integrable on G G
and that [[(.-. )tg(. )[[ _<_ [[(. )[[I[I.W(" )[[ 1- Thus, it will be enough to show
that (I)(g gl)W(gl) is measurable.

Since (. ), W(. are integrable on G, there are sequences of simple functions
,(. ), tp(. which converge to (. ), tg(. ), respectively, almost everywhere [3.
Since ,(- ), tg,(. are essentially finitely-valued (being simple functions), it is clear
that n(g- g)tP(gl) is essentially finitely-valued and is a simple function on
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G x G. Thus, it will be enough to show that q),(g- gl)P,(gl) converges to
q)(g-gl)(gl) almost everywhere on G x G. 6 Let F {gl"P,(gl) (gl)},
E {g’ "q,(g’) q)(g’)} so that (G F) 0 and (G E) 0. Let E’ E x G,
E" {(g, gl)’g gl e E}. Then, (g, gl)e E" implies that q,(g gl) converges to
q(g gl). Moreover, since the homeomorphism (g’, g") (g’ + g", g") of G x G
onto G x G maps E’ onto E" and since G x G E’ (G E) x G has measure
zero, it follows that (/ x #)(G x G E")= 0. Let E’" E" fl {G x F}. Then
G x G-E’"(G x G-E")U(G x {G F}) so that (/ x #)(G x G-E"’)=0.
However, if (g, gl)e E", then @(g gl) converges to @(g gl), and P,(g) con-
verges to P(gl). It follows that q),(g g 1)P,(g 1) converges to q)(g g 1)P(g 1) on E’"
(afortiori almost everywhere on G x G). Thus, the lemma is established.

COROLLARY 3.10. Let , 2 be elements ofLl(G, 2’(H, H)) with G a-finite. Then

(28) (q) )(g) ; O(g gl)P(gl)d#

is defined almost everywhere on G and is an element of LI(G,C’(H,H)) with

We call t9 the convolution of tI) and . Moreover, we have the following
proposition.

PROPOSITION 3.11. Let O, F be elements of LI(G, q(H,H)) with G o-finite.
Then

(29)

for all y in J.
Proof Since (7, g) (Y, g gl) (Y, gl), we have

( * ue)(7) f (7, g){ f c(g g)P(g) d/(g)} d/(g)

fo { f(7, g ga)(g- g)(7, g)(g) d(g)} d/(g)

f { f(7, g g)C(g g) d/(g)}(,, g)(g) d/(g)

(30)

fo { f(7, g)C(g) d/(g)}(7, g),p(g) d/(g)

f (y, g)C(g)d,u(g), fc, (7, gl)X/(g1) dt(gl)

()q,()

for all /in G.
In view of the results of this section, we shall assume from now on that G is

a-finite.

By [3, Corollary 14, p. 150].
The interchange of order of integration is justified by Fubini’s theorem in view of Lemma 3.9.
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4. Some Banach algebras. We now introduce some Banach algebras which
play an important role in our main result. To begin with, we observe that L(G,
&a(H, H)) is a noncommutative Banach algebra over C with respect to convolution
and in view of Corollary 3.10. If G is discrete, then L(G, (H, H) contains
an identity A. In the case where G is not discrete, it is convenient to adjoin an
identity A to this algebra so that A* A A and A* O* A O. 8 We set

IIAIIx--1 and we write L(G,C’(H,H))(R) {A} for this Banach algebra. The
elements of L(G, &a(H, H)) @ {A} are pairs {O, 2A} with in L(G, (H, H))
and 2 in C and multiplication is defined by so that

(31)

for all , W, 2, v.
For the sake of exposition, we treat the case where G is not discrete. The

discrete group case can be dealt with in an analogous manner and is left to the
reader. However, the key modifications required will be noted. We point out that
all the results of 5 and 6 remain true in the discrete group context (with the
appropriate definitions).

Now L(G,(H,H)) {A} can be "realized" as an algebra of bounded
linear transformations of L2(G, H) into Lz(G, H). More precisely, we let B be the
set of all linear transformations of L(G, H) into L(G, H) of the form

(32) (Ox)(g) YG O(g g,)x(g,) du + 2x(g),

where O(. )e L(G, W(H, H)) and 2 e C. It is clear from Lemma 3.6 that is an
element of &’(Lz(G, H), Lz(G, H)). If is an element of B, then we shall often
write O + )],A. 9 We note that B is clearly a linear space over C. We shall
soon show that B can be viewed as a Banach algebra which is isomorphic to
L(G,’(H,H)) {A}. (In the discrete group case, B is simply isomorphic to
La(G, (H, 14)). We begin by proving the following lemma.

LEMMA 4.1. Let + 2A be an element of B. Then 0 if and only if
O(.) 0(.) and 2 O.

Proof Clearly, if O(. 0(. and .2 0, then 0. On the other hand,
suppose that + 2A 0. Then . x -2x for all x in Lz(G H), and
hence (O, x)*(7)= -2(7) for all 7 in ( and x in Lz(G, H). Since the Fourier
transform is onto, we deduce that +(7)(7)= -2(7) for all in L2( H). It
follows that )(,)= -21 for all / and hence, in view of the remarks following
Lemma 3.6, that 2 0 and O(. 0(. ).

COROLLARY 4.2. If O + 2A is an element of B, then and 2 uniquely
represent .

Now, knowing that the representation + 2A is unique, we can see
immediately that IlO[[ IlO(’)ll + 121 defines a norm on B. Moreover, since
LI(G, (H, H)) and C are complete, it is clear that B is complete with respect to

II" IIn. Thus, B is a Banach space. We now have the following lemma.

A may be viewed as a generalization of the f-function.
This use of A will be justified shortly.
See remarks following Corollary 3.3.
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LEMMA 4.3. Let + 2A and W W + vA be elements of B. Then
{q), tp + 2tp + v(I)} + 2vA is an element of B and Ill’lIB <= I10 IBIIqIIIB.
Proof Let x be an element of L2(G, H). Then

(Oqtx)(g) (g- gx)(Wx)(gl)d# + 2(Wx)(g)

=f6oo(g-gl){f6tt*(gl-g2)x(g2)dt2}dll+V(*x)(g)
+ (’ x)(g) + vx(g)

O(g g2 g 1)W(gl) d#(gl)} x(g2) d/, + 2(W * x)(g)

+ v(,, x)(g)+
and the lemma follows.

Thus, B is a Banach algebra. It is clear from the lemmas that the mapping
T of LI(G, 2’(H, H)) {A} onto B given by

(33) T{, 2A} + 2A

is a continuous, norm preserving, injective linear map which preserves multiplica-
tion. In other words, B and LI(G, 5(H, H)) @ {A} are isometrically isomorphic. 11

We now have the following definition.
DEFINITION 4.4. Let + 2A be an element of B. Then the Fourier trans-

form of O, in symbols, (.), is the map of 0 into 9(H, H) given by

(34) (7) $(7) + 21,

where I is the identity in (H, H).
We note that (W)A bq by virtue of Proposition 3.11 and Lemma 4.3,

and that, for each 7 in (, the Fourier transform is a continuous homomorphism
of B into 2’(H, H). We also note that b(. is a uniformly continuous element of
g((, (H, H)) by virtue of Proposition 3.5.

Let P c G be a closed semigroup of positive Haar measure. We then let Bp
be the subset of B given by

(35) Bp {0 + 2A e B’supp 0 < p},12
where supp (I) {g:(g) 4= 0} is the support of . We then have the following
proposition.

PROPOSITION 4.5. Be is a closed subalgebra of B.
Proof Let + 2A and + vA be elements of By. We claim that

q) is in Be. To verify this claim, it will, by virtue of Lemma 4.3, be enough to
show that supp (q * )c P. Now (g- gl)(gl)= 0 unless gl e suppq) and
g gl e supp , i.e., unless g e supp W + supp . But supp c P and supp
c P and P is a closed semigroup together imply that

supp ((I) W) {g :(0 W)(g) g= O} c supp W + supp (I) P.

If G is discrete, then B and LI(G, *’(H, H)) are isometric.
12 In the case G discrete, define Bp by setting Be L1p(G, 2’(H, H)) or L1p(G, 2’(H, H))@ {A}

according as 0e P or 0q P, where LIp(G, (H,H)) {Oe B’supp O P}.
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Thus, Bp is a subalgebra of B. To show that Bp is closed, we need only show that
if O,(. converges to O(. in ]]. and supp , P, then supp tI) c P. But, if

,(. converges to (. in I1" llx, then a subsequence O,k(" will converge to (.
almost everywhere. It follows that, to within a t-null set,

(36) {g :O(g) = 0} U supp O,k 13

and, hence, that {g’O(g) = 0} P as P is closed.
We note that the elements of Be are causal with respect to P (cf. Example 2.4)

and we call Bp the causal subalgebra of B with respect to P. We also note that if
is in Bp (or B), then (. is a uniformly continuous element of c((, hO(H, H)).
Let Wp be the set of all linear maps Z of L2(G, H) into L2(G, H) such that

(i) Z is causal with respect to P, and (ii) (Zx)(y) Z(y)2(y) for all x in L2(G, H)
and 7 in , where Z(. is a bounded uniformly continuous map of ( into (H, H)).
We immediately see that Wp is a linear space over C and also that IlZ w,
supe { [[/(Y)ll is a norm on Wp. We then have the following theorem.
THEOREM 4.6. Wp is a Banach algebra.
Proof Let Z and Z2 be elements of Wp. Then, ZZ2 is causal with respect

to P and (ZIZ2X)" ZI(]))(Z2x)^--" /I(T)/2(f))(). But
llz2()ll, and so, ZI(. )Z2(" is a uniformly continuous element of cg((, (H, H))
and IlZxZ211Wp _-> IIZ, wllZ211w. Thus, to complete the proof, we need only
show that We is complete.

Therefore let Z, be a Cauchy sequence in We. Then Z,(. is a Cauchy sequence
in c((, c,W(H H)) and so has a limit Z(. ). We claim that Z(. is uniformly con-
tinuous. Let > 0 be given. Then there is an n such that n, m >= n implies that
IlZn(’) Zm(’) < e/9 for all 7. Let ’ be any element of (. Then there is an nr,
such that n >_ n, implies that IIZ(’) z(’)ll < e/3 and there is a neighborhood
F of the identity 0 in ( (with F independent of 7’) such that if 7 e 7’ + F, then
IIz.=(7) .(7 )l < e/9 Now if y e 7’ + F and if n > max (n/ n, n) then

IIZ(T)- z(T’)II -IIZ(T)- z.()ll + IIZ.(T)- z.(,’)ll + IIz.(’)-

<e/3 +e/3 +e/3 =e

as

z.()- z.(,’)ll IIZ.(,)- z.(T)II + IIZ4T)- z4’)ll + z4’)-
< /9 + /9 + /9 /3.

Since F is independent of 7’, Z(. is uniformly continuous. We define a map Z
of Lz(G, H) into itself by setting (Zx)(g) (Z(.)92(- ))(-g). It is clear that Z is
linear and that (Zx)A Z(.)92(.). Moreover, Z, converges to Z in that Z,(.)
converges to Z(. ). Thus, we need only show that Z is causal with respect to P.

Now we note that, by Proposition 3.2 (iii), Z,y converges to Zy for all y in
Lz(G, H). Setting y x xgo, we see that Z,(x Xgo) Z(x Xgo) tends to zero
in Lz(G, H). Since Zo is bounded, it follows that Zgo(Z,(x Xgo)) Zgo(Z(x X,o))

13 Since is actually an equivalence class, we can alter on a/-null set. Thus, if {g’O,k(g)
O(g)}, then we replace by ’, where ’(g) O(g) on t and O’(g) 0 on (c. We note also that,

strictly speaking, in this context, the support is an ’equivalence class of sets."
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goes to zero. But Z, is causal and linear so that ;go(Z,(x Xgo) 0 for all n.
Thus, (Zx)g )go(Zx) )go(Zxgo) (Zxgo)g and Z is causal with respect to P.

We observe that Wp has an identity A given by Ax x and that Bp is a sub-
algebra of Wp. However, Bp is not closed in ][. Iw,. We let Bp denote the closure
of Bp in Wp.

We let L1p(G,C)--{fLl(G,C):suppf P}. Then L1p(G,C)is a com-
mutative Banach algebra under convolution. We adjoin an identity 6 with norm
to L1p(G, C) a4 and we denote this extended Banach algebra by Lp. If we set
(7) for all 7 in (, then the Fourier transform extends in a natural way to Lp.
Since Lp is a commutative Banach algebra with identity, we can apply the Gelfand
theory [6]. Thus, we let//{ denote the maximal ideal space of Lp and we denote
the Gelfand representation off Lp by f(M). We note that if/// is given the
weakest topology such that the mapsf(. are continuous, then is compact [6].
We also observe that, for every 7 in (, there is an M in such that f(,) f(M)
for all f in Lp a5 (see [6]). It follows from this observation and the formula
supt If(M)[ lim,_oo IIf*mll 1/rn (see [6, p. 194])that

(37) sup If(7)] sup

(see [6, pp. 194, 214] or [4, p. 264]). This relation between characters and maximal
ideals will be exploited in the sequel.

We can now extend the Gelfand representation of L, to a continuous homo-
morphism ofB, into (, (H, H)) where (/, W(H, H)) is the space ofbounded
maps of///{ into C(H, H) and H is assumed to be separable. If + 2A is an
element of B,, then the mapping q of G into C given by

(38) q)(g) (I)(’)h 1, h2)

for fixed hi, h2 in H, is an element of Lv(G, C). Let b(M) denote the Gelfand
representation of q so that

(39) 3(M) ((*(.)hi, h2))(M)

for all M in #. We now have the following lemma.
LMMA 4.7. Let be an element of La(G, (H, H)) with supp c P and let

M be a fixed element of #. Then the map T(ha, h2) given by

(40) T(hl, h2) ((*(’)h, h2))(M)

is a bounded bilinear map ofH x H into C.
Proof. The proof is an immediate consequence of the fact that the map

into q3 is a homomorphism of L(a, C) into c(, C) and supa
(see [4, p. 263]).

It follows from Lemma 4.7 that for each M in////, there is a unique element
(M) of 2’(H, H) such that T(h 1, h2) ((M)h 1, h2). We therefore define a map
of Be by setting (M) )(M) + 2I and we call the map, - (M), the extended

14 If G is discrete, then the modifications are along the lines of the modifications used for
5 Here f(,) is the Fourier transform while f(M) is the Gelfand representation. We are willing to

accept this ambiguity because of the observation.
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Gelfand representation. It is clear from standard properties of the Gelfand repre-
sentation [4, p. 263] that the extended Gelfand representation is linear. We now
have the following lemma.

LEMMA 4.8. The extended Ge!fand representation is a continuous homornorphism
ofBe into ([, (H, H)), where ([, -q(H, H)) is the space ofall bounded maps
of /[ into Z(H, H) and H is separable.

Proof We first observe that

(41) sup ITM(hl, h2)l sup Iq3(M)I liD(" )111 lhll [h21
Mea/ M///

for any hi, h2 in H and in LI(G f’(H,H)). It follows that supMail(M)[[
_-< I1(" )ll for in LI(G, (H, H)) and, hence, that the extended Gelfand repre-
sentation is an element of the space (Bp, (/, (H, H))).

Now, by virtue of Lemma 4.3 and the fact that all the maps 99 b are homo-
morphisms of L1p(G, C) into (/,C), we need only show that (@ * W)*(M)

(M)CF(M) for (- and W(.) in LI(G, ’(H, H)). Since H is separable, we let
{el, ...} be an orthonormal basis of H. Then

(42)

where qgkj ((.)ek, e,) and Oik(" (W(.)ei, ek). 16 It follows that

(43)

for all M in ’. Now we observe that

(44)

((M)C-P(M)ei, ej

((M)e,, ej>(d(M)ei, e,)
k

for all M in /. Since (43) and (44) hold for all ei and e, ( * t’)(M) (M)qf(M)
and the lemma is established.

16 The interchange of summation and integration is justified by the Lebesgue dominated conver-
gence theorem [3].
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We note that, in view of(37), we have

sup 114()11 sup sup I()()’),

sup sup 1((),

(45) "=
sup sup ](+(M),
I1
.[

sup sup ]<+(),> sup +()I.
].=

We shall use this observation in the next section.. The mn result. We shall prove our main result in this section. We let
G be a closed semigroup of positive Haar measure and we suppose that the

space H is separable. We begin with some definitions.
Dvymoy 5.1. Let @ be an element of B. Then the spectrum of 0, in

symbols, .(0), is the subset of C given by

(46) z,(@) {i’m ia does not ave an inverse in

Similarly, if Z is an element of W, then the spectrum of Z, in symbols, w(Z),
is the subset of C given by

(47) Zw(Z) {2 "Z does not have an inverse in W}.
Dvymoy 5.2. Let @ be an element of B and let M be an element of

Then (M) is an element of (H, H) and the spectrum of (M), in symbols,
((M)), is the subset of C given by
(48) (+(M)) {2"+(M) 1 does not have an inverse in (H, H)}.
We observe that (0) and w(Z) are the usual Banach algebra notions of
spectrum and that ((M)) is the usual operator notion of spectrum. We now have
the following proposition.

Boosmoy 5.3. If @ is an element of B, then U ((M))
Proof Suppose that 2 (0). Then there is a in B such that

(49) (m- )* V * (m- )= .
Since the extended Gelfand representation is a homomorphism, it follows that

(S0) (+()- il)()= ()(+()- il)=

for all M in . Thus, 2 U ((M)) and the proposition is established.
We are now ready to develop our main result. We start with the following

lemma.
L 5.4. If H is nite-dimensional and if @ is an element of B, then

Proof We must show that Z,(@) = U ((M)) which amounts to show-
ing that if(M) is invertible for every M in, then @ has an inverse in B. There-
fore, let {e, ..., e,} be an orthonormal basis of H and let [@] [i(. )] be the
matrix of 0, i.e., e(’)= <@(’)ei, eb. We let *det [0] be the element of L
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given by

(51) *det [O] (sgn 0)q)10(1 * (/20(2) *’’" * q)nO(n)’
0

where the summation extends over all elements 0 of the symmetric group of
order n! and sgn 0 is the sign of the permutation 0. Similarly, we let *cof[]q
be the element of Le given by

(52) *cof [lis= (- 1)i+ *det [O]is,

where []i.i is the (n 1) x (n 1) matrix obtained from [] by deleting the ith
row and jth column. We observe that, for each M in

(*det [.])(M) det [(M)],
(53)

(*cof [],s)(M) cof [(M)]i,
where det [-] and cof [. ]is are the standard determinant and cofactor for the
matrix [(M)] [q3i(M)]. Now if (M) is invertible, then det [(M)] 4= 0, and

so it follows that if (M) is invertible for every M in #, then *det [] lies in no

maximal ideal and is, therefore, invertible in Le. Let F(. be the element of Be
whose matrix [*F] is given by [*F] [ki(. )], where

(54) Oij(’) (*det

It is clear that *F is an element of Be and a simple calculation shows that *F is a

two-sided inverse of with respect to the multiplication in Bp. Thus the lemma
is established.

We now introduce the notion of approximability for elements of Bp.
DEFINITION 5.5. Let be an element of Be and let {el, .-’} be an ortho-

normal basis of H. Let H. be the span of {el, --., e,} and let E, be the projection
of H onto H,. Let , E.E,. We call approximable if ,(M) converges to

4)(M) uniformly on
Approximability is an intrinsic notion in view of the following proposition.
PROPOSITION 5.6. An element ofBp is approximable ifand only ifeach b(M)

is a completely continuous element oft’(H, H) and the map M O(M) is continuous

on ..
Proof If is approximable, then the result is an immediate consequence of

that fact that each ),(M) is in c(/, qo(H H)) (as ),(M) is finite-dimensional) and
the well-known properties of operators [7, p. 204]. On the other hand, if each

(M) is completely continuous and if (M) is in c#(/, 2’(H, H)), then +,(M)
converges to +(M) for each M [7, p. 204]. But the ,(M) form an equicontinuous
family on the compact set /, and hence, +,(M) converges to (M) uniformly
on

We are now ready for our main result.
THEOREM 5.7. If O0 is an approximable element of Be, then

(55) Ew,() = U a((M))= Zn().
M/

Proof In view of Proposition 5.3 and the fact that Be c We, we need only
show that Ew,,() is contained in U uma((M)). So let us suppose that
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2 t_Ju a((M)). Since (M) is completely continuous for each M in // by
Proposition 5.6, 0 a(+(M)) for all M, and hence, 2 - 0. Moreover, (M) 21
is invertible for every M.

Now let Mo be a given element of /. Then there is an open subset Uto of
with Mo Uto such that

(56) II(m) (mo)ll =< 1/211(2I (mo))-Xll
for all M in Uto (as is continuous on /). It follows [3, p. 585] that

(57) (21 (M))- (21 (Mo))
n=0

for all M in Uto and hence, that

I1(,I (M))- all =< 11(21 (Mo))- 20
(58)

=< 211(21 (Mo))- 111
for all M in U.to. Since the collection {Uto’Mo //} forms an open covering
of //and since ,g is compact, a finite collection {Utl,’", Utk} covers .///. It
follows that if we set K 2 maxi= 1,...,k {ll(2I b(Mi))- 11), then

(59) I1(,1 (M))-11 =< g
for all M in

Now let {el, .’-} be an orthonormal basis ofH, H, be the span of {el, ..’, e,},
and E, be the projection ofH on H, as in Definition 5.5. Since is approximable,
we have, for n sufficiently large,

(60) II+.(M) +(M)II < 1/(2K)

for all M in //(where, E,,E,,). It follows that (,(M) 21)- exists and that

(61) II(&n(m)- 21)-111-< 2K

for sufficiently large n and all M in
Now H Hn H’n, where H’n is the span of {en+1, en+ 2,’" "}. We observe

that both Hn and H, are invariant under n in the sense that, for every g, n(g)
n(g) + 0An, where n(g) is an element of &t’(H, H) for which both Hn and H’n

are invariant. It follows that , 2A has the representation

(62) *,- 2A (’, 2A,)@ (-2A’,),

where ’, 2A, is an element of Bp,, L1p(G, (H,,, H,)) {A,} 17 and ’,(g)
E,(g) on H,. In view of (62), we see that

(63) On(M 2I (O’n(M) 2In) (--2I’n)

for all M in ///(where In is the identity on Hn and l’n is the identity on H,). Thus,
for n sufficiently large,

(64) (n(M)- 21) -1 (O’n(M)- 21,) -1 @ (-1/2)1;

Or B,,. , L,(G, C(H., H.)) if G discrete and 0 P.



GENERALIZED TRANSFORM THEORY 467

and

(65) II(’.(M)- ,Z.)-11 =< 2K
for all M in by virtue of (61). Now (65) implies that 2 UMa a(’,(M)) for n
sufficiently large. But, 0’, is an element of Be,, and H, is finite-dimensional. Thus,
it follows from Lemma 5.4 that

(66)

for n large. In other words, 0’. 2A. is invertible in Be,..
Since (0’.- 2A.)-1 + (2-1A is in Lxe(G,(H.,H.)), we let W. be the

element of Bp given by

(67) , (’ 2A)- (- 2- A’)
for n large. Then W, is the inverse of, 2A so that , 2A is invertible in Be.
Moreover,

(68) sup
Me

in view of (6S). Now is n element of Wp (s Bp Wp) nd

(69) ()) ()()

for in 0 nd in Z(G H). But () nd (68) toether impl that

and hence, that IIllw for n large.
We claim that W, is a Cauchy sequence in We. Suppose, for the moment,

that this claim is valid. Then W, converges to an element W of We and W is an
inverse of 2A in We since

( )= ( )( z6) + ([ .]) + (. )
(7)

for all large n. s Thus we now show that W, is a Cauchy sequence in We. We have

sup I1()- ()11 sup (M)- m(M)[

sup I((M) )- ((M) )-Xll
(72)

sup II(M)- (M)II (M)II (M)II
Me

sup II(M)- m(M)ll2

M

by virtue of (70). Since is approximable, the sequence (M) is uniformly Cauchy
on , and thus W, is a Cauchy sequence in We by virtue of (72). The theorem is
now established.

SNote that I1(, )11 I11 11-11 11-llw and that [lO -11
sup I1() -()11 SUpM I}(M) (11. Since is approximable, I1 -11 0 as

n in view of Proposition 5.6.
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We can extend this theorem to Bp (the closure of Bp in Wp). To do this we
first observe that if Z is an element of Bp with Z lim,_ O", O" Bp, then
(Zx)*(y) Z(y)(y), (O"xf(y)= q9"()2() and 99"(7) converges uniformly to Z(y)
on (. It follows from (45) that tn(M) is uniformly Cauchy on .M’ and hence has
a limit which we denote by Z(M). In other words, we can extend the Gelfand
representation to Bp and this extension is a homomorphism of Bp into
(h/,L’(H,H)). Similarly, we can define the notion of approximability for
elements ofp in exact analogy with Definition 5.5. We note that if Z is an approx-
imable element of Bp, we can then assume that Z limm__,o EmtlmEm, where the
m are in Bp. 19 We then have the following corollary.

COROLLARY 5.8. If Z is an approximable element of Bp, then

(73) E(Z)= U a(Z(M)).

Proof A direct extension of Proposition 5.3 leads to the inclusion

O a((M)) c Z,,(Z).

The other inclusion follows from the theorem and the fact that Z is a limit of
approximable elements of Bp.

6. Concluding comments. We now make some concluding remarks and present
some illustrative examples.

We first note that if is an approximable element of Be, then we can define
"analytic functions" of as elements of Wp. More precisely, iff() is any complex-
valued function which is analytic on a subdomain of C containing LJ ua a((M))
in its interior, then

(74) f(O) f()(A O)-ld

represents an element of We for any rectifiable Jordan curve F with
inside F [6, p. 203]. Moreover,f(O) is independent of F (see [6]). Similarly,f(t(7))
is defined by an integral of the form

(75) f(+(7)) f()(I 6()) d

for /in t. We then have the following proposition.
PROPOSITION 6.1. IfO is an approximable element ofBp andf() is analytic on

a domain containing U a(t(M)) in its interior, then

(76) (f()xf(y) =/(t(V))2(y)

for all in and x in L2(G, H).

19 This follows from the fact that Z lim,..ooE,.ZE,, and that Z lim._
so that lim.
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Proof In view of the definition off(O), we have

(f(ff)x)(y) f()[(A (11)-1X](]))d
(77)

2rci f({)(I (y))- ’(y)d{

by Proposition 3.8 and the fact that B is isometric to Ls(G, .+q’(H, H)) {A}. The
result will then follow from (71) provided that 1.3 a((y)) is inside F. However,
[-Jed o’((’)) c U M. ’((m)),20 and so the proposition is established. We use
this proposition and analytic functions of extensively in [1].

We further note here that the results developed will be used in the derivation
of stability theorems for partial differential equations, integro-differential equa-
tions, and difference equations [1]. We also observe that the transform theory can
be applied to problems of existence as well as stability. We have the following
illustrative example.

Example 6.2. Consider the integro-difference equation

(78) Pk+,(t) + (as * Pk+,-1)(t) + + (a * P,)(t) 0

with as, ".’, ak in Ls(R, R). This equation may be written in the equivalent vector
form

(79) x,+ s(t)=(A * x,)(t),

where A is the k k matrix given by

--al --(/2

(80) A

1 0

0 1 0

0 0 0

0 0 1

Ifxo(t) is given, then the solution of(79) has the form x,+ s(t) (A ’-.. * A Xo)(t),
and thus we wish to determine A*"+ s. This can be done by transforming to obtain
the equation ,+ ]"+ So and making use of Proposition 6.1.

Further results involving the notion of positivity and such things as Bochner’s
theorem can also be obtained. Some of this is done in [8].

Some typical situations in which the theory applies are illustrated in Table 1.
In the table, Z is the integers, Z+ {0, 1,2,...}, L2[O, 1] is the set of square
integrable functions on [0, 1] and 12 is the space of square summable sequences.
We shall not detail the theory in each of these situations here; however, we do
present the following examples.

2o This follows from the fact that, for every 7 in (, there is an M in ,/ such that (,) (M) for
all q in Le (see [6]).
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TABLE

Group G Semigroup P Hilbert space H

R l-O, oo) L2[O, 1]
R [0, )
R [0, ) C,
Z Z+ L2[O,
Z Z+
Z Z+

R R [0, oo) [0, oo) L2[0 1]
R R [0, ) x [0, o) 12
R R [0,) [0, or) C.
R R [0, 0) x R L2[0 1]
R R [0,0) R 12
R R [0,0)xR C

Example 6.3. Let G Z, P Z+ and H C,. Then t is the circle group,
i.e., t {ei’O __< 0 < 27} under multiplication. We observe that 2’(H,H) is
simply the set of n x n matrices with complex entries and that

L(G, H) x(k)" (x(k), x(k)) is finite

c(d, NI (e ((e, (e) 0 <

in our case. If x(. is an element of L(G, H), then its Fourier transform (e) is
given by (ei) x(k)e. We note also that (. is an element of Le(G,
(H, H)) if and only if 2 II(k) < and (k) 0 for k < 0. To determine the
GelNnd transform of (.), we first remark that the maximal ideal space of
L(G, C) is in one-to-one correspondence with the unit disk in C. Thus, the
Gelfand representation corresponds to the Z-transform, and so, if Z is an element
of the unit disk, then (Z) is the element of (H, H) given by O(k)Zk. Noting
that every element of Lp(G, (H, H)) is approximable in our present case, we
see that a particular consequence of our main theorem is the following" Bp
is invertible if and only if de ((Z)) 0 for all Z with [Z[ 1.

Example 6.4. Let G R, P [0, ) and H L2[0 1]. Then d R and
L2(G, H) can be identified with L2(, H). Moreover, we can view L2(G, H) as the set

x(, )" ]x(t, ) & & <

i.e., as Lz(R x [0, 1]). Ifx(t, ) is an element of L(G, H), then its Fourier transform

2(0, e) is given by 2(m, e) e-x(t, ) dr. A typical approximable element

of B is given by

(81) (Ox)(t, oO q)(t z, o, fl)x(z, fl) dfi dz,
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where the function qo(t, , fl) satisfies the following conditions"
(i) o(t, a,/) 0 if < O;

(ii) I(,.fl) Iq(t, , B)I dt < for almost all (, fl); and

f/f/ foOlf/f/(iii) 1I(,/)l 2 d d/ < oc, [o(t, , fl)l 2 dt < oo.

To be somewhat more precise, we define O(t) by setting O(t)x (x)(t, ) so that
O(t)is an element ofBe Lie(G, (H, H)) {A}. With a view toward determining
the Gelfand representation of O, we note that LIe(G, C) {6} has, in our case,
a maximal ideal space which corresponds to the right half-plane "compactified."
Thus, the Gelfand representation corresponds to the Laplace transform and so, if
Re {s} >= 0and 0(. is defined via (81), then (s) is the element ofS(H, H) given by

O(s) e-*tO(t) dt.

A particular consequence of our main theorem is the following" + 2A is
invertible in Wp (or Bp) but not necessarily in Bp, provided that $(s) +(s) + 2I
is invertible for every s with Re {s} >= 0 (including m).
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A NOTE ON CAUSALITY AND ANALYTICITY*

M. I. FREEDMAN,’, P. L. FALB$ AND J. ANTON

1. Introduction. A very thorough study of the relationship between causality
and analyticity in a group context appears in [1]. In this short note, we examine a
much more specific problem, namely" the characterization of a certain subalgebra
Bo,)(H) of the algebra of causal maps of L2(R, H) into L2(R, H), where H is a
separable complex Hilbert space (see 4). We combine the notions of analyticity
and complete continuity to obtain the characterization. The algebra Bo,)(H)
plays a critical role in the development of the frequency domain stability results
for parabolic partial differential equations given in 3. In essence, Bo,)(H) pro-
vides a key link between the general theory of [4] and the results of 3].

We begin with some basic definitions and propositions in the next section.
Then, in 3, we prove a theorem essentially due to Foures and Segal [1] by dif-
ferent means. This theorem relates causality and analyticity in the case where
H C is simply the complex numbers. Finally, we characterize Bto,o(H) in 4.

2. Preliminaries. First recall the following definitions (e.g., [2]).
DEFINITION 2.1. Let x(. be a map of R into H and let be an element of R.

Then the truncation of x(. at t, in symbols x(. ), is the map of R into H given by

(1) x()
x(), < t,

O, z>t.

for all z in R.
DEFINITION 2.2. Let Z be a map of Lz(R H) into itself. Then Z is called causal

(or nonanticipative) if

2) (Zx),(.) (zx,(.

for all x(. in Lz(R H) and in R.
We then have the following proposition.
PROPOSITION 2.3. Let Z, Z,, n 1, 2, be elements of. (Lz(R H), Lz(R H)),

the space ofbounded linear maps ofLz(R H) into Lz(R H). Suppose that the Z, are
causal and that Z, converges strongly to Z. Then Z is causal.

Proof Let be any element of R and let Xt(" denote the characteristic function
of the set (- , t]. To show that Z is causal, we must check that ztZ(yt y)] 0
for all y in Lz(R H). Now )(,tZn(Yt y)] 0 for all y in Lz(R, H) and n 1, 2,
since each Z, is causal. But ]]Zt[(Z,, Z)(yt Y)]] =< [](Z,, Z)(yt Y)][
=< Z Z [[y,- y and so, ),[Z(y,- y)] lim,_o z,[Z,(y,- y)] 0. In other
words, Z is causal.
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PROPOSITION 2.4. Let Z be a bounded linear map of L2(R, H) into itself and let
{el} be an orthonormal basis of H. Define the maps Zij of L2(R, C) into Lz(R, C) by

(3) (Zijy)(" (Z(yej)(. ), el)

for y in L2(R, C) and 1 <_ i, j < oo. Then Z is causal if and only if all the Zij are
causal.

Proof Suppose first that Z is causal. Then, (Zjy)t(.)= (Z(yte.i)(’), ei)
((Z(ye)t)t(’), ei) ([Z(ye.i)](.), ei) (Z(yej)(.), ei) (Z.iy)(.) for any i,j,

any in R and any y in L2(R, C). Thus, all the Zj are causal.
On the other hand, suppose that all the Z. are causal. Then, to show that Z

is causal, it will be enough to show that (Zx)(. ), ei) (Zx)t(. ), ei) for all i, all
in R and all x in L2(R, H). However,

((Zx,)e, e,) ((Zx,), 8i5 E ([Z(xlej)], ei), (Zijxl)t 2
j=l j=l j=l

<[Z(xej)],,ei> <Z(x),,
j=l

where xJ( (x(.), ej). Thus, the proof of the proposition is complete.
We observe that Propositions 2.3 and 2.4 are also valid in the general context

of locally compact Abelian groups developed in [2] and [4].
Now, recall that B(H) is the set of all linear transformations of Lz(R, H) into

itself of the form

(4) (x)(t) o(t- z)x(z) + 2x(t),

where (I3 LI(R, L(H, H)) and 2 C (cf. [2], [4]). It is shown in [2] that B(H) is a
Banach algebra with respect to composition and the norm, IIlls I1(I3( ")11 + 121,
and that B(H) is isometrically isomorphic with LI(R, 5(H, H)) ff {A} where A is
a unit. Writing elements of B(H) in the form q) + 2A, we let Bto, oo)(H) be the
subset of B(H) given by

(5) Bo,oo)(H {O @ + 2A e B(H)’supp (I) c [0, o)},

where supp @ is the support of @. Bo, oo)(H) is a closed subalgebra of B(H). For our
purposes, we need to view Bo, oo)(H) as a subalgebra of an algebra rather different
from B(H). With this in mind, let Wo,oo)(H) be the set of all linear maps Z of
L2(R H) into L2(R H) such that (i) Z is causal, and (ii)2 (Zx)oo) z(o)2(o)) for all
x in L2(R, H) and co in R where z(. is a bounded uniformly continuous element of
(R, (H, H)) and 2(60) is the Fourier transform of x(. (see [2]). Wto, oo(H) is a
Banach algebra with respect to composition and the norm, Zll w supoR{ z(co)ll },
and has an identity A given by Ax x. Moreover, Bfo,oo)(H) is a subalgebra of
Wo,oo)(H) which is not closed in I1" IIw. We let /O, oo)(H) denote the closure of
Bo, oo)(H) in Wo,oo)(H), (see [2]).

The Zij are called the components of Z with respect to the basis {el}.
Hat accent to right of parenthesis indicates Fourier transform of expression within parentheses.
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3. The case H C. Suppose, for the moment, that H C, the complex
numbers. We then have the following theorem.

THEOREM 3.1. (cf., [1]). Let Z be a bounded linear map ofL2(R C) into itse![such
that

(6) (Zx)’(co) f(co)2(co)

for x in L2(R C), where f(. is a continuous complex-valued function on (-,
which tends to a limit 7 as Iol . Then the following three statements are
equivalent:

(a) there is a bounded continuous complex-valued function (. on Re{s} > 0
such that (. is analytic on Re{s} > 0 and (io) f(o)for all real o;

(b) Z is causal; and,
(c) Z is an element ofBto,)(C).
Proof We can assume without loss of generality that 0 throughout as

([g- yI]x(o))" [/(co)-
We first prove that (a) implies (b). Let q(t) be any fixed nonnegative

C-function with compact support contained in [0, ) and with q)(t) dt 1.

Let lo(t)} be the associated approximate identity so that o(t)= q(t/e)/e for
e, > 0. If x(. is an element of L2(R, C), then q*x is in L2(R, C) and we can define
the linear maps Z of L2(R, C) into itself by setting

(7) Zx Z(q*x).

It follows that (Zxf(o) f(co)q3(eco)2(co) and hence, that Z converges strongly to
Z as e --, 0 (i.e., supllxll2__ I[[Zex Zxll2 0 as e 0). 3 In view of Proposition 2.3,
we need only show that each Z is causal.

For any fixed e > 0, f(o))((eo)) is in L2(R C) as f(. is bounded and b(. is
in L2(R C). It follows that there is a g(. )in L2(R C) with4 p,(co) f(co))(eco) and
hence, that Zx g*x. Thus, Z will be causal if supp g [0, oe).

.Now, letting )(s) be the Laplace transform of q(t) so that

;o(8) )(s) e-tq)(t)dt

for Re{s} >= 0, we consider the function O(s)(s)which is analytic on Re{s} > 0
and which takes the values f(co)b(eco) when s io. Since O(s) is bounded on
Re{s} _> 0, we have

]t(a + ico)(a + ico)] 2 do =< K I)(a + i(-0)12 do

(9) =< K ]qs(t)l 2 dt <

By Proposition 3.2 of [23. Note also that q3(co) b(eco).
4 Note that p,(. )2(. (Zx)"(.) is in L(R, C) f-I L:(R, C).
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for a > 0, where K is a fixed constant which is independent of a. It follows from
a theorem of Paley-Wiener [7] that the inverse transform g(t) of (ioo)(ioo) has
support contained in [0, oo). Thus, Z is causal for any e > 0, and so (a) implies (b).

We now show that (b) implies (c). Again, we let Z be given by (7). Here,
however, Z, is causal since Z is causal and supp q [0, oo). Moreover,
Z Z[lw supoR[f(oo)(eO9) f(o9)[ tends to 0 as e 0. To see this, we note

that if 6 > 0 is given, then there is an a > 0 such that Io91 > a implies that
If(co)[ < 6/2 since limlol_ f(co) 0. Thus,

sup If(o)o(o) f(o)l
__< max{ sup If(o)(o) f(o)l, sup If(co)q(co) f(o)l}

=< max{ sup If(o)(eo) f(o)l a}
o[- a,a]

since

But

sup If(o)(eo)- f(o)l =< sup 2lf(o)l < 6.

If(co)q3(eco) f(co)l If(co)l [e -i’t 1lop(t)dtl

If(oo)[ lie-*t llq(t)dt.

Sincef(o) is continuous, If(o)] is bounded on I-a, a] and so, for suitably small e,
we have ]]Z,- Zllw < ,

Now, just as in the proof that (a) implies (b), we have Zx g * x, where
g(. is an element ofLg(R, C) and p,(o) f(o)q3(e.o). Here, however, supp g [0, )
as Z is causal. Since II& ZIIw - as 0, we need only show that Z is in
Bto,(R))(C for every e.

With this in mind, we let

(10) ga(t)

for a > 0 and

(11) Z,,x g, * x

for x in L2(R, C), a > 0 and a fixed e > 0. Since g,(. is in La(R, C) and supp g
c [0, ), Z,, is an element of Bto,)(C). To complete the proof, we shall show
that IIZ,- Z,[Iw tends to 0 as a 0, i.e., that supoR I,(O)- (CO)l 0 as
a 0. However,

(12)

and so, we have

(e(--Ilg(.))* 2_e--I’l", p,(.),

(13) (o) _1 ff a

a2 + (o v)2p’(v)
dv

Note that the composition of causal maps is causal.
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for r > 0. The result is now an immediate consequence of the fact that ,(. is
uniformly continuous6 and of Lemma 3.2 which follows the theorem.

We now prove that (c) implies (a). If Z is an element of Bto,oo)(C), then there is
a sequence of elements g,(. of LI(R, C) with supp g,

___
[0, c) such that ,,(co)

converges to f(co) uniformly in co. Therefore, ,(co) is uniformly Cauchy in 09.

Now, let G,(s) be given by

(14)

for Re {s} => 0. Since

G,,(s) e-S’g,(t) dt

sup IG,(s)- G(s)l sup IG,(ico)- G,n(ico)l 7 sup
Re{s} >- 0 oR

the sequence G,(s) is uniformly Cauchy on Re {s} >= 0. But the G,(s) are analytic
on Re {s} > 0 and continuous on Re {s} _>_ 0 and have the limit 0 at c. It follows
that G,(s) converges uniformly to a function G(s) which is analytic on Re {s} > 0,
continuous on Re {s} >= 0, and has limit 0 at c. Moreover, G(ico) f(co). Thus,
(a) holds and the proof is complete.

Now let H again be any separable complex Hilbert space. We then have the
following lemma.

LEMMA 3.2 (cf. Titchmarsh [5]). If h(. is an element ofLz(R 5’(H, H)) which
is uniformly continuous on R, and if K(w, v, a) is given by

1 7
(15) K(w v, o) oz -Jl’- (W I))2,

then K(w, v, a)h(v) dv converges to h(w) uniformly in w as a tends to O.

Proof We first observe that

(16) K(w, v, or)dv K(w, v, a)dv 1/2,

(17) K(w, v,
O(o’/Iw- Vl2), Iw- vl > o’.

Thus, it will be sufficient to show that K(w, v, o-)[h(v) h(w) dv ---, 0 uniformly

inwas --, 0+. In view of (17), this will be true if(a)(1/) IIh(v) h(w)ll dv ---, 0

uniformly in w as --, 0 +, and (b) r (Ih(v) h(w)II/(v w)) dv 0 uniformly

This follows from the fact that f(.) has a limit as Icol oe, the continuity of f(.), and the
properties of

By the maximum modulus theorem.
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in w as a 0 +. Since (a) is an immediate consequence of the uniform continuity
of h(. ), we need only establish (b). Now let

(18) 0(Z) h(w + t) h(w)II

Then, given e, > 0, there is an r/> 0 such that

(19)
O(T)
T

<e, O<T<_rl,

for all w in R. It follows that

f ;i’ ]lh(w/t)- h(w).w+, Ilh(v)- h(w)ll My r
+ (V W)2 2 dt

(20) + 2a
L
dt

__<+2r __<3,
uniformly in w. Now, with r/fixed, it is clear that a (llh(v) h(w)ll/(v w)) dv

0 uniformly in w as r 0 +. The lemma is now established.

4. The general case. Suppose now that H is a separable complex Hilbert
space. We then have the following theorem.

THEOREM 4.1. Let Z be a bounded linear map of L2(R, H) into itself such that

(21) (Zx)(09) f(09))2()

[’or x in L2(R,H), wheref(. is a continuous map ofR into (H, H) which tends to
the limit 7I as Io91 c, 7 C. Then (i) if there is a bounded continuous (H, H)-
valued function /(. on Re {s} >= 0 such that (. is analytic on Re {s} > 0 and
qJ(i09) f(09)for all real co, then Z is causal (i.e., Z Wto,oo)(H)), and (ii) ifZ is causal
and ifz(09) f(09) 71 is completely continuousfor all real 09, then Z is in Bto,o)(H).

Proof We first prove (i). Let {ei} be an orthonormal basis of H and let
be the components of Z with respect to {ei} (i.e., Zi. is the map of Lz(R, C) into
itself given by (3)). Then, letting qJi.i(s)= (O(s)ej, ei), we can see that (Ziyy)^(09)

qJi(09),9(09) for all y in Lz(R C) and, hence, that Z satisfies (a) of Theorem 3.1.
Thus, each Z is causal and (i) follows immediately from Proposition 2.4.

We now prove (ii). We assume without loss of generality that /= 0 and we
let Zj be the components of Z with respect to the basis {e}. Then each Z is
causal by virtue of Proposition 2.4 and, hence, is an element of Bto,)(C) in view
of Theorem 3.1. Now let H, be the span of {el,"’, e,} and E, be the projection
of H onto H,. Defining the map Z, of Lz(R, H) into itself by Z, E,ZE,, we have

(22) (Z,x)’(09) E,f(09)E,Pc(09)
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for x in L2(R H). However, (22) implies that

(23) (Zn,ijy),,(og) ._. f/j(O))((D), 1 < i n, 1 =< j __< n,

O, > n or j > n,

for y in Lz(R, C), where fj(og) (f(co)ej, e). It follows that Z, is in Bto,)(H).
To complete the proof, we shall show that Z, converges to Z in 11" w. We

first note that lim,_ f(og)- E,f(og)En 0 pointwise in 09 as f(o) is com-
pletely continuous for each o. Let f,(og)= E,f(o)E,. Then {f,(.)} is an equi-
continuous family since IIf,(col) f,(cOo)ll _-< Ilf(091) f(ogo)ll for all o91, 09o and
f(. is continuous. Now let e > 0 be given. Then there is a 6 > 0 such that Iool > 6
implies that IIf(og) < e/4 since limlol. f(o9) 0. But IIf,(o) -< /(09)11, and so
Ilf(og)- f.(o)ll < e/2 for all 09 with Io91 > 6 and all n. Since {f,(. )} is an equi-
continuous family which converges pointwise to the continuous function f(. on
the compact set Io91 6, f,(. converges to f(. uniformly on [col =< 6. It follows
that, for all 09 in Io91 -< 6, there is an n (independent of e) such that IIf,(o) f(og)ll
< e/2. Thus, Z, converges to Z in l" IIw, and the proof is complete.

COROLLARY 4.2. Suppose that the hypotheses of(i) are satisfied and thatf(o9) 71
is completely continuous for all 09. Then Z is an element of Bto,)(H).
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A HILBERT SPACE STABILITY THEORY
OVER LOCALLY COMPACT ABELIAN GROUPS*

M. I. FREEDMAN,’. P. L. FALB{ AND G. ZAMESf

1. Introduction. Let G be a separable locally compact Abelian group and let
H be a separable real Hilbert space. Here we develop a very general stability theory
for systems defined on G and taking values in H. Our theory draws heavily on the
generalized transforms developed in [1] and culminates in a generalization of the
circle criterion [2] which is applicable to a very wide class of systems.

We shall assume that the reader is familiar with the theory of integration of
Banach-space-valued functions [3] and has perused the work on generalized
transforms in [1]. Let/ denote Haar measure on G and let G denote the character
group of G. Elements of ( are usually denoted by 7 and their action on G is written
as (7, g). We recall [4] that t is also a locally compact Abelian group (with respect
to the topology of uniform convergence on compact subsets of G). Let m denote the
Haar measure on (. We deal quite freely with spaces of the form L2(G, H),
L2( H), LI(G, 9’(H, H)), etc., where, for example, L2(G, H) is the space of maps
fofG into H for which ftl 2 is integrable with respect to/and (H, H) is the space
of bounded linear maps of H into itself [3], [1].

We begin our development with some basic definitions in the next section.
Then, in 3, we prove several positivity lemmas which play an important role in
our treatment of the circle criterion. We next review (briefly) the main theorem
of [1] and use it to obtain a spectral theory and positivity conditions (4). In 5,
we state and prove our main result, the generalized circle criterion for stability.
Finally, we present some illustrative examples and make some concluding com-
ments in 6.

2. Basic definitions. Following [1], we introduce a generalization of the
notions of truncation and causality. We also define the notions of finite gain,
positivity and stability (cf. [2]). All of these ideas play a significant role in the sequel.

DEFINITION 2.1. Let P c G be a closed semigroup of positive Haar measure
and let P’ {g:-g P}. Let P’ + go be the subset of G given by

(1) P’ +go {geG:g=gl +go, glP’}
and let Zo be the characteristic function of P’ + go- Iff is a measurable map of G
into H, then the truncation of f at go, Jo, is given by

S f(g)’ g P’ + go,
(2) Long) O, gCP’ + go,
i.e., Lo Z,of.
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Strictly speaking, we should write fgoa" since truncation depends on the choice of P. However,
we usually consider a fixed P and so this distinction is unnecessary.
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If P is a closed semigroup of positive Haar measure, then we introduce the
space

Lze(G, H) {f "f is measurable and fgo L2(G, H) for all go},

and we call L2,(G, H) the extension of L2(G, H) (relative to P). We shall assume
from now on that there are elements {g l, in P such that U, (P’ + g,) G.
We now have the following proposition.

PROPOSITION 2.2. Iff(. is an element ofLz,(G, H) and if fgo[I 2 =< Kfor all go
in G and a fixed constant K, then f(. is an element of Lz(G,H) and []fl]2 =< K.

Proof There are elements g in P such that 13 (P’ + g,)= G. Let
n=l

h,=Tgi. Thenh,P, U,(P’+h,)=GandP’+ h,=P’+hkifk>n. We
let2 fN(g)= sup{If,(g)12, "’’, Ifn,,(g)12}. Then fN(.)is a monotone sequence of

functions and _lfu(g)d/ <= K2 since fh, fhj on (P’ + hi) f’l (P’ +integrable h).
It follows from the Beppo Levi theorem on monotone convergence [5] that

12 and hence that.f(. is element of H) with II.f 12 =< K.d/ an L2(G
PROPOSITION 2.3. Iffx(. and f2(" are elements of L2,(G,H) and iff, f2z

for all g in G, then fa =- f2.
PROPOSITION 2.4. Let g, I, be any ordering of G, where I is an index set.

Suppose that {f(. ):e e I} is a collection ofelements ofL2(G, H)such that(g) O,
for almost all g with g q e’ + g,, and zgf zgfafor all , in I. Then {f} defines
a unique element f of L2e(G, H); namely, f(g) f(g) if g e P’ + g,.

Proof Since G U (P’ + g,),f(g) is defined for every g in G. Moreover, if g is an
element of (P’ + g,) 71 (P’ + ga), then f(g)= f(g)= Z,o(g)f(g)= Z,(g)fa(g)= fa(g)
so that f is well defined. There are elements g of P such that G U (p,n=l

+ g,), and so f will be defined by a countable set {f, :i 1, }. Since the f,, are
measurable, f will also be measurable. In view of the fact that f,(g) 0 for almost
all g with g P’ + g, we can see that fg will be in L2(G, H) for all g in G. Thus,
f L2e(G, H). The uniqueness off is then an immediate consequence of Preposi-
tion 2.3.

With a suitable notion of truncation at hand, we can define causality as
follows:

DEFINITION 2.5. Let be a map of LZl,(G, H) into L2,(G, H) (or of L2(G, H)
into L2(G, H)). Then is called causal with respect to P if

(3) (X),o(.) ((Xo(.))),o

for all go in G and x in L2,(G, H) (or L2(G H)).
We observe that if G R and P [0, o), then Definition 2.5 coincides with

the usual notion of causality [2. We also note that if q and q are causal with
respect to P, then W is causal with respect to P as (qX)go(-) (q){Wx})go(.)

(q{qXgo(’)}go)go (qXgo(’))go. Some basic examples of causal maps are as
follows.

21. denotes the norm on H.
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Example 2.6. Let N be a map of H into H with IN(h)l <= clhl for all h in H.
Then the map N of L2e(G, H) into L:v(G, H) given by (Nx)(g) N(x(g)) is causal.

Example 2.7. Let be an element of LI(G, Z(H, H)) with support contained
in P. Then the map 1/of L2e(G, H) into L2e(G, H) given by

(x)(g) .[ (g g’)x(g’) d
is wen-defined and causal with respect to P (see, [1, Lemma 3.6]).

We now have the following definition.
DeHmo 2.8. Let be a map of L2e(G, H) into L2e(G, H) (or of L2(G H)

into L2(G H)). Then the gain of, v(), is given by

v() sup( II(X)g(" )ll2 0}
orby v(e)= sup 2)]1- "xeL2(G,H), x(.)O

and is said to be of finite gain if v() < .
We observe that the map N of Example 2.6 is of finite gain with v(N) N c

and that the map of Example 2.7 is also of finite gain with v() N ll0111.
POeOSTO 2.9. If is a causal map of L2(G, H) into itse, then there is a

unique causal extension ’ of with ’ mapping L2e(G, H) into itsel Moreover, if
v() < , then v(’) < .

Proo Let g, e e I, be any ordering of G, where I is an index set. Iff is an
element of L2e(G, H), then we define a collection {4(" )} of elements of L2(G, H)
by setting 4 (f). Then

since is causal over L(G, H). By Proposition 2.4, {} represents a unique
element of L2e(G,). We let . Then ()g (fg) and
(g)g (fg)g so that ’ is causal. The final assertion of the proposition is
obvious.

Now define positivity and stability as follows.
DEFINITION 2.10. Let be a map of Le(G, H) into itsel[ Then is positive with

respect to P if

(4) (Xo(.), (OX)o(.)> (Xo(g), (OX)o(g)) au 0

for all go in G and x in Le(G, H). Similarly, is strongly positive with respect to
P if there is a 6 > 0 such that

2(5) {Xo(. ), (OX)o(.)) 611Xo(.)ll

for all go in G and x in Le(G, H).
DEFITION 2.11. Let and W be maps of L2e(G, H) into itself and let S be a

subset of L(G, H) x L(G, H). Then the system

(6) e(. + (I)[(Pe)( + xl(. )] x2("
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is called stable over S (or L2-stable over S) if there is a continuous nonnegative
function Ks(. on [0, or) with Ks(0) 0 such that (xl(’), x2(" )) S and IIx1112 =< A,
Ilxzllz <= A together imply that lie(" )lie <= Ks(A) for every solution e(. of (6)in
Lzp(G, H) (afortiori, e(. Lz(G, H)).

We shall, on occasion, deal with relations rather than mappings and so, make
the following definitions.

DEFINITION 2.12. A relation on Lzp(G H) is a subset of the product Lzp(G, H)
Lzp(G, H). If x is an element of the domain of (I), then the image of x, (I)[x], is

the subset of Lzp(G, H) given by (I)[x] {y Lzp(G, H):(x, y) }. The inverse
of (I), (I)- 1, is the relation {(y, x):(x, y) (I)}. If (I) is a relation on Lzp(G, H), then
the gain of (I), v((I)), is given by

sup{ Ilyg(" 2"x L2p(G H), y (I)[x], got G, Xg 4: 0},V((I))
Xgo( )2

and is said to be finite gain if v() < o.
DZHqmON 2.13. Let be a relation on L2e(G,H). Then is positive with

respect to P if

(7) (Xgo("), Ygo(g)) dg >= 0

for all go in G, x in L2v(G, H) and y e (I)[x]. Similarly, (I) is strongly positive with
2 for all gorespect to P if there is a 6 > 0 such that (Xgo(.), Ygo(" )) --> 611Xgo(’)ll2

in G, x in Lzv(G H) and y e (I)[x].
DEFINITION 2.14. Let (I) and W be relations on Lzv(G H) and let S be a subset

of L2(G, H) x L2(G, H). Then the inclusion equation

(8) X2(" e(. )e [[e(. )] + X 1(" )]

is called stable over S (or L2-stable over S) if there is a continuous nonnegative
function Ks( on [0, oo) with Ks(0) 0, such that (x 1(" ), x2(. )) e S and x 1112 A,
IIX2112 A together imply that lie(-)112 _-< K(A) for every solution e(. of (8) in
L2/,(G, H).

3. Some positivity lemmas. We now state and prove several basic lemmas
which play a key role in our treatment of the circle criterion. We begin with the
following lemma.

LEMMA 3.1. Let x and z be positive maps of L2e(G,H) into L2e(G,H).
Suppose that (say) z is strongly positive with respect to P and hasfinite gain. Then
the systems

(9) e(. + (I)l(((I)2e)(.) + Xl(-)) x2(. ),

(lO) e(. + (I)2((O1e)(.) + Xl(. )) X2("

are L2-stable over S for every S c L2(G H) L2(G, H).
Proof We consider the case of (9) only since the proof in the other case is

similar and is, therefore, omitted. Let S be any subset of Lz(G, H) Lz(G, H).
Now, for any go in G and (x l, x2)e S and e in Lzp(G, H) satisfying (9),

(11) (((Dx(Oze + x1))go, (O2e + X1)go5 >= O,
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by virtue ofthe positivity ofO1. Since (O1(O2e nt- x1))g (X2 e)go, it follows that

(12) (ego,(Oze)go) IIXlgollZllXZgoll2 --t-. IIXlgollzllegoll2 + v((I)z)llX2goll211egoll2.
2However, O2 is strongly positive with respect to P, and so, (ego, (O2e)go) >_ 61[egol[ 2

for some 6 > 0 and all go G. Thus, for any A > 0, Ilxxll2 =< A and tlx2112 _-< A
imply that

Z < Z2 "k- A(1 + v(Oz))lleg 12(13) tleoll 2

and hence, that llegoll = __< Ks(A), where, for example, Ks(A A(1 + v(O2) + 6)/,5
and for all go in G. By virtue of Proposition 2.2, lie(-)112 <= Ks(A) and the lemma is
established.

An analogous result holds for relations. In other words, we have the
following lemma.

LEMMA 3.2. Let and f2 be relations on L2,(G,H (with domains all of
LEp(G H)). Suppose that 01 and ()2 are positive with respect to P and that (say) 02
is strongly positive with respect to P and has finite gain. Then the systems

(14) X2(" e(. ) O1102[e )] + xl(-)],

(15) x2(’) e(.)e02101[e(.)] + xl(’)]

are L2-stable over S for every S L2(G, H) x L2(G, H),
Proof The proof is a direct analogue of the proof of Lemma 3.1.
We now use Lemma 3.2 to prove Lemma 3.3.
LEMMa 3.3. (Skeleton circle criterion). Let and tp be maps ofL21,(G, H) into

itselfand let A and B be elements ofSC’(H, H). Let A and B be the maps ofLzp(G, H)
into itself given by (Ax)(g) Ax(g) and (Bx)(g) Bx(g), respectively. Suppose that
(i) the relation 01 (AO + I)(BO + 1)-1 on Lzp(G,H) is strongly positive with
respect to P and has finite gain; (ii) the relation (BO + I)-1 on L2p(G, H) has finite
gain; and (iii) the relation 0I)2 (B kll)(I-P A)-1 On L2e(G, H) is positive with
respect to P. Then the system e(. + tP((Oe)(. + xl(" )) x2(" is Lz-stable over
every S c Lz(G,H) x L2(G,H).

Proof We observe that 0’ -(AO + I)(-BO- I)-1 is strongly positive
and of finite gain since O1 is. Thus, by virtue of Lemma 3.2, it will be sufficient to
establish the following claim.

CLAIM. If the inclusion equation

(16) e’ 2[’[e’] + x’]X2

is L2-stable over every S’ c L2(G, H) x L2(G, H), then the system

(17) e(.) + tP((Oe)(.) + xl(.)) x2(’)

is L2-stable over every S L2(G, H) x L2(G, H).
Now, to verify the claim, we first observe that if x l, x2, e satisfy (16), then

x’, x2’, e’ satisfy (15), where x’ x2 Axl x’2 Bxl x2 and e’ -(BO + I)e.
Moreover, if S is a subset of L2(G, H) x Lz(G H), then S’= {(x’l, x2):x’ x2

Axl,x’2 Bxl x2} is also a subset of L2(G,H) x Lz(G,H). Since (15) is

L2-stable over S’, it follows that there is a Ks,(" such that IIx’ 12 =< a’, x _-< a’
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and (x’,x’2)S’ together imply that Ile’ll2 Ks,(a’). However, given k > 0,
xal12 _-< k, x2112 _-< k and (xl,x2) S together imply that x’ 12 =< k’, IIx 2 _-< k’
and(x’,x’2)S’, where k’= k max (1 + All, 1 + IIBII), and hence, that e’l12
< Ks,(k’) But lel12 < v((n / I)-a) e’ and so, letting2,

Ks(k v((BO + I)-1)K,(k’),
we find that (16) is L2-stable over S.

COROLLARY 3.4. Suppose that, in addition to the assumptions of Lemma 3.3,
hasfinite gain. Then the system e(. + O((e)(. + xl(" )) x2(" is L2-stable

over every S L2(G,H x L2(G, H).
Proof Let O’ be the map of Lae(G,H) into itself given by O’x -(-x).

Then v(O’) v(O) < oe and the system e(. + O((qe)(. + x(. )) xz(" )is the
same as the system e(. O’(-(qe)(. xl(" )) x(. ). Letting e’ -We xl,

we deduce that e’(. + q((O’e’)(. + xa(. )) -xl(" ), whenever e(. )is a solution
of our original system. But Lemma 3.3 applies to the system e’(. + q((O’e’)(.
+ x2(" )) -xl(. since (AO’ + I)(BO’ + I)-1 is strongly positive with respect
to P and has finite gain (as (AO + I)(BO + I)-1 does) and since v((BO’ + I)-1)

v((B + I)- 1). Thus, given S L(G, H) x L(G, H), there is a K’(. such that
[[XIII2 k, IX2 12 kand(xl,x2) S together imply that [[e’l[2 _-< K’(k). It follows
that qel[2 =< lie’ 12 -+- xl 12 < k + K’(k) and that

ell= < Ilx21 2 + V((I)’)( Iqell2 / Ilxxll2) =< k + v(O’)(2k + K’(k))= Ks(k).

The corollary is now established.

4. A spectral theory. We shall combine Lemma 3.3 with several "frequency
domain" conditions for positivity in 5. Here, we use the generalized transform
theory of [1] to obtain the requisite positivity conditions. We begin with a brief
review of the relevant results of [1]. We let K be a separable complex Hilbert
space (which will, in much of the sequel, represent the complexification H
of H).

Now, we recall that B(K) is the set of all linear transformations of L2(G, K)
into L2(G, K) of the form

(18) (Ox)(g) fo O(g- gl)x(ga)dlt + 2x(g),

where (I)(.) LI(G, (K, K)) and 2 C (cf. [1]). It is shown in [1] that B(K) is a
Banach algebra with respect to composition and the norm, IlO[[n Ilo(-) + 121.
Moreover, B(K) and LI(G, (K, K)) {A} (A a unit) are isometrically isomorphic,
and so we write elements of B(K) in the form + 2A. We also note that if

+ 2A is an element of B(K), then the Fourier transform of, (. ), is the
map of ( into &(K, K) given by (7) )(y) + 21, where

(19) +(7) f (7, g)O(g)d/

and (7, g) denotes the action of 7 on G. The Fourier transform is a uniformly con-
tinuous element of cg(,, (K,K)) and (OP)" +(A hat accent to the right
indicates the Fourier transform of the entire enclosed expression.)
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(20)

We let Be(K) be the subset of B(K) given by

B(K) {0 + 2A B(K)" supp m P},

where supp is the support of (I), i.e., supp {g" (g) 4: 0}, and P is our closed
semigroup of positive Haar measure. Be(K) is a closed subalgebra of B(K) and is
called the causal subalgebra ofB(K) with respect to P. For our purposes, we need
to view B,(K) as a subalgebra of an algebra rather different from B(K). With this
in mind, we let We(K) be the set of linear mapsZ of Lz(G, K) into Lz(G K) such
that (i) Z is causal with respect to P, and (ii) ((Zx)) () z(7):t() for all x in Lz(G, K)
and in (, where z(. is a bounded uniformly continuous element of((, (K, K)).
We(K) is a Banach algebra with respect to composition and the norm,
supra { IIz()ll }, We observe (cf. 1]) that We(K) has an identity A given by Ax x

and that Be(K) is a subalgebra of We(K). However, Be(K) is not closed in I1" Ilw
and so, we let Be(K) denote the closure of Be(K) in We(K).

We let LI(G,P;C)= {fL(G,C)’suppf P}. Then L(G,P;C) is, as is
well known, a commutative Banach algebra under convolution. We let Le

L(G, P;C) {6}, where 6 is an identity. Then the Gelfand theory applies to

Le. So, we let /be the maximal ideal space of Le and we denote the Gelfand
representation of f Le by f(M). In [1 ], we extended the Gelfand representation
of Le to a continuous homorphism of Be(K) (in fact, Be(K)) into (, 5(’(K, K)),
where 0(, (K, K)) is the space of bounded maps of / into (K, K). The
extended Gelfand representation was the map --. (M)= (M)+ 21, where
the definition of (M) involved a consideration of the bilinear map TM(k, k2)

((.)k,k2)(M)(see [1] for details).
For the sake of exposition, we considered the case where LI(G, (K, K))

does not contain an identity for convolution, i.e., G is not discrete. In other words,
we treated the case where it is necessary to adjoin the unit A. If G is discrete so
that L(G, (K, K)) already contains an identity, then B(K) consists of the con-
volution maps x . x. B(K) is then a Banach algebra with respect to com-
position and the norm, IIOI1 IIq( )llx, which is isometrically isomorphic to
L(G, (K, K)). LettingLe(G, &(K, K)) {(. ) L(G, (K, K))" supp P},
we then define Be(K) by setting Be(K)= LIe(G,(K,K)) or Be(K)= Lxe(G,
&,a(K, K)) {A} according as 0 P or 0 P. Similar remarks apply to Le. We
leave the details of the case G discrete to the reader noting that all the subsequent
results remain true verbatim (with the proper definitions).

Now recall [1], the notion of approximability and its basic property.
DEFINITION 4.1. 3 Let be an element of Be(K) (or Be(K)) and let {e, ...}

be an orthonormal basis of K. Let K, be the span of {e, ..., e,} and let_E_E be
the projection of K onto K,. Then O, E,OE, is an element of Be(K) (or Be(K))
and is called approximable if ,(M) converges to (M) uniformly on ’.

PROPOSITION 4.2.4 An element of Bp(K) (or Bp(K)) is approximable if and
only if each (M) is a completely continuous element of ’(K,K) and the map
M - (I)(M) is continuous on

See Definition 5.5 of [1].
See Proposition 5.6 of [1]. In view of the proposition, the notion of approximability is intrinsic.
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We used the notion of approximability and the algebras Bp(K), Bp(K) and
Wp(K) in the following spectral theorem which was proved in [1].

THEOREM 4.3. IfZ is an approximable element of Bp(K), then

(21) SPECw, Z =

and

U spec (M) SPEC,, Z SPECB, Z,
Me/

{0}w U specz(y)= SPECZc U specZ(M),

where the "SPEC’s" and "spec’s" are suitable spectrums and z(. is the element
of oK(d, &’(K, K)) corresponding to Z.

We then employed this theorem to show that analytic functions f(.) of
elements of Bp(K) may be defined and that (f(Z)x)(7) f(z(7))2(7) for all x in
Lz(G K). More precisely, we ac___tually showed that if Z + 2A, where Z is an
approxirnable element of Bp(K) and f() is analytic on a domain @ containing
U spec(M) in its interior, then
M /’/

(22) f() f()(A .)-x d

represents a well-defined element of We(K) (in fact of Be(K)) for any Jordan curve
F with Uta spec (M) inside F. Such analytic functions f() play an important
role in the sequel. Thus our review of [1] is complete.

Now suppose that T is an element of ,e(K, K) and that T is normal. Then,
f(r), as given by

f T) t f(v) dE(v),(23)
.spec T

where E(v) is the spectral measure corresponding to T, is a well-defined element of
&’(K,K) for any function f which is continuous on a domain containing
spec T (see [6]). We then have the following lemma.

LEMMA 4.4. Suppose that fl(v) 2Re{f(v)} f(v) + f(v) >= 6 > Ofor all v in
spec T. Then

(24) ({/(T) + f(T)*}k, k) >_ ilk] 2

for all k in K.

Proof Since f(T)* f(v)dE(v), (see [6]), we have f(T)+ f(T)*
Ospec

t f(v)dE(v) fa(T). It follows that fl(T)is self-adjoint and also that
,spec T

spec fl(T) c [6, oe) since spec f(T) f(spec T), (see [6]). Hence, (fa(T)k, k)
_>_ 61k[ 2 for all k in K which establishes the lemma.

B is the "completion" of B(K) with respect to the norm, supr [Iz()ll }. The equality follows
from the fact that, for every in d, there is a regular maximal ideal N in LI(G, C) such that 0() 0(N)
for all q in LI(G, C) and conversely. The inclusion follows from the fact that, for every ), in (, there
is an M ’ such that () (M) for all in L, (see [4]).
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We shall suppose from now on that K H is the complexification of H and
consequently, we write Bp, B, Wp in place of Be(HC), B(HC), W,(H), respectively.
We also note that if x is an element of Lz(G H), then x is an element of L2(G, H)
with x(g) if(g) for all g (and conversely). Thus we view L2(G, H) as the set of
"real" elements of L2(G, H). We are now ready to derive the requisite positivity
conditions. In particular, we have the next lemma.

LEMMA 4.5. Let Z be an approximable element of Bp and let f be anyfution
which is analytic in a symmetric domain (i.e., 6 ) containing I,.J Mt spec Z(M)
in its interior. Suppose that (i) z(7 is normalfor all 7 in r, where z( is the element of
cg(r, ’(H, HC)) corresponding_to Z;(ii) Z is real (i.e., (Zx)(g)= (Zx)(g)for all g
in G and x in LE(G, H); (iii)f() f()for all in so that f(Z) f(Z), where
f(Z) is given by (22); and (iv) Re{f} > 0 on {0} w (.J a spec z(7). Then f(Z) is
strongly positive on L2(G H).

Proof Since {0} w (.J spec z(7)= SPECZ (cf. (21)) is compact, there is a
6 > 0 such that 2Re{f(v)} >__ 6 > 0 for v {0} w Ua spec z(7). It then follows
from the normality of z(7) and Lemma 4.4 that

(25) ({f(z(7)) + f(z(7))*}k,k) >-_ 6lk]

for all k in H. Now, by virtue of the Plancherel theorem [1, Corollary 3.3], we
have

(26) Z)x(g x(g)) d f ((f(Z)xf(7),-(7)) din,

and, in view of Proposition 6.1 of [1],

(27) x(g)) d# f# (f(z(7))(7), 2(7)) dm.

Now, z(-7)= z(-7) in view of the fact that Z is real and the fact that

(7) (- 7) for x in L2(G, H). Since the right-hand side of (27) is invariant under
the substitution 7 -7, we have

(28) (f(z(y))Ye(7), (7)) dm re, (f(z(Y))Ye(7)’ 2(7)) dm

for x in Lz(G, H). But f(O f(O, so that

(29) (f(z(7)Y(7), (7) )dm re, ((7), f(z(7))(7)) dm

fo (/(z(7)) * 2(7), (7)) dm
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for all x in L2(G H). It follows from (27) and (29) that

(30) (f(Z)x(g), x(g))dp ({f(z(y)) + f(z(7))* }92(7))dm

> 192(7)12 dm IIx(’)ll 6

=2 2’

and, hence, the lemma is established.
COROLLARY 4.6. Let Z + 2A, where Z is an approximable element ofBe,

and let f be,any function which is analytic in a symmetric domain 9 containing
Ut spec(M) in its interior. Suppose that and f satisfy the (analogue of)
conditions (i), (ii) and (iii) ofthe lemmaandthat Re{i} > Oon { + 2} w Ud specqS(7)
where 49 is the element ofCg(d, &’(Hc, Hc)) corresponding toO. Then f() is strongly
positive on L2(G, H).

COROILAR 4.7. Let Z be an approximable element of Be. Suppose that con-
ditions (i) and (ii) ofthe lemma are satisfied,and that a and b are positive real numbers
with 0 < a < b. If -b- q [_l tu spec Z(M) and if the set {0} U e, spec z(7)
does not intersect the circle with center -1/2(1/a + l/b) and radius 1/2(1/a- l/b), 7
then f(.___Z)= (aZ + A)(bZ + A)-1 is a well-defined element of Bp such that f(Z)

f(Z) andf(Z) is strongly positive on Lz(G H).
Proof Letf() (a + 1)/(b + 1)and let 9 be a symmetric domain such that

-b- 9 and such that the compact set {0} w U spec z(7) ,,SPEC Z is con-
tained in the interior of 9 (9 exists since -b-a Uta spec Z(M)). Then f is
analytic on 9 and f() f() for all in 9. Moreover, we can see immediately
that the hypotheses insure that Re{f(v)} > 0 for all v in {0} w Ue spec z(7).
Thus the corollary follows from the lemma.

COROLLARY 4.8. Let Z + )A, where Z is an approximable element of Bp.
Suppose that satisfies (i) and (ii) of the lemma and that a and b are positive real
numbers with 0 < a < b. If-b- (.J tt spec(M) and if the set { +2} w (.J d
spec q() (where is the element of c(r, (H, HC)) corresponding to --) does not
intersect the circle with center -1/2(1/a + l/b) and radius 1/2 (1/a- l/b), then
f() (a + A)(b + A)- is a well-defined element ofBe such thatf() f(O)
andf() is strongly positive on L2(G, H).

5. A generalized circle criterion. We state and prove our main result, the
generalized circle criterion for stability, in this section. We begin with some simple
propositions.

PROPOSITION 5.1. Let N be a map ofH into H and let a and b be positive real
numbers with 0 < a < b. Suppose that (bh N(h), N(h) ah) >= 0 for all h in H.
Then N is bounded, i.e., there is a c with IN(h)l < clhl for all h in H.

Proof Since (bh N(h), N(h) ah) >= O, we have ((b + a)h, N(h)) >_ (bh, ah)
+ (N(h), N(h)) >= 0 so that (b + a)lhl. ]N(h)l _>-]N(h)l 2.

PROPOSITION 5.2. Let Z be an element of We. Then Z is offinite gain and has a
unique causal extension Z’ to Lzt,(G, H).

See [1, Proposition 3.2].
As regards {0}, this is automatically true.
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Proof Simply observe that ll(Zx)(. )1{2 I[(Zx) "(. )[12, by virtue of [1] Corol-
lary 3.3, which implies that ]](Zx)(. )112 _-< ]]Z]lwp 2(. )]]2 ]]Zl]wp]]x(. )]]2 for all
x in L2(G, He). Then apply Proposition 2.9.

We now have the next theorem.
THEOREM 5.3. Let Z + 2A where Z is an approximable element of Bp.

Suppose that (i) b(7 is normalfor all y in (; (ii) is real; (iii) a and b are real numbers
with 0 < a < b; (iv) N is a map ofH into H such that (bh N(h), N(h) ah) >= 0

for all h; (v) b- q Utt spec tb(M); and (vi) the set { + 2} w (3 e, spec b(y) does
not intersect the circle with center -1/2(1/a + i/b) and radius 1/2(1/a- i/b) (where
dp is the element of cg(, (H, H)) corresponding to ). Then the systems

(31) e(. + ’(Ne(. + Xl(. )) X2(" ),

(32) e(. + N(’e(. + xl(. )) X2("

are both L2-stable over any S L2(G, H) x L2(G, H). (Here (Nx)(g) N(x(g)).
Proof Let 1 (a + A)(b + A)- 1. Then 1 is an element ofe and 1 is

real by virtue of (v) and Corollary 4.8. It follows from Propositions 2.9 and 5.2
that 1 has a unique causal extension q)] mapping Lzp(G, H) into L2p(G, H) and
that ’ has finite gain. s

Now we claim that ’ is strongly positive. To verify this claim, we observe
that 1 is strongly positive in view of Corollary 4.8 and that (Xgo(.), (’X)go(.))

(Xgo("), (@’Xgo("))go) (Xgo("), ’Xgo(" )) (Xgo("), lXgo(" )) for all x in
L2p(G H) and go in G. Thus, ’1 satisfies condition (i) of Lemma 3.3.

Since (b + A)- is an element of Be by virtue of (v), we deduce that the
relation (b’ + A)- has finite gain, and so condition (ii) of Lemma 3.3 is satisfied.

As for condition (iii) of Lemma 3.3, we note that (bI N)(N- aI)- is a
positive relation on Lz(G H) by virtue of(iv)and that, therefore, (hi N’) (N’ aI)-
is positive where N’ is the unique causal extension of N. Thus, the system (32) is

L2-stable over every S L2(G, H) L2(G H) by Lemma 3.3. Since’ is of finite
gain, the system (31) is also L2-stable over every S c L2(G, H) x L2(G H) (Corol-
lary (3.4), and the theorem is established.

6. Examples and comments. We now focus our attention on a number of
examples which illustrate the theory that we have developed.

Example 6.1. Let G R be the real numbers and let H R2 be two-dimen-
sional Euclidean space. We consider the system of nonlinear differential equations

(33)
j)l -1- 6))1 -+- 5yl -q- 2.’2 + 2y2 Yl(d + cos Y2),

2.,1 "1" 2yl + j)2 "-1- 3P2 -I- 2y2 cy2

where c and d are positive constants. We suppose that the initial conditions for (33)
are given by

(34) Y (0) 0, .,1) (0) 0(, y2(0) , .1)2(0) fl’,

where e, 0(, fl, fl’ are appropriate constants. We shall find sufficient conditions for
yl(t) and yz(t) to be elements of L2[0,

It is easy to see that (a’ + A)(b’ + A)-
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Letting y(t) (ya(t), y2(t))’ and letting N be the map of R2 into itself given by

/’2 /’2

we may rewrite (33) as a nonlinear integral equation of the form

(36) y(t) yo(t) + q(t- z)N(y(z))dr, >__ 0,

where yo(t) depends only on the initial data (34) and where q(t) is the appropriate
Green’s function for (33). We note that yo(t) is an element of La[0, oe) and that the
map q which corresponds to has the complex Laplace transform"

(37) (tr + iy)=
(tr + i7 + 1)2(tr + iy + 6) 2 r + iy + 5

where tr + iy C and tr _>_ 0. Now, letting P [0, ), we can see that tI)(t) is an
element of Bo,oo)and that 4)(tr + i/) is normal for all tr + iy in C with a >__ 0. We
also note that is real and that is automatically approximable since the Hilbert
space H (= R2) is finite-dimensional. Thus, conditions (i) and (ii) of Theorem 5.3
are satisfied.

We can easily see that conditions (iii) and (iv) of Theorem 5.3 will be satisfied
if a and b are any positive numbers for which a __< c _<_ b, d >= 1 + a, and b _> 1 + d.

Now we note that Lp Lap(R, C)q) {6} has a maximal ideal space which
corresponds to the right half-plane "compactified" and that the Gelfand repre-
sentation corresponds to the Laplace transform 4)(s) with Re {s} __> 0. The spectrum
of ((s) consists of the eigenvalues

1 1
(38) 2x(S) 2(S)

(s + 6)(s + 1)’ (s + 1)2,

for Re {s} => 0. It is clear that the equations 2a(s)= -b -a, ).2(S)= -b-1 have
no solutions for b > 0, and so condition (v) of Theorem 5.3 holds.

Finally, condition (vi) will be satisfied provided that 2a(ico) and ).2(io) do
not intersect (and remain outside of) the circle with center -1/2(1/a + 1/b) and
radius 1/2(1/a 1/b) since {0} does not meet the circle. It follows that, under these
conditions, the system (33) will be L2-stable in the sense that given A > 0, there
is a K(A) > 0 such that ][Yo(" )1[2 A implies that [[y(.) 2 K(A). From this,
we may conclude that limt-.oo y(t) 0.

Example 6.2. Again let G be the real numbers and let P [0, ). Let H
L2[0 1] so that H is a separable infinite-dimensional Hilbert space. We consider

the nonlinear integral equation

(39) u(x, t) Uo(X, t) o(x, , z)N(u(y, z)) d dz,

where N is any bounded map of L2[0, 1] into itself. We shall find sufficient condi-
tions for the stability of (39) and shall examine a particular example involving a
nonlinear partial differential equation.
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(40)

We assume that the function q(x, y, t) has the following properties:

Iqg(x, y, t)12dx dy dt <

IV(x,y, t)ldt dx dy < ,

(41) q(x, y, t) q,(y, x,

(42) q)(x,y,t)=0 fort<0.

We then define a map by setting

(43) ((I)v)(x, t) qg(x, y, "c)v(y, r) dy dr

for v in L2p(R L2[0 1]). It is clear that is in Bto,o). Moreover, the "complex
Laplace transform" )(s) of is, for Re {s} >_ 0, given by

(44) +(s)w(x) +(x, y, s)w(y) dy,

where O(x, y, s) e-Stq)(x, y, t)dt. It follows that the Fourier transform (ico)
is normal (by (41)) and that )(s) is completely continuous for each s with Re {s} => 0.
As is real, conditions (i) and (ii) of Theorem 5.3 hold and is approximable.
Thus, (39) will be L/-stableif the remaining conditions ofTheorem 5.3 are satisfied.

Let us now consider the nonlinear partial differential equation

4u 63U 2u
(45) t2x------- + 3tc3-2X + 2x--Vvx_ N(u),

with the auxiliary data

(46)
u(0, t) u(1, t) 0,

u(x, O) fx(x), --:(x, 0) fz(x),

where fl .and f2 are elements of L2[0 1] and N is a bounded map of L2[0 1] into
itself with N(0) 0. We reformulate (45) as an integral equation of the form (39).
To do this, we let F(x, y) be the Green’s function for the Sturm-Liouville problem
on [0, 1] given by

(47)
d2q(x)
dx

f(x), q(O) q()= O,

so that

-y), x < y,(48) F(x, y)=
1 x)y, x > y,
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for x, y in [0, 1]. We also let (t) be the impulse response for the operator
DZt + 3Dr + 2 so that

(49) (t) {e-t-O e-2t’, t<0.t>= 0,

Then (45) has the equivalent integral form

(50) u(x, t) Uo(X, t) F(x, y)b(t z)N(u(y, z)) dydz,

where Uo(X, t) is the solution of the equation {De2 + 3Dt + 2}Uo(X, t) 0 satisfying
the initial conditions Uo(x,O)= fl(x), duo(x,O)/dt fz(x). We note that
P

Jo J0 [Uo(X, t)[ z dx dt < oo. Clearly, (50) has the required form with cO(x, y, t)
I-(x, y)g/(t) and cp(x, y, t) satisfies the conditions (40), (41) and (42).
In order to apply Theorem 5.3, we must compute spec (s) for Re {s} __> 0 as

the Gelfand representation corresponds to the Laplace transform in the case at
hand (cf. Example 6.1). Now, q3(x, y, s) F(x, y)/((s + 1)(s + 2)), and so

(s)w(x)
(s + 1)(s + 2)

F(x, y)w(y)dy

for w in L[0, 1]. Since the operator T given by (Tw)(x)= F(x,y)w(y)dy

is well known to have the spectrum {0, 1/(nara)’n 1, 2, ...} (as F(x,y)

2(1/(nrc)) sin nrcx sin nry). It follows that

spec )(s) {0, l[((s + 1)(s + 2)n2c2) :n 1,2,... }.
Let a and b be positive numbers with a < b. Then -b- spec (s) for any s

with Re{s} >__ 0, and so condition (v) is satisfied. If, in addition, the set
{0, 1/((ico + 2)(ico + 2)nZTZ)-n-- 1,2, ...} does not meet the proper circle, then
(vi) will also hold. Thus, the system (45) will be L/-stable provided that the non-
linearity N satisfies the condition

(51) f (bw(x) N(w(x)))(N(w(x))- aw(x)) dx >= 0

for all w(. in L2[0 1].
Example 6.3. Let G J be the integers and let H L2[0, 1]. Let P J+

{0, 1, 2,...} and consider the nonlinear differential difference equation

(52)
dZu(x, n + 2) 1 d2u(x, n)

dx2 4 dx2 N(u(x, n)),

with the auxiliary data

(53)
du

u(O, n) x(1, n) o,

u(x, O)= fo(x), u(x, 1)= f(x),
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(54)

so that

where fo, andfl are elements of L2[0 1] and N is a map of L2[0 1] into itself with

N(0) 0. We wish to determine conditions which insure that lu(x, n)l dx

< for all fo and fl.
We let 7(x, n) be the solution of the homogeneous version of (52) with the

auxiliary data (53). It is easy to check that , I?,(x, n)ldx < oe. We reformu-
n-----O

late (52) as an operator equation. To do this, we let F(x, y) be the Green’s function
for the Sturm-Liouville problem on [0, ] given by

d2q(x) dq(1)
dx2 =f(x), q(0)=

dx =0’

(55) F(x, y)=
fx, Y,

y, x > y,

for x, y in [0, 1]. We also let {(n)} be the "impulse response" for the operator
E2 (1/4)1 on 12, where E is given by E[{a.}] {a,+ 1} (i.e., is a shift). Then

n odd, zero or negative,
(56) if(n) , n even,

and it follows that (52), (53) has the equivalent representation

(57) u(x, n) 7(x, n) p(n k)F(x, y)N(u(y, k)) dy.
k=O

Now (57) has the desired form and we can use Theorem 5.3 to establish stability.
We let be the element of Bj given by

(58) (.v)(x, n) 4/(n k) F(x, y)v(y, k) dy,
k=0

where v is any element of Lzp(J L2[0, 1]). Now the character group 3 of J is the
circle group {ei’0 _< 0 < 2re} under multiplication and it Can be shown that the
Gelfand representation corresponds, in this case, to the z-transform. Thus, we let
)(z) denote the z-transform q) so that

(59) ((z)w)(x)
1 z2/4 F(x, y)w(y) dy,

for w in L2[0, 1] and z e C with Izl =< 1. Since F(x, y) F(y, x) and IF(x, Y)I
o o

dx dy < oe, we deduce that )(z) is normal and that (z) is completely continuous
on Izl _-< 1, it follows that is approximable and that conditions (i) and (ii) of
Theorem 5.3 are satisfied.

Now, to determine the spectrum of (z), it will be sufficient to determine the

spectrum of the operator T given by (Tw)(x)= F(x, y)w(y)dy and then to
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multiply by z2/(1 z2/4). Since the spectrum of T is the set {0, l((n + 1/2)2/1:2)’n
1,2,...}, we have

(60) spec(z) 0,
(1 z2/4)(n + 1/2)n2"n 1,2,...

for Izl _-< 1. Thus, if we suppose that 0 < a < b, that -b- spec (z) and that the
set U o_<0< spec (ei) does not meet the proper circle, then the system (52), (53)
will be L2-stable provided that

(61) j [bw(x) N(w(x))] [N(w(x)) aw(x)] dx >__ 0
0

for all w(. in L2[0 1].
Example 6.4. Let G R (R) R, H R and P [0, o) x [0, o) (the first quad-

rant). We consider the partial differential equation

(62)
u d+ C-x + c3y + cdu + N(u(x,y)) O,

with the auxiliary data

(63)
u(x, o) A(x), (x, o) f(x),

au(0 y) h2(y),u(0, y) hi(y), x
where f(0) h(0) and f,f2, h, h2 are elements of L2[0 0(3) and N is a map of
R into R with N(0) 0. We wish to determine conditions which ensure the stability
of (62), (63).

Letting F(x, y) be the function given by
(dx + cy),

(64) F(x,y)=
0, x<0ory<0,

we can rewrite (62) in the form

(65) u(x, y) Uo(X, y) F(x , y 2)N(u(l, 2))d d2,

where Uo(X, y) is in L2(R R)-for x >= 0, y __> 0 and depends on the auxiliary data
(63). We define a map in Bp by setting

(66) (v)(x, y) F(x 1, Y 2)V(l, 2) d d2

for v in Lz(R R). The Fourier transform )(7, 72) is then the element of 5(C, C)
given by

(67) )(71,72) e-i(’l’+’2r)F(x’y)dxdy
(iTx -k c)(i)’2 -+- d)
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for (7, 3)2) R q R. Since the maximal ideal space of Le here corresponds
to the set {(81, s)e C q C’Re {81} >= 0, Re {s2} >= 0} "compactified," the Gelfand
representation corresponds to. the Laplace transform and we have

(68) )(s, 82)
(S -’]- C)(S2 -+- d)

for Re{s} => 0, Re {82} 0. Since our Hilbert space is 1-dimensional, is
clearly approximable. Moreover, is real and +(, 2) is normal. Thus, conditions
(i) and (ii) of Theorem 5.3 are satisfied.

Now if a and b are positive numbers with 0 < a < b, then -b-
for all Sa,S2 with Re {81} => 0 and Re {82} >- 0 so. that condition (v) is satisfied.
Thus, the system (62), (63) will be Lz-stable provided that the set {)(71,72)"(7 , 72)
R @ R} does not intersect the circle with center -1/2(1/a + 1/b) and radius

1/2(1/a 1/b) and that the .nonlinearity N satisfies the condition a <_ N(oO/ <= b
for all 0 in R with 4: 0.

These examples serve to illustrate the wide range of applicability of the theory.
Our results involve a generalization of the circle criterion for stability (see,

for example, [2]), and thus represent readily usable frequency domain criteria.
We also note that a number of other "functional" stability results (for example,
see [2], [9]) can be derived in the general context developed here. This will be done
in a later paper.
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GENERALIZED PREDICTION-CORRECTION ESTIMATION*

J. R. KRASNAKEVICH- AND R. A. HADDAD:

1. Introduction. Estimation of the state of a dynamic system in the presence
of noise has received considerable attention in recent years. The pioneering works
of Swerling [1], [2] and Kalman [3] in recursive smoothing were extended to
continuous-time dynamic systems by Kalman [4], [5] and Bucy 5]. This area
attracted the attention of Lee [6], [7], Ho [7], Rauch, Tung and Striebel [8] and
others who derived solutions to the filtering problem employing a Bayesian
approach, least squares and a maximum likelihood formulation. What emerged
from all of these efforts were useful but alternate derivations of what has become
to be known as the Kalman filter.

Subsequent work by Smith, Schmidt and McGee [9], Mowery [10] and
Cox [11] extended the linear Kalman filter results to message processes with
nonlinear dynamics by a process of linearization. The resulting filters were
dubbed "extended" Kalman filters or "differential-correction" estimators.
Common to all these schemes is a two step prediction-correction method. The
prediction is formed by updating the most recent estimate through the system
dynamics (differential or difference equation); then a linear correction is added to
this prediction to form the new estimate of the state.

Recent efforts in nonlinear filtering by Stratonovich [13], Kushner [14], [15],
Wonham [16] and Bucy [17] led to the formal derivation of the stochastic partial
differential equation for the conditional probability density function. One
approximate implementation of this result has been proposed by Jazwinski
[183, [193.

In contrast with the preceding methods, we postulate a predictor-corrector
filter structure and then determine the optimal corrector to minimize the mean-
squared error. In this paper, the conditions for only the discrete-time optimal
mean-square corrector for the predictor-corrector structure are obtained. An
orthogonality condition is derived which gives necessary and sufficient conditions
on the weighting to minimize the mean-squared error. The resultant corrector
generally provides a nonlinear weighting of the residuals. The extended Kalman
filter can be derived from our results by postulating a priori a linear weighting
scheme. A comparison of the continuous-time version [21 of the presented tech-
nique for a specified quasilinear weighting with that proposed by Jazwinski [18,
[19 shows that the two algorithms are virtually identical. The results reported
herein represent a generalized approach to predictor-corrector estimation.
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This and other continuous-time filtering techniques are discussed by Schwartz and Stear [20].

496



PREDICTION-CORRECTION ESTIMATION 497

2. Problem formulation. The problem under consideration is the estimation
of the state of a vector process described by the nonlinear equation

(I) z(k) f(z(k- l);k) + G(k)u(k)
and the observed data vector given by

(2) x(k) h(z(k) k) + v(k),

where z(k) is the state, an n-vector; f and h are nonlinear vector functions of their
arguments, respectively n and m vectors. The random input u(k) and the noise v(k)
are and m vectors respectively. G(k) is a real-valued n x matrix. The initial
state z(0) is a vector random variable with known statistics. Finally, x(k) is the
observed data vector, an m-vector.

We postulate the filter structure described by

(3) (k/k) f((k- 1/k- 1);k) + Hie(k); k],

(4) (0/0) E{z(0)},
where the residual, (k), is

(5) (k) x(k)-

and

(6) 2(k) h((k/k 1); k).

The one step prediction (k/k 1) (the prediction of z(k) using the data up to and
including k 1) is chosen to be

(7) (k/k 1) f((k 1/k 1); k).
Equation (3) embodies the philosophy of our approach. The first term on the

right-hand side of (3) is the prediction of the state valid at k using data up to k 1
the second term, H[e(k);k] (the weighting of the residuals) is a correction term.
H is restricted to be a member of a class of weights off with the property of additive
closure. That is, ifH e ,H e 3(, and A, B are real n x n matrices, then H
where

(8) H,[e(k); k] AH[e(k) k] + BH[e(k) k].

The proposed filter is recursive and only the corrector H is unknown. Our problem
then is to choose H from some clas of correctors .Xz with additive closure, such
that the mean-squared estimation error is minimized.

3. The generalized orthogonality condition. Let us assume that at k an
optimal estimate, (k- 1/k 1), has been obtained. We wish to determine the
weighting, H , so that the m.s.e. 3 is minimized at time k. Let 2(k/k) and
H[e(k);k] denote the best estimate and the optimal weight, respectively. Similarly,
let (k/k) and H[(k); k] represent some other estimate and the associated
corrector, respectively. We define e(k) and eo,(k) as

(9) e(k/k) z(k)- (k/k),
2The orthogonality condition derived herein applies to any filter of the form

g(z(k 1/k 1); k) + Hie(k)" k]. The choice of g f is a convenient one and intuitively appealing.
m.s.e, is an abbreviated notation for the mean-squared error.
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(10) e(k/k) z(k) (k/k).

The corresponding mean-squared errors are given by4

(11) V(k) E{e’(k/k) e(k/k)},
(12) V(k) E(e’(k/k)e(k/k)}.

The estimator is recursive so both (k/k) and (k/k) employ the best previous
estimate, (k- 1/k- 1). Thus,

(13) (k/k) f((k- 1/k- 1);k) + U[e(k);k],

(14) (k/k) f((k- 1/k- 1);k) + H[e(k);k].

The optimal weighting H is obtained from the following orthogonality condi-
tion (a generalization of the familiar theorems of orthogonal projections as
employed by Kalman and Bucy [5] and Pugachev [12].

THEOREM 1 (The generalized orthogonality condition). For all Ha ff, the
necessary and sufficient condition for minimization of the mean-squared error for
the predictor-corrector structure is that all the Ha satisfy

(15) E{e’(k/k)Ha[(k); k]} 0,

i.e., the estimation error must be orthogonal to all corrections, the weighted residuals,
in the class

Proof. Sufficiency. For some estimate (k/k) with a weight H e , the m.s.e.
is expanded as

V(k) V(k) + 2E{e’(k/k)[(k/k) (k/k)]}
(16)

+ E{[(k/k)- (k/k)]’[(k/k)- (k/k)]).
From (13) and (14), we observe that

(17) (k/k) (k/k) Hie(k); k] U[e(k); k].

Because of additive closure, the difference between H and H is some weight
Ha .X. That is,

(18) Hale(k); k] Hie(k); k] U[e(k); k]

When the orthogonality condition (15) is imposed then

(19) V(k) V(k) + E(H’[e(k) k]Ha[e(k) k]).

Since the second term on the right-hand side of (19) is nonnegative, then

(20) V(k) >= V(k).
Thus the generalized orthogonality condition is sufficient to minimize the mean-
squared error.

Necessity. The proof is by contradiction. It is assumed that an estimate,
(k/k), and its associated weight, H , can be found which minimizes the m.s.e.
with

(21) E{e’(k/k)Ha[e(k); k]} D # 0.

4 (.), denotes the transpose.
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Consider an H Y given by

(22) H[e(k); k] Hie(k); k] 7Ha[(k); k],

where is an arbitrary real scalar. Then from (13) and (14)

(23) (k/k)- (k/k)= Ha[(k); k].

For the weight H, the m.s.e., V(k), can be expanded as

(24)
(k) V(k)+ 27E{e’(k/k)H[(k);k]}

+ 72E{H’a[e(k); k]Ht[e(k); k]}.
For the inequality, V(k) _>_ V(k) to hold, it is required that

(25) 27E{e’(k/k)Ua[e(k); k]} + 72E{H’[e(k); k]Ha[e(k); k]} _> 0 for all 7.

But (21) implies that we can always find a real scalar 7 which violates the required
inequality. For example, when E{H’t3[e/k);k]Ha[e(k);k]} > 0, the following 7
would violate the inequality

-2D
0 > 7 > E{U,t3[e(k); k]Ha[e(k); k]}’

D > 0

(26)
-2D

0 < 7 < E{H,t3[e(k); k]H/3[e(k); k]}’
D > 0.

If E{H’a[(k); k]Ha[e(Jc); k]} 0, then any nonvanishing 7 with the opposite sign of
D would yield the desired result. Hence, we have a contradiction to the premise that
a minimum m.s.e, can be obtained with D g: 0.

COROLLARY 1. The mean-squared difference between any two estimates (k/k)
and o(k/k) vanishes if both estimates satisfy the generalized orthogonality condition.

Proof. The mean-squared errors Vo(k) and V(k) associated with o(k) and (k),
respectively, are expanded as

Vo(k) V(k) + 2E{e’(k/k)((k/k) o(k/k))}
(27)

+ E{[(k/k)- o(k/k)]’[(k/k)- o(k/k)]}
V(k) Vo(k) + 2E{e’o(k/k)[o(k/k) (k/k)]}

(28)
+ E{[(k/k)- o(k/k)]’[(k/k)- o(k/k)]},

where

(29)

(30)

eo(k/k) z(k)- o(k/k)

e(k/k) z(k)- (k/k).

The quantities (k/k) and o(k/k) are both obtained from the best previous estimate.
Hence, the difference is

(31) (k/k)- o(k/k)= H[(k); k] Hole(k); k].

This difference can be expressed as

(32) (k/k) o(k/k) Hz[(k);
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We now substitute (32) into (27) and (28). When the generalized orthogonality
condition is invoked, then the middle terms in (27) and (28) vanish, leaving

(33) Vo(k) V(k) + E{H’[e(k); k]H[e(k);k]},

(34) V(k) Vo(k) + E{Hi[e(k); k]H[(k); k]}.

Equations (33) and (34) require that

(35) E{H’[e(k);k]Hz[e(k);k]} E{[(k/k)- o(k/k)]’[(k/k)- o(k/k)]} O.

This result completes the proof.
COROLLARY 2. Any tWO estimates, (k/k) and o(k/k), which satisfy the general-

ized orthogonality condition give identical mean-squared errors.

Proof The proof follows directly from Corollary 1 ((33), (34) and (35)).
These two corollaries demonstrate the mean-square uniqueness property

of the proposed predictor-corrector estimation scheme.
The following corollary, a sufficient realization of the orthogonality principle,

leads to a direct evaluation of the optimal series weighting.
COROLLARY 3. The generalized orthogonality condition is satisfied if each

component of the error vector is orthogonal to each component of the weighted
residuals, for all H )f/. That is,

(36)

(37)

(38)

E{e’(k/k)H[e(k); k]} O,

E{e(k/k)H’[e(k); k]} O,

Proof If

E{e(k/k)H’[e(k); k]} 0

for all H ofg

for all H .
then

(39)

But,

(40)

thus,

(41)

TRACE [E{e(k/k)H’[e(k); k]}] O.

TRACE [E{e(k/k)H’[(k); k]}] E{e’(k/k)H[e(k); k]},

E{e’(k/k)H[e(k); k]} O.

4. Series weighting of residuals. In this section, we investigate the properties
of correctors having the series form

(42) H[(k); k3 J(k) + K(k)e(k) + [e’(k)Li(k)(k)3 +...,

where J,(k), K(k), Li(k), etc. are real vectors and matrices, e,(k) is the residual
vector

(43) e(k) x(k)- 2(k)
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and

(44) [e’(k)L(k)(k)

1
e’(k)L. 2e(k)l.
e’(k)L,,(k)J

Next, a concept of length is established. We say H, is of length "0" if

of length "1" if

of length "2" if

H,[e(k); k] J,(k), all ,

H[e(k); k] J(k) + K,(k)(k), all e,

H,[e(k) k] J,(k) + K(k)e(k) + [e’(k)L,,(k)e(k)], all

and of lengthj if all the (j + 1)st partials of H, with respect to all components of the
residuals vanish.

Next, all series weights of the residuals are classified according to length.
All weights of length j or less are in a class designated by J). Thus

J(k) ffo) for all

J(k) + K(k)e(k) (1) for all , etc.

It is of interest to consider a class of correctors o@(j)*, a subclass of
formed by restricting all the J(k) terms to be zero vectors. The subclass
similarly, has the required additive closure property.

THEOREM 2. For a), the series class of weights of length l, the generalized
orthogonality condition is satisfied if and only if
(45) E{e,(k/k)} O,

and

(46)

(47)

for all i,

E{e,(k/k)e)a(k)} O,

E{e(k/k)x(k)2(k)} O,

E{ei(k/k)ex(k)eq2(k)... e)t(k)} O,

for all i, jl and > O,

for all i, jl, j2 and > O,

for all i,jl,j2, ,jl and > O.

Proof Sufficiency. Observe that if (45) and (46) are satisfied, then

E{e(k/k)H’[e(k); k] } 0 for all H e .c(1)

Hence,

(48) E{e’(k/k)H[e(k); k]} 0 for all H e a).

Necessity. The necessity is demonstrated by assuming that the orthogonality
condition is satisfied when any of the conditions given by (45) and (46) are not true
and show that a contradiction results.
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First it is shown that (45) is necessary. Assume that

(49) E{e’(k/k)H[e(k);k]} 0 for all H (l)
when

(50) E(e(k/k)} 0 for all i.

Consider a specific weight in the class , given by

(51) JT(k) (0... O dO 0)’,

where d, an arbitrary value, is in the ,th row of the corrector. It is known that
J(k) .tl for all a; therefore

(52) E{e’(k/k)J(k)} 0, all J(k).

For J(k) g/fto, it is necessary that

(53) E(e(k/k)} O.

Since is arbitrary, it is required to have

(54) E{e(k/k)} 0, all ,
which demonstrates the contradiction. A similar argument is used to establish
the necessity of (46).

COROLLARY 4. The optimal estimate from the class a is unbiased. (The first
moment of the estimate error is zero.)

Proofi The proof follows immediately from Theorem 2, equation (45).
THEOREM 3. The optimal corrector of length j has a mean-squared error which

is less than or equal to the mean-squared error of the optimal corrector of length
j 1 if the mean-squared errors exist. That is

(55) V(O) V(1) W(2) V(j)

where V() is the minimum m.s.e, corresponding to the optimal corrector (weight)
frorn

Proof Since

(56) (o)_ (1)_ (2)...,

it follows immediately that the optimal weighting from 5(j) yields a m.s.e, which
is not greater than the m.s.e, for the optimal weighting from (- x).

Theorem 3 illustrates that the performance of the estimator would generally
improve as the length of the corrector is increased. The equalities hold for some
special cases. For example, it is known that for a linear signal model the best
corrector is of the form K(k)e(k). Thus,

(57) V()>__ W(1) W(2)-- V(3)

THEOREM 4.

(58) V() =< V()*

if both V() and V()* exist and if they are the minimum mean-squared errors from the
classes ’() and :;()*, respectively.
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Proof Because tJ)*
_

5(tj), the proof follows directly.
Theorem 4 states that the best corrector from the class tJ)* yields a m.s.e.

which is never better than that obtained by the optimal corrector from the class
(J).

THEOREM 5. Equation (46) states a necessary and sufficient condition to satisfy
the generalized orthogonality condition for the class ofcorrectors z),, for _> 1.

Proof The proof is similar to that for Theorem 2.
Because the best weight from the class l), need not satisfy (45), the estimates

obtained by using this corrector can be biased. 5 A very important difference
between the classes (l) and (1)* is that the best weight from (1) yields an un-
biased estimate, while the estimate from l), can be biased. The extended Kalman
filter as employed for nonlinear dynamics has a corrector which is a member of
1),. Thus, the estimate obtained by using this weight (K(k)e(k)) can be biased.

From the results of Theorem 2 the next corollary can now be stated.
COROLLARY 5.

(59) V(i)< o if V() < .
THEOREM 6 (Boundedness condition). If the signal process is bounded in the

sense that

(60) E{z’(k)z(k)} <

then all the minimum m.s.e, associated with the weightsfrom ’tJ)for all j are bounded,
that is

(61) V()(k) < o for all j.

Proof Consider a corrector from the class of length "0",

(62) J(k) -E{f((k- 1/k- 1);k)},

where

(63) J(k) H[e(k) k] e ,(o).

This corrector yields a m.s.e, given by

(64) V()(k) E{z’(k)z(k)}.
Since J,(k) is not necessarily optimal, then

(65) V()(k) >= V()(k),

where V()(k) is the minimum m.s.e, for the class (0).
From Theorems 6 and 3 it follows that

(66) V(J)(k) <= V()(k) <= V()(k)= E{z’(k)z(k)} < oe all j O, l, 2....

It is conjectured that unbiased estimates result for correctors from both (z) and ((I)* when the

dynamics (f(-)) and the measurements (h(.)) possess odd symmetry, i.e., f(x) -f(-x).
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5. Applications and examples. Three examples are presented to illustrate
the proposed method of obtaining a corrector. The first illustrates the link between
our approach and the so-called "extended" Kalman filter [9], [10],[11]. The
second demonstrates the use of a quasilinear weighting scheme which gives an
unbiased estimate. The third example extends the procedure to a scalar weighting
scheme.

In all cases an estimator is sought for the system described by

(67) z(k) f(z(k- 1); k) + G(k)u(k).

The observed data vector is

(68) x(k) M(k)z(k) + v(k).

For convenience we assume:
(i) The initial state vector, z(0), is Gaussian with a known mean and co-

variance matrix.
(ii) The driving noise, u(k), is a sequence of uncorrelated Gaussian random

vectors with zero mean and a known covariance, U(k).
(iii) The corrupting noise, v(k), is a sequence ofuncorrelated Gaussian random

vectors with zero mean and known covariance, N(k).
(iv) The initial state is independent of u(k)and v(k).
(v) u(k) and v(k) are correlated.

That is,

E{u(k)} O,

e{v(k)} O,

E{u(k)u’(j)} U(k)bej,

E{v(k)v’(j)} N(k)bkj

e{u(k)v’(j)} C(k)bkj,

(69)

(70)

(71)

(72)

(73)

where

(74)

and

(75)

(76)

E{u(k)z’(O)} 0 all k,

E{v(k)z’(O)} 0 all k.

Example l (Linear weighting of residuals). An optimal weight from the class
t)* is sought for the estimator given by

(77) (k/k) f((k 1/k 1);k) + K(k)e(k).

The initial state of this estimator is taken as the mean of z(O),

(78) (0/0)- E{z(0)}
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and

(79)

(80)

(81)

(k) x(k)- (k),

2(k) M(k)(k/k 1),

(k/k- 1)= f((k- 1/k- 1); k).

(83)

Equations (77) to (81) have the general form of the "extended" Kalman filter.
This estimator is completely specified once K(k) is determined.

From Theorem 5, the general orthogonality condition is satisfied when

(82) E{e(k/k)(k)} 0 all i,j.

From this condition, the equation for K(k) is obtained directly as

K(k) [P(k)M’(k) + G(k)C(k)]

[M(k)P(k)M’(k) + M(k)G(k)C(k) + C’(k)G’(k)M’(k) + N(k)]-’,

where

(84) P(k) E{e(k/k- 1)e’(k/k- 1)}.

C(k) vanishes when u(k) and v(k) are uncorrelated and the weight matrix is reduced
to the form

(85) K(k) P(k)M’(k)[M(k)P(k)M’(k) + N(k)]-’.

Either (83) or (85) is identical in form to that employed in the "extended" Kalman
filter. The differences in interpretation are twofold:

(i) P(k) as used in this presentation is given explicitly by (84) and assumes the
use of the exact prediction error statistics. Furthermore, P(k) is not necessarily
a covariance matrix, because e(k/k- 1) can have a nonvanishing mean

(E{e(k/k- 1)} 4: 0).
(ii) The preceding form of weighting is obtained directly from the generalized

orthogonality condition. The extended Kalman filter as described in the literature
uses either linearization arguments or else the form is postulated a priori as an
extension of the linear theory.

Practical implementation of (84), however, involves determining P(k) to
whatever accuracy is required. A first order approximation utilizing linearization
of the nonlinear dynamics about a nominal trajectory yields results identical to
those of the extended Kalman filter. This first order approximation requires know-
ledge of the mean and covariance of z(0).

Example 2 (Quasi-linear weighting of residuals). For the signal process and
observed data vector as given by (67) and (68), an optimal weight from the class
() is found. The generalized orthogonality condition is satisfied by

(86) E{e(k/k)} O,

(87) E{e(k/k)e’(k) O.

The estimator with a weight from the class 3f1) is of the form

(88) (k/k) f((k- 1/k- 1); k) + J(k) + K(k)e(k).
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The initial estimate is given by (78) and .(k), 2(k), (k/k 1) are specified by (79),
(80) and (81). With

(89)

the error is given by

(9O)

where

(91)

e(k/k 1) z(k) (k/k 1)

e(k/k) F(k)e(k/k- 1)- K(k)v(k)- J(k),

F(k) I- K(k)M(k).

Thus, from (86) and (90), we find that

(92) J(k) F(k)E{e(k/k 1)}.

Although (86) requires that the error (e(k)) has a zero mean, it does not guarantee
that the first moment of the prediction error vector vanishes. 6

The weighting, K(k), of the residual vector, e(k), is found from (87) by an
approach which parallels that employed in Example 1. It is found that

K(k) [Cov (e(k/k 1))M’(k)+ G(k)C(k)]

(93) In(k) + M(k) Coy (e(k/k 1))M’(k)

+ M(k)G(k)C(k) + C’(k)G’(k)M’(k)]-l,
where

(94)

or

Cov(e(k/k- 1)) E{e(k/k- 1)e’(k/k- 1)}- E{e(k/k- 1)}E{e’(k/k- 1)}

(95) Cov {e(k/k- 1)} P(k)- E{e(k/k- 1)}E{e’(k/k- 1)}.

Again the corrector is obtained by using the true prediction error statistics.
If these exact statistics are employed, the generalized orthogonality condition is
satisfied and the estimate is unbiased.

An approximate evaluation of E{e(k/k- 1)} and Cov(e(k/k- 1)) can be
found from the series expansion off about some nominal trajectory z*(k).

f(z(k 1); k)= f(z*(k 1); k) + A(k)[z(k 1)- z*(k 1)]

(96) + I[z(k- 1)- z*(k- 1)]’Si(k)[z(k- 1)- z*(k- 1)]]
+ R(k)

and

f(2(k- 1/k- 1);k)= f(z*(k- 1);k) + A(k)[2(k- 1/k- 1)- z*(k- 1)]

(97) + [2(k 1/k 1) z*(k 1)]’Ui(k)

[z(k 1/k 1) z*(k 1)] +/(k),
E{e(k/k 1)} E{f(z(k 1); k) f(z(k 1/k 1); k)}. If f is an arbitrary nonlinear vector

function, this expectation is generally nonzero.
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where

ef,(z(k ); k)
(98) [A(k)]ij

czj(k 1) z(- ,)=,(- )

(99) [Bi(k)]lp

and

l_ O2f(z(k 1);k)
2 C3Zl(k 1)c3zp(k 1) (,- z*(k

[[z(k- 1)- z*(k- 1)]’B(k)[z(k- 1)- z*(k- 1)]]
(100) F[z(k- 1)- z*(k- 1)]’Bl(k)[z(k- 1)- z*(k- 1)]q

/ /

l[z(k -1)- z*(k-1)]’B2(k)[z(k-1)- z$(k-1)]J":.
R(k) and/(k) denote the higher order terms in the expansions.

The prediction error, given by

(101) e(k/k- 1)= f(z(k- 1); k)- f((k- 1/k- 1); k)+ G(k)u(k)

is expanded as

(102) e(k/k- 1)= A(k)e(k- 1/k- 1)

+ [[e(k- 1/k- 1)]’S(k)[e(k- 1/k- 1)]] + 2(k),
where

2(k) R(k)- (k)+ G(k)u(k)

(103) + [[2(k- 1/k- 1)- z*(k- 1)]’B(k)[z(k- 1)- z*(k- 1)]]
+ [[z(k- 1)- z*(k- 1)]’S(k)[(k- 1/k- 1)- z*(k- 1)]].

If the nominal trajectory is taken as the estimated trajectory (2(k/k) z*(k)), then

(104) 2(k) R(k)- (k) + G(k)u(k).

If we further assume that all moments of the error component products having
three or more terms are negligible, then with

(105) E{e(k/k)} O,

it follows that

(106) E{e(k/k- 1)}-" E{[[e(k- 1/k- 1)]’S(k)[e(k- 1/k- 1)]]},
where, of course, B is deterministic, and

(107) P(K) A(k)Q(k 1)A’(k) + G(k)U(k)G’(k),

where

(108) Q(k) F(k)Coy (e(k/k 1))
and

(109) F(k) I- K(k)M(k),
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(110) Q(O) E{z(O)z’(O)} E{z(O)}E{z’(O)}.
With these approximate error statistics a recursive procedure for evaluating the
weighting parameters can be employed. The corrector cannot be precomputed
since its value is dependent on the estimated trajectory.

If this approximate approach is not adequate for a specific application then
the prediction error statistics will have to be obtained with greater accuracy. The
price, of course, is a greater computational effort.

Example 3 (Scalar weighting of residuals). For convenience we consider a
linear signal process

(111)

and observation vector

(112)

z(k) A(k)z(k- 1) + G(k)u(k)

x(k) M(k)z(k) + v(k).

The estimator chosen is

(113) 2(k/k) A(k)2(k- 1/k- 1) + fl(k)D(k)(k),

where

(ll4) (0/0) E{z(0)}.

The n m matrix, D(k), is preassigned arbitrarily. The weight fl(k) is chosen
from the class of scalars, , to minimize the mean-squared error. As in the earlier
considerations the class has the additive closure prope.rty. From the generalized
orthogonality condition it is known that for any class Yf with additive closure it
is required to have

(115) E{e’(k/k)H((k); k)} 0 for all H e ,:c.

Thus,

(116) E{e’(k/k)fl(k)D(k)e(k)} 0 for all fl(k) ’.

Equation (116) is satisfied if

(117) TRACE E{e(k/k)’(k)D’(k)} O.

For this linear system, the residual is

(118) e(k) M(k)e(k/k- 1) + v(k)

and the error is

(119) e(k/k) r*(k)e(k/k- l)- fl(k)D(k)v(k),

where

(120)

(121)

e(k/k- 1)--z(k)- A(k)2(k- 1/k- 1),

r*(k) a= I- fl(k)D(k)M(k).
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Thus,

(122)

fl(k)D(k)C’(k)G’(k)M’(k)D’(k).

From the trace of (122), fl(k) is found to be

TRACE [n(k)M’(k)D’(k) + G(k)C(k)D’(k)]
(123) fl(k) TRACE IF(k)]

where

E{e(k/k)e’(k)D’(k)} F*(k)P(k)M’(k)D’(k)

+F*(k)G(k)C(k)D’(k)- fl(k)D(k)N(k)D’(k)

(129) H((k); k) J(k) + fl(k)D(k)e(k).

This latter approach would yield unbiased estimates. The distinct advantage
afforded by the formulation in (113) and (129) is that the weights can be evaluated
without a single matrix inversion.

For a linear system the scalar weighting can be readily precomputed. The
storage requirements would be greatly reduced when the scalar weights are em-
ployed in place of the complete Kalman weighting matrix. When the steady-state
solution of the Kalman weight is known, the D(k) matrix could be replaced by the
steady-state solution. Then fl(k) would be used to handle the transient behavior.
A suitable form for fl(k) is that limk-.oo fl(k) 1.

F(k) O(k)M(k)P(k)M’(k)D’(k)

+ D(k)M(k)G(k)C(k)D’(k)
(124)

+ D(k)C’(k)G’(k)M’(k)D’(k)

+ D(k)N(k)D’(k).

If u(k) and v(k) are uncorrelated, then

TRACE [n(k)M’(k)D’(k)]
(125) fl(k) TRACE [D(k)M(k)n(k)M’(k)D’(k)]. + TRACE [D(k)N(k)D’(k)]"
The prediction error covariance matrix is given by

(126) P(k) A(k)Q(k- 1)A’(k) + G(k)U(k)G’(k)

and the error covariance matrix is

Q(k) F*(k)n(k)(F*(k))’ + fl(k)[F*(k)G(k)C(k)D’(k)]
(127)

+ fl(k)D(k)C’(k)G’(k)(F*(k))’ + fl2(k)D(k)X(k)D’(k),
where

(128) Q(0) E{z(O)z’(O)} E{z(O)}E{z’(O)}.
Although this example .was limited to linear systems, similar arguments can

be employed for nonlinear dynamics. As in Example 2, one could easily employ a
weight given by
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This scalar approach can, of course, be extended to (n x 1) matrices, B(k),
with arbitrary x m matrices, D(k). For this case, the sufficient condition to satisfy
the generalized orthogonality condition would be

(130) E{e(k/k)e’(k)D’(k)B’(k)} O.

The best weight matrix, B(k), is found to be

(131) B(k) P(k)M’(k)D’(k)[D(k)M(k)P(k)M’(k)D’(k) + D(k)N(k)D’(k)]- ,
where it is assumed that u(k) and v(k) are uncorrelated. P(k) is given by (126) and
the error covariance satisfies

(132) Q(k) F*(k)P(k),

where

(133) F*(k) I- B(k)D(k)M(k).

This result reduces to the normal Kalman filter when D(k) is an m x m identity
matrix.

6. Conclusions. A general approach for obtaining an optimal corrector in
the mean-squared sense for the predictor corrector structure has been developed.
It was shown that the optimal corrector must satisfy the generalized orthogonality
condition. The theory was specifically applied to correctors of series form, but the
general approach is not restricted to this type of weighting.

Examples of signal models with nonlinear and with linear dynamics were
presented to illustrate applications of the proposed technique. It was shown that
for the class j(1)* (linear weighting of tlae residuals) the optimal weight was
identical in form to that obtained for the extended Kalman filter. Furthermore, it
was illustrated that unbiased estimates can be obtained by use of the expected
value of the prediction error.

In the examples, sequences of independent random vectors with zero mean
and known covariance were assumed for the corrupting noise. This assumption
was employed for convenience. Correlated noise can be handled by treating the
correlated portion of the noise vector as though it were included in the signal
process. Estimates of both the signal process and of the correlated noise are then
obtained but only estimates of the desired signal process retained.

Although a direct extension of these discrete-time results to continuous-time
systems2) presents some difficulty, the continuous-time weight is obtained from

(134) E{e’(t)H[e(t) t]} O,

for all H,e ut, where e(t) is the estimation error and e(t) is the residual. The
resulting continuous-time version of the presented filter, with correctors from
the .(1), class,7 are identical to the extended continuous-time Kalman filter.
Furthermore, the (1) class of correctors yields the filtering algorithm presented
by Jazwinski [18], [19].

The class (1), has correctors of the form K(t)e(t) and the 4(1) class has correctors of the form

J(t) + K(t)e(t).
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ON SENSITIVITY OF CLOSED LOOP NONLINEAR OPTIMAL
CONTROL SYSTEMS*

ELIEZER KREINDLER’

Abstract. A fundamental question in feedback control is: How does the feedback affect the
sensitivity of the system’s motion to small variations of the system’s parameters This question is
investigated for a sufficiently smooth Bolza optimization problem. A necessary and sufficient condition
is derived for closed loop sensitivity reduction according to an inequality involving a particular
integral-square sensitivity measure that is closely related to Bode’s classical sensitivity function. This
condition, under a mild assumption, holds for problems that are separable in the state and control
variables. The results are specialized for linear problems.

1, Introduction. Modern optimal control problems are usually formulated
and solved as open loop problems, i.e., the control is a function of time, which in
actual implementation is oblivious to errors in the initial state and disturbances of
the system’s motion. To account automatically for these, the optimal control is
expressed and implemented as a function of the current state, or a feedback
correction is added to the open loop control. In addition to providing automatic
control, however, feedback affects such dynamic properties of the plant as stability
and sensitivity to plant parameter variations and disturbances. This paper is there-
fore addressed to the question: Is the closed loop optimal system less sensitive than
the open loop one, according to some reasonable criterion? One such criterion is
derived, and it represents a generalization of earlier results for linear optimal
systems [1], [2], which in turn were motivated by results in [3]-[7].

2. Problem formulation. Consider a plant described by the vector differential
equation

(2.1) Y f(t, x, u, #), X(to) Xo,

where the scalar is the time, x is the n-dimensional state, u the r-dimensional
control function, and # a p-dimensional contiruously time-varying parameter.
The functionfis assumed to be continuous in t, and twice continuously differenti-
able in x, u and #. The nominal value of #(t) is denoted by #,(t) and a solution of
(2.1) corresponding to u,(t) and #,(t) is denoted by x,(t).

The objective ofcontrol is to transfer the state x from the initial point X(to) Xo
to some point x(t) x in a smooth terminal manifold in (t, x)-space while mini-
mizing the performance index

(2.2)
tl

I g(tx,x(tl)) + h(t,x,u)dt,

where g and h are scalar functions, continuous in and twice continuously differen-
tiable in x and u. The control vector is confined to a region U in r-space which

* Received by the editors September 3, 1968, and in revised form March 19, 1969.

" Research Department, Grumman Aircraft Engineering Corporation, Bethpage, New York 11714.
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may depend on t,

(2.3) u U(t),

and has a smooth boundary in (t, u)-space.
It is assumed that for #(t) #,(t) there exists a unique continuous optimal

solution denoted by {x,(t), u,(t)}. It is further assumed that there exists a single-
valued optimal feedback control law k(t,x), continuous in and continuously
differentiable in x. The function k is defined in some (n + 1)-dimensional neigh-
borhood of x,(t), to < l. By definition of an optimal feedback control law,

(2.4) u,(O

where tke minus sign is a notational convention. Furthermore, for all (t, x) for
which k(t, x) is defined, the control

(2.5) u -k(t,x)

is the unique optimal value of control. The assumptions on k imply that the
solution of the problem is normal and that there are no conjugate points.

The assumptions made so far in this section will be referred to as the smooth-
ness assumptions. While they exclude many problems of great interest, notably
those involving discontinuous controls, they are standard for the derivation of
local optimal feedback control based on the theory of neighboring optimal
trajectories [8]-[11 ].

Consider continuous parameter variations 6#(t) defined by

(2.6) eb#(t) la(t)- la,(t)

and the corresponding state variations ebx(t). In the limit of e 0, 6x is given by
the well-known variational equation

(2.7) 6. fbx + fu6# + fbu, 6X(to) O,

where the matrices ofpartial derivatives,fx,fu andfu, are understood to be evaluated
along {u,(t), x,(t), #,(t)}. It follows from the assumption made as to the existence
of a solution of (2.1) that a solution of (2.7) exists on to =< =< tl (see [12]). Norms
of fix(t) are measures of trajectory sensitivity.

The purpose of this paper is to compare, with respect to trajectory sensitivity,
the open loop system where

(2.8) u(t) u,(t to, Xo, /2,(0)

with the nominally equivalent closed loop system where

(2.9) u(t, x) k(t, x).
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Specifically, the objective is to find conditions for closed loop sensitivity reduction
according to the criterion

(2.10) 6x’(t)Z(t)6x(t) dt <= (Sxro(t)Z(t)cSxo(t) dt for all t’, to < t’ <__ t,
o

where the subscripts c and o (to be distinguished from subscript zero) refer to a
pair of nominally equivalent closed loop and open loop systems, respectively;
superscript T denotes matrix transposition; and Z(t) is a symmetric nonnegative
definite matrix. Since (2.7) for 6x is linear, this is an appropriate criterion. Further-
more, as discussed in [6], [7], [13]-[18] it is closely related to the classical Bode
sensitivity function.

3. A basic lemma. For the open loop system where 6u 0, (2.7) becomes

(3.1) 620 fx6Xo + fu6#, 6Xo(to) O,

and for the closed loop system, since 6u -kx6xc,

(3.2) 52c fx6X + fu61a f,k,6x, 6x(to) O,

where the matrices f, f,, fu and kx are understood to be evaluated along {x,(t),
u,(t),/,(t)}. Let (t, ) denote the transition matrix corresponding to fx, i.e.,

c9 (t, ) fx(t, ), (z, ) I(3.3) c-
Then

(3.4)

and

By denoting

(3.6)

(3.5) becomes

(3.7)

and hence

6Xo(t) ,(t, )L6u() &,

bxe(t) O(t, z)f6(z) dz O(t, z)Lkx6x(z) dz.

v(t) d(t, r)Lkx6x(r) &,

6Xo(t) 6xc(t) + v(t),

(3.8) 6xTo (t)Z(t)bXo(t) bxT (t)Z(t)bx(t) 2bxT (t)Z(t)v(t) + vT(t)Z(t)v(t).
Clearly, for (2.10) to hold it is necessary and sufficient that

(3.9) (2(Sxr Zv + vrZv) dt >= 0 for all t’, to < t’ <= t.

It is noteworthy that (3.7) is independent of 6# and of f,, and it is therefore
possible to relate 6x to (SXo abstractly by

(3.10) 6x S6xo.
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The linear operator S, called the comparison sensitivity operator, is a generalization
of Bode’s sensitivity function (of a complex variable), and the condition (3.9) can
easily be shown to be a generalization of the classical criterion that for closed loop
sensitivity reduction the return difference must be larger than unity (in the fre-
quency domain). Such generalizations are discussed in [6], [7], [13]-[18].

The next step is to derive an expression of the form(3.9), using the conditions
for optimality. The Hamiltonian function is

(3.11) H(t, x, u, 2) h(t, x, u) + 2rf(t, X, U).

At a point (t, x, 2), H is minimized, subject to (2.3), by a unique value of u

(3.12) u c(t, x, 2),

which is assumed to be continuous in and continuously differentiable in x and 2,
and to provide an absolute minimum of H that will be denoted by

(3.13) (t, x, 2) H(t, x, c(t, x, 2), 2).

For sensitivity analysis, we are interested only in kx which is given by

(3.14) kx -c cxP,

where the matrix P is given by the Riccati equation [11

(3.15) _p

If the control is unconstrained, then [10]

(3.16) k H(H + f,p),T

and

(3.17) _/5 Pfx + frn (pf, + Hx,)H X(H, + rf,n) +H.
The terminal condition on P(t) is related to the transversality condition of

the original optimization problem, and depends on whether is specified or is flee.
If t and a terminal manifold are specified, some of the elements of P(t) are
infinite and ]]kx(tl)]] oe as l. Since we are not concerned here with a
numerical problem, we need not elaborate (see [10]). The existence of a finite
solution P(t), to -< < 1, of (3.15) and (3.17) is necessary for the assumed existence
of k and is equivalent to the nonexistence of conjugate points [10], [11]. Further-
more, since {x,(t), u,(t)} provides a minimum of the performance index (2.2), it
follows that P(t), to <= <= tl, is at least nonnegative definite [11], [19].

We can now prove the following result.
LEMMA. A necessary and sufficient condition for the optimal system ofplant (2.1),

performance index (2.2), constraint (2.3) on u, and satisfying the smoothness assump-
tions, to exhibit a closed loop sensitivity reduction to continuous first order para-
meter variations according to the criterion (2.10), with Z(t) a nonnegative definite
matrix given by

(3.18) Z(t) P(t)g/fza(t)P(t),
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is that

(3 19) vr(t’)P(t’)v(t’) + [V(xx + 2Cx f, P)v + 2x cx f, Pv] dt >= O,
to

where c(t) is given by (3.6). Ifthere is no constraint on u, (3.18) and (3.19) are replaced
by, respectively,

Z(t) kx(t, x,(t))H(t)k(t, x,(t))(3.20)

and

(3.21) vr(t’)P(t’)v(t’) + [vrH,xv + 26x[kxHuv] dt >__ O.

Proof Substituting into (3.15) the expression

Wx fx + f.c.
premultiplying (3.15) by vr and postmultiplying by v, where v is given by (3.6),
and noting that

i fxV + fukx6x, V(to) O,

we have

(3.22) vrpv 2vrpi) r r r-26xckf, Pv + 2vrPfcv + vrp)fxxPv + vr,xxv.

We now use

together with (3.14) to obtain

(3.23) r T T Tk, f P PFxxP-c,f,P

Substituting (3.23) into (3.22) and rearranging, we have

d
(3.24) 26xrcZv + v’rZv (vTpv) + vTg/fV + 26XrcCf,Pv + 2vTpfcxv,

where Z is given by (3.18). It is shown in [11] that fzz is nonpositive definite, and
hence, Z(t) is nonnegative definite. By integrating (3.24) between to and t’ and
noting that V(to) 0, the right side of (3.24) becomes equal to the left side of the
condition (3.9), which has already been shown to be necessary and sufficient for
(2.10) to hold. This proves the lemma, for the constrained case.

The unconstrained case can be proved similarly by using (3.16) and (3.17), or
by identifying the expressions (3.14) and (3.16) for k. It is noted that by optimality,
H,, is nonnegative definite (the Lagendre-Clebsch necessary condition) and hence
Z(t) is nonnegative definite. (In fact, Hu is positive definite. This is necessary for
the assumed existence of k where, by (3.16), the existence of H is needed.)
This completes the proof.

The chief obstacles to demonstrating that (3.19) and (3.21) hold are the terms
containing c and H,. These terms vanish for the class of problems, considered
next, where the equations are separable in x and u.
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4. A class of optimal systems. Consider now the case where a plant is given by

(4.1) a(t, x, #) + b(t, u,/), X(to) Xo,

where a and b are n-vectors continuous in t, continuously differentiable in #, and
twice continuously differentiable in x and u. The performance index is

(4.2) I g(x(t),t) + [q(t,x) + r(t,u)]dt,

where g, q and r are scalar functions continuous in and twice continuously
differentiable in x and u. The rest of the optimization problem is as in 2 and 3.

In addition to the smoothness assumptions, which are, as already noted,
quite standard, it will be assumed that H is nonnegative definite along the
nominal optimal solution"

(4.3) H _>_ 0.

This assumption is sufficient, but not quite necessary, to guarantee that the
Riccati equations for this class of problems, corresponding to (3.15) and (3.17) for
the general problem, have finite solutions on to =< < 1, i.e., that there will be no
conjugate points [11], [19]. This assumption is routinely made for the linear
problem, where Hxx corresponds to the matrix Q of (4.8) below.

Except for the not unreasonable assumption (4.3), the problem is a special
case of the problem of 2, and as a direct consequence of the lemma of 3 we
have the following main result.

THEOREM. For an optimal system, where (4.2) is minimized subject to (4.1) and
(2.3), and which satisfies the smoothness assumptions and assumption (4.3), the
nominally equivalent closed loop system is less sensitive than the open loop system
to continuous first order parameter variations according to the criterion (2.10), with
Z a nonnegative definite matrix given by (3.18), or in the case where u is uncon-
strained, by (3.20). The equality sign in (2.10) occurs if and only if

(4.4) vr(t’)P(t’)v(t’) + vrHxxv dt O,
to

where v(t) is given by (3.6) with f, b. IfH is positive definite along the nominal
optimal solution, then the equality sign in (2.10) occurs if and only if
(4.5) 6x(t) -=. 6Xo(t) on to <= <= t’.

Proof First it is noted that for the class of problems on hand

Hu c, 0 and x H,,

so that both conditions (3.19) and (3.21) become

(4.6) vr(t’)P(t)v(t’) + vrHxv dt >__ O.
o

By the lemma, the inequality (2.10) holds if and only if (4.6) holds, and the equality
sign in (2.10) occurs if and only if (4.6) is satisfied with an equality. Since P(t) and
Hx(t) are nonnegative definite on to -<_ _<_ l, inequality (4.6) holds. If H is
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positive definite, then an equality in (4.6) can occur if and only if v(t) 0 on
to =< N t’, which by (3.7) implies (4.5). This completes the proof.

A special case of (4.1) and (4.2) is represented by the linear equation

(4.7) 9 A(t, lt)x + B(t, #)u, X(to) Xo
and quadratic performance index

1 T If(4.8) I -x (tl) Dx(t,) + - [xrQ(t)x + uWR(t)u] dt,

where t is specified, Q(t) and D are nonnegative definite, and R(t) is positive
definite. With an unconstrained u and a free endpoint x(ta), this problem is the
standard linear optimal regulator problem [19]. In contrast to the nonlinear
problem, the existence of a unique optimal control and the existence of a linear
feedback function

(4.9) u(t, x) K(t)x,

defined for all x and all __< l, do not have to be assumed, but are guaranteed for
this problem [19]. Since here

(4.10) Hxx= Q, Hu,= R, kx= K,

there is no need to assume (4.3), and the matrix Z(t) in (2.10) is given by

(4.11) Z(t) KT(t)RK(t).
This is directly proved in [2].

It is worth pointing out that in the time-invariant case (when all the matrices
are time-invariant, and in (4.8), to 0, t and D 0), if the completely
controllable plant is in the phase-variable canonical form

(4.12)
fci xi + 1,

fen alx1 _+_ azX2 _nt_ nt_ anXn nt_ U,

i= 1,2,...,n-- 1,

where u is scalar and x is the ith component of x, then, as shown in [1], (2.10)
reduces to the strong and desirable form

(4.13) [6x(t)] 2 dt < [bx(t)] 2 dt for all t’ > 0, 1,2, ..., n,

for first order continuous time-varying parameter variations.
In closing, it is noted that the symbol # in (2.1) can represent external disturb-

ances as well as internal parameters; thus the results of this paper apply to sensi-
tivity of first order disturbance variations. A difference exists, however, for linear
systems when the disturbances enter the plant in a linear additive fashion as an
extra term in (4.7), say + C(t)w, where C is a matrix and w is a vector disturbance
then the results apply for finite, not necessarily small, disturbance variations
Aw(t), or if w.(t) =_ O, for a finite disturbance w(t).

5. Discussion. Concerning the results of the paper, several critical points can
be made: The results are qualitative rather than quantitative; they are limited
to a special class of problems; and the sensitivity measure (2.19) with Z(t) given by
(3.19) is ad hoc--perhaps a different measure would yield different results.



SENSITIVITY OF CLOSED LOOP SYSTEMS 519

These points will be discussed in reverse order. There is no universally accepted
measure of sensitivity. Indeed, in the writer’s opinion, there is no need for one as
each application suggests its own measure. The writer takes the position that any
sensitivity measure is valid if it has practical significance and analytical usefulness.
The sensitivity measure in (2.10) is natural for linearized systems and, as pointed
out, is in the classical tradition. Since the upper limit of the integral is arbitrary,
the criterion (2.10) is quite strong. It is conceivable, although it does not appear
likely, that (2.10) with Z(t) different from (3.18) and (3.20) may be discovered for the
smooth Bolza optimization problem formulated here. A different weighting matrix
Z may apply to a particular problem or some subclass of problems. For example,
the criterion (2.10) with Z 1 is shown to be violated for one example of linear
optimal systems and to hold for a second example [1]. The numerical experience
of [1] suggests that Z given by (4.11) weights the components of 6x approximately
as the performance index (4.2) weights those of x. In this respect, Z given by (4.11)
is better than the choice Z I. A further vindication of the particular Z discovered
in this investigation may be seen in the fact that for an important class of linear,
time-invariant systems, (2.10) with Z given by (3.20) reduces to (4.13); again, it is
conceivable, but unlikely, that a different Z will do the same. An example of a
different measure of sensitivity is the magnitude of the first order variation 61 of
the performance index I. This is a logical measure of sensitivity and it does indeed
lead to a different result: Witsenhausen [20] has shown that for sufficiently smooth
systems,6I is the same for nominally equivalent open loop and closed loop optimal
systems, provided the endpoint x(tl) is free.

The optimization problem considered in this paper is actually quite general
because, except for certain special problems and relatively simple bang-bang
systems, it is the only general problem that admits even a local feedback solution.
The fact that, to demonstrate closed loop sensitivity reduction, it appears necessary
to further limit consideration to problems separable in control and state is an
interesting consequence of this investigation. For problems with a discontinuous
control, an entirely different sensitivity analysis must be employed [21].

As to the quantitative aspect of the closed loop sensitivity reduction, the
numerical experience of 1] suggests that the larger the weight of x in the perform-
ance index, the smaller the magnitude of 6xc. The theoretical possibility of having
(2.10) with an equality suggests that for some 6#(t) the closed loop sensitivity
reduction may be negligible. If this is a serious problem, then one can resort to
special devices that take sensitivity into account by introducing sensitivity terms
involving 6x into the performance index [22]. It would be interesting to compare the
closed loop sensitivity reduction for systems with and without the constraint (2.3)
on u, but this appears possible only via numerical examples. Indications are that
the more severe the constraint, the less is the closed loop sensitivity reduction 17].
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REACHABILITY OF PERTURBED SYSTEMS AND MIN SUP
PROBLEMS*

M. C. DELFOUR AN) S. K. MITTER"

1. Introduction. The problem of reachability for control processes, that is,
the problem of finding an admissible control which steers the system into some
target set is a preliminary one in the study of optimal control problems. For
linear control processes in both finite and infinite dimensions, reachability has
been discussed by several authors [1], [2], [3], [4], [5], [6], [7], [8]. The reachability
problem for nonlinear differential control processes has also recently been inves-
tigated [91.

Control problems in the presence of disturbances have usually been treated
as stochastic control problems. However, in many control problems statistics of
the disturbance are not available. For such problems a natural way to model the
disturbance is to assume that it belongs to some fixed bounded set in the space of
disturbances.

The objective of this paper is to study such control processes in the presence
ofadditive disturbances. We introduce the concept ofstrong reachability. A control
process is said to be strongly reachable if there exists an admissible control which
steers the system to the given target set in the presence of the worst disturbance.
We show that the problem of finding the best open loop control in the presence of
the worst disturbance is related to the concept of strong teachability. For the
problem studied in this paper, the operations of finding infimum and supremum
are not interchangeable and hence game-theoretical techniques used for example
in [10, [11, [12, [13 are not applicable. We present a geometrical necessary and
sufficient condition for strong reachability. For linear control processes with
closed, bounded, convex control constraint and disturbance sets and a closed,
convex target set, the geometrical condition can be translated into analytical form
by using separation and embedding theorems for convex sets. By specializing to
the case where the control constraint set, the disturbance set and the target set are
balls, we can obtain an analytical necessary and sufficient condition in explicit
form and also obtain expressions for the minimum norm control, maximum norm
disturbance and the minimum target set radius in terms of the control process
data. The final section considers applications to control processes described by
differential equations. For some work related to this paper see [143.

Notation. For a map f: X --, Y, if A c:_ X, U(A) {f(x)]x A}. {x} is the set
consisting of the single element x. For two sets A, B which are subsets of a Banach
Space X, A + B-- {a + blaeA, bB}.

Let X be a Banach space and let X* be its topological dual space. We define
the symbol (x, x*) by (x, x*) x*(x), where the right-hand side is the value of
the linear form x* at the point x. The map (x, x*) -, (X, x*) is a bilinear form on
X x X*. ,(X, Y) denotes the space of continuous linear maps from X into Y
For S e c-(X, Y), S* is the adjoint linear map and S* . ff’(Y*, X*).

* Received by the editors August 21, 1968, and in revised form March 11, 1969.- Systems Research Center, Case Western Reserve University, Cleveland, Ohio 44106. This work
was supported by the National Science Foundation under Grants GK-600 and GK-3714.
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2. Basic definitions.

2.1. Mathematical definition of the system. Let X1, X2, be reflexive Banach
spaces and let X3 be a Banach space. X1 is to be thought of as the control space,
X2 the disturbance space and X3 the state space of a control system. Let U, W
and B be subsets of X1, X2 and X3 respectively. R denotes the real line.

Let S’X1 X3 (or u-- Su), and T’X2 X3 (or w Tw) be continuous
(not necessarily linear) maps and let s be a given element in X3. We shall be
concerned with the abstract control process, (C), defined by the equation,

(C) x= s + Su + Tw.

A control u U will be called an admissible control and a disturbance w W
will be called an allowable disturbance. The set B will be referred to as the target
set.

2.2. Definition of strong reachability and reachability. For the system (C),
(i) the target set B is said to be strongly reachable from s if there exists a
Usuchthats+S+ TwBforallwin W;

(ii) the target set B is said to be reachable from s if for any w in W, there exists
afiUsuchthats+Sa+ Tw B.

We shall refer to the system (C) as being strongly reachable (reachable) when
we mean B is strongly reachable (reachable) from s.

2.3. Definition of the min sup problem. For the function f:X3 R let
q’X X2 R be the mapping defined by (u, w)f(s + Su + Tw).

The min sup problem can now be formulated as follows’Given the functionf,
does there exist a U such that

sup {q(, w)’w W} inf{sup [q(u, w)’w W] "u U}.
3, Geometrical necessary and suttieient condition for strong reaehahility and

reaehability. To obtain a necessary and sufficient condition for strong reachability
we introduce two sets.

DEFINITION 3.1. For the control system (C), the unperturbed attainable set
is defined as the set

(3.) A {} + S(U)

and the modified target set is defined as the set

(3.2) M {xe Xal{x} + T(W)= B}.
Our first theorem identifies in geometrical form the necessary and sufficient

conditions for strong reachability.
THEOREM 3.2. The system (C) is strongly reachable if and only if A f) M is

not empty.

Proof. If (C) is strongly reachable, there exists an admissible control such
that

{s} + {S} + T(W) B

and hence s / S M. However, being admissible implies s / S A and hence
A f’l M 4= . Conversely A M implies that there exists an x e X3 such
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that x A and x M. Since x A, there exists a 0 admissible such that x s + SO.
Likewise x M implies {x} + T(W) B and hence s + SO + Tw B, for every
wW.

COROLt,AR 3.3. The system (C) is reachable if and only if for every w W
A (3 (B {Tw})#.

Remark. Theorem 3.2 does not make use of any topological properties and
hence is true for a control process defined on linear spaces.

4. The min sup problem. This section contains two theorems. The first
theorem exhibits the relationship between the problem of existence of a solution
to the rain sup problem with that of strong teachability with respect to an appro-
priately constructed target set. The second theorem shows that under certain
assumptions on the function f and the unperturbed attainable set A, the min sup
problem has a solution.

THEOREM 4.1. Let,

(4.1) e* inf {sup [f(s + Su + Tw)’w W] "u U}

andfor any R, define B(e) f- 1((_ oo, el). Then
(i) for every : R, the control process (C) is strongly reachable with respect

to the target B(e) if and only if * -.
(ii) There exists no R such that the control process (C) is strongly reachable

with respect to the target B(e) if and only if
(iii) If there exists an R, such that for any R, (C) is strongly reachable

for the target B(e) if and only if e > , then there exists a U such that

(4.2) sup [f(s + SO + Tw)’w W] e*

(iv) Conversely, if there exists a Ft U such that

sup [f(s + SFt + Tw)’we W] e*

and e*e R, then for any e e R, (C) is strongly reachable for the target
B(O if and only if e >=

Proof. (i) If e* -oe, then for every e e R, there exists a u e U such that
sup {f(s + Su + Tw)’we W} < e; that is, for every ee R, the control process (C)
is strongly reachable for the target B(e). Conversely, for an arbitrary e e R,
A f’l M(e)# implies the existence of a u e U such that {s} + {Su} + T(W)

B(e); that is sup {f(s + Su + Tw)" we W} <= e. Since e is arbitrary, take
e -n, where n is a positive integer. For each n, there exists a u, U such that
sup {f(s + Su, + Tw)’we W} <= -n and hence

e* __< lim {sup [f(s + Su, + Tw)’we W]} =< lim (-n)=

which implies that e*
(ii) The following chain of statements are equivalent to

for every u e U, sup{f(s + Su + Tw) w W} +
for every u e U, e R, {s} + {Su} + T(W) is not a subset of B(e),
for every e R, there exists no u e U such that {s} + {Su} + T(W) B(e,),
for every e e R, A f’l M(e) q5 and hence the desired conclusion.
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(iii) For e < i, there exists no u e U such that M(:) f) A - ; that is for every
u e U, sup {f(s + Su + Tw)’w W} >= , and then :* => i. However, M() fl A- guarantees the existence ofa u* e U such that sup {f(s + Su* + Tw)"w W}
N/o Hence for this particular u* e U, sup {f(s + Su* + Tw)’w W} *.

(iv) Since A f3 M(e*) - , for every e, => e*, B(e) B(e*) and M0;) M(c*)
and finally M(e,) (’1 A ..-z M(e*) A - ,@. So (C) is strongly reachable for e c*.
Now if e < z*, there exists no u e U such that sup {f(s + Su + Tw)’w W} _<-_ e"

that is {s} + {Su} + T(W)is not a subset of B(e) and M(:) f3 A for : < ;*.

THEOREM 4.2. Let f: X3 R be lower semicontinuous and let the unperturbed
attainable set A be compact (in an appropriate topology of X3). Then there exists a

U such that

(4.3) sup[f(s+S + rw)’we W] =inf[sup{f(s+Su + rw)’we W}’u. U].

Proof.
inf {sup [f(s + Su + rw)’w W] "u e U} inf {sup [f(x + y)" y e T(W)] "x e A

Let q(x, y) f(x + y). Since f is lower semicontinuous, for fixed x the
function q(y) q(x, y) is lower semicontinuous. Since the upper envelope of a
family of lower semicontinuous functions is lower semicontinuous [15, p. 362,
Theorem 4] and A is compact, there exists an 2 e A such that

sup [q(2, y)’y e T(W)] inf {sup [q(x, y)’y e T(W)] "x e A}.

Hence fi’om the definition of A there exists a fie U such that (4.3) is true.
COROLLARY 4.3. Let f"X - R be continuous and let he sets A and T(W) be

compact (in an appropriate topology ofX). Then there exists a U and a W
such that

f(s + S + r)=- inf{sup [f(x + Su + rw)’we W]’u e U}.

Remark. Theorems 4.1 and 4.2 and Corollary 4.3 are true, for example in
linear topological spaces which are Hausdorff.

COROLLARY 4.4. Let f’X. R be convex and strongly lower semicontinuous
and A be weakly compact. Then Theorem 4.2 holds.

ProoJl The proof follows from the fact that a lower semicontinuous convex
function defined on a Banach space is weakly lower semicontinuous.

5. Strong reachability of linear control processes. In this section we investigate
strong reachability for linear control processes in a Banach space setting.

Let the assumptions of 2.1 on the control system (C) hold. Further, let U be
a closed, bounded convex subset of Xt, W a closed, bounded, convex subset of

X2 and/3 a closed, convex subset of X. The maps S and T defined in 2.1 arc
now assumed to belong to the spaces (Xt X3) and (X2, X) respectively.
The linear control system so obtained will now be referred to as (L).

We shall use the separation theorem and embedding theorem for convex sets
to translate Theorem 3.2 into analytical form. The following separation theorem
is an immediate consequence of the strong separation theorem for convex sets in
locally convex topological vector spaces [16, p. 1.19, Corollary 1.4.4 and p. 23,
Theorem 3.9 and p. 14].
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THEOREM 5.1. Let X be a Banach space, let A be a weakly compact, convex
subset ofX and let B be a closed, convex subset ofX. Then

AB#
if and only if

sup{inf[(x,x*)’xeB]- sup[{x,x*)’xeA]" x* x.= 1} N0.
We also quote the following embedding theorem due to H6rmander 17].
DEFINITION 5.2. Let X be a locally convex topological vector space and let

K be a nonempty, closed, convex subset of X. The support functional H(x*) of
K, x* X*, is defined by

H(x*) sup [(x, x*) :x K].
THEOREM 5.3. Let K and K2 be two closed convex sets, and let Hi(x*) and

H2(x*) be their corresponding support fimctionals. Then
(i) K1

_
K2 ([’and only if Hi(x*)

_
H2(x*), for every x* e X*

(ii) K1 K2 if and onl.v if Hi(x*) H2(x*), fi)r every x* e X*.

5.1. Analytical necessary and sufficient conditions. In order to invoke the
above theorems, it is necessary to establish some topological properties for the sets
A and M.

PROPOSITION 5.4. For the control system (L), the unperturbed attainable set A
and the set {x} + T(W) are convex and weakly compact.

Proof. The proof of this proposition is an immediate consequence of the
linearity and weak continuity of the maps S and T[18, p. 422, Theorem 15] and the
weak-compactness of the sets U and W [18, p. 425, Corollary 8].

PROPOSITION 5.5. The target set B and the modified target set M are weakly
closed and convex.

Proof. Since B is convex and closed, it is weakly closed. The convexity of M
is obvious. We shall show M is a strongly closed subset of X3. Consider a strong
Cauchy sequence {x,} in M. Since M c X, x, x, where x X. For any w , W,
the translated sequence {x, + Tw} is Cauchy and x,, + Tw --, x + Tw. However,
as points of M the x,’s are such that x, + Tw B, for every w W. But since B
is strongly closed, x + Tw B, for every w e W, and x + T(W) c B which implies
x e M. Hence M is strongly closed and being convex is thus weakly closed.

PROPOSITION 5.6. Given the system (L), the set M is given by

M {x e x h(x)<= 0},
where

h(x) sup [(x, x ) + sup ((w, T’x)" w e W)

sup ((y, x*)’y

Further, M is nonetnpty !land only if
inf [h(x) x X3 O.

Proof. From Theorem 5.3, {x} + T(W) B if and only if Hxl+’rw)(X*)
<= H(x*), for every x* e X. That is,

sup [(x x*) + H.rw)(X*)- H(x*)" Ix* 1] < 0x
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and hence from the definition of Hrw)(X*) and HB(X*) we obtain (5.1) and the
definition of the elements of M.

If M is nonempty, (5.2) clearly holds. To prove the proposition in the other
direction we use the fact that h(x)satisfies [h(x2) h(x1) IIx2 XlllX for every
xl, x2 X3 and hence h(x) is continuous.

There are two cases to consider. If inf[h(x):x X33 < 0, then clearly there
exists x X3 such that x + T(W) B, and M is not empty. Ifinf [h(x):x X33 0,
then there exists a sequence {x,} such that h(x,) 0; since h is continuous on X3,
there exists an x X3 such that x, ---, x and h(x) 0. So again M is nonempty.

THEOREM 5.7. The system (L) is strongly reachable if and only if

inf {sup [(x, x*) + sup ((w, T’x*) :w W)
(5.4)

sup((y,x*)’yeB)" Ix* xl 1]’xeX} < 0

and

where

sup ((s, x*) + inf((u, S’x* 5 "u U)

sup((y,x*5"yM)" x*llx 1)__<0,

(5.6)
M {x X3 "sup [(x, x*) + sup ((w, T’x*)"w W)

sup((y,x*)’yeB)" x*llx;= 1]__<0}.

Proof From Theorem 3.2, (L) is strongly reachable if and only if A f"l M - .Using Propositions 5.4 and 5.5 the proof now follows directly from Theorem 5.1
and Proposition 5.6.

COROLLARY 5.8. The system (L) is reachable if and only if

(5.7)
sup {(s, x*) + inf((u,S*x*)’u U) + sup ((w, T*x*)’w W)

sup((y, x*)’ye B)’llx*llx; 1} =< 0.

6. Specialization of the results of 5. The results of the previous section will
now be specialized to the case where

(6.1)

U {u
W {w
B {x X3 :llx XdllX < ,, Xd X3 given},

6.1. Strong reachability and reachability.
THEOREM 6.1. The system (L) with U, W and B as defined in (6.1) is strongly

reachable if and only

(6.2)

(6.3) sup {(s Xd, X*) PIIS*x*IIx sup [(x, x*) :x e Mx] llx*llx; <_ O,

where Mx M {xa} and

(6.4) M,

0_<p<,

0_</< ,
0<e<.
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Proof. The proof follows from Theorem 5.7 by performing the necessary
computations. In particular (5.4) becomes (6.2) as shown below. Equation (5.4)
reduces to

inf {sup [(x, x*) + fl T’x* x- x* x 1] "x E X3} =< 0.

Butk(x)= sup [(x, x*) + fl T’x* x3" x* 1] is an even function of x Thusx.

k(x) > sup [flllT*x*llx’llx*lx. 1] flllT*ll --/31TI.

Hence flll TII .
Theorem 6.1 can be sharpened somewhat in the sense that in calculating

sup [(x,x*):x Mxd] we may restrict ourselves to x’s which belong to the
boundary of M,d. Moreover we can find an analytical expression for the boundary
of Mx. This is done in the following two propositions.

PROPOSITION 6.2. IfM =/: !:23, its boundary OM (in the norm topology) is defined
by

(6.5) c3M {x X3 "sup [(x x,, x*) + [3 T’x* x* x* x 13

Proof. Consider the function

f" X3 + R’x sup {(x Xd, X*) + fl T’x* xl llx* Ilx; }.
From Theorem 5.3,

(6.6) M {x S3 "f(x) <=
(a) Let Xo M such that f(xo) e and assume Xo is an interior point of M.

Then there exists an open ball B(xo; 6) with center at Xo and radius di such
B(xo;8) M. However, sup{f(x):xB(xo;6)} >= e + 6 which shows that for
some x B(xo;6), f(x) > e which contradicts (6.6).

(b) Now let Xo c3M and assume f(xo) < e. Let 6 (e )/2 and con-
sider the open ball B(xo; 6). For every y

f(Y) <= + Ily- xollx3 +

which contradicts that Xo e cM.
PROPOSITION 6.3. Let Md . Then

sup {(x, x*) :x M,d} sup {(x, x*) :x 8Mx}.
Proof. By Theorem 5.6, for any x eM

sup {(x,x*) + flllT*x*llx:llx*llx 1} =< .
Let x Mx, and assume x - 0 (otherwise Mx 8Mxd {0}). Consider the real
valued function f on [0, co), defined by

f(c) sup {c(x, x*) + fill Z*x*llx:llx*llx; 1}
it is monotone increasing, convex and continuous on [0, co). Moreover f(1) =< e
and for Co (e +/311Tll / 1)/llxllx, f(co) > . Hence there exists a unique ? in
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[1, oe) such that f(?) .. By Proposition 6.2, ?x c3Mxd. We then have for any x
in Mxd

I(x, x*SI <= I(x, x*51,

sup {l(x, x*>l’x eMma <= sup {](x,
The theorem now follows from the linearity of the thnctional (x, x*) and from
the hct that M is symmetrical about 0 in X3.

COROLLA 6.4. If X3 is a reflexive Banach space, Theorem 6.1 holds with

M in (6.3) replaced by the set of extreme points ofMx.
Proof. The proof follows from the Krein-Millman theorem [16, p. 131,

Theorem 15.1] and from a proposition in Bourbaki [19, p. 106, Proposition 1].
Remark. It might be useful to find a representation for the extreme points of

6.2. The characterization problem. If the system (L) is strongly reachable,
then it is useful to characterize the minimum values of p and e and the maximum
value of for which the system remains strongly reachable. This is done in the
following theorems.

THEOREM 6.5 (minimum norm control). For given fl and assume that
(L) is strongly reachable jbr some , 0 < . Then there exists a minimum

bound p* for which (L) is strongly reachable. Moreover p* is given by

(6.7) (i) p* 0, f g(0) 0,

(ii) p* is the unique solution in [0, fi] of the equation g(p)= 0 if g(0)> 0,
where

g(p) sup {(s x,, x*) plls*x*l x sup [(x, x*)’x e M,3" x* Ix; }.

Proof. Consider the function

x
-sup [(x, x*)"x e M.]

and the function

g.+ {0} .p sup {y(p,x*). x*l x; }.

We show that g is a monotonically decreasing, continuous convex function of p.
For P2 P O, f(P2, x*) f(Pl, x*), for every x* e X and hence g(p2) g(p)
showing that g is monotonically decreasing. For P2

f(2p + (1 2)p2, x*)= 2f(p, x*) + (1 2)f(p2, x*) for every x*e X],

which implies that g is convex.
Finally for P2 P 0,

Ig(p)- g(p)l g(p)- g(p:) sup [(p

Ip2 pl. Is l.

Since S is linear and continuous IS[ < . This shows that g is a continuous
function of p.
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Since (L) is strongly reachable for => 0, we have g() =< 0. There are two cases
to consider:

(a) g(0) __< 0. Then the minimum bound p* 0.
(b) g(0) > 0. Then by virtue of the properties of the function g(p), p* is given

by the unique solution in [0, fi] of g(p) O.
THEOREM 6.6 (maximum norm disturbance). Given the bounds e and p, assume

that (L) (T 0) is strongly reachablefor O. Then there exists a maximum bound
[3* such that (L) is strongly reachable if and only if fl <= fl*. Moreover defining

fl= liT
(i) fl* fl, iff(fl) <= 0

(ii) fi* fi, !f f(fl) > 0, where is the unique solution of f(fl) 0 in [0, fi).
f(fl) is defined by

f(fi) sup {(s xa x*) p IS*x*llx,, sup [(x, x*)"x Mx,()]" lx* 1}
Proof. A necessary condition for strong reachability of (L) is M which

implies fl ft. We shall show that f is monotonically increasing, convex and
continuous on [0, fl). Hence there are two cases"

(i) f() 0. In that case (L) is strongly reachable and fl* .
(ii) f(fl) > 0. Since f(0) 0 by hypothesis and f() > 0, if we prove the

asserted properties of the function f(fl), f(fl) has a unique solution
on [0, fi)and fl* ft.

Nowif0 2 fl f12 2 fi, flllT fl211TI ,whichimpliesM(fl) M(fl2)and
using Theorem 5.3, f(fl) f(fi2) which shows that f is monotonically increasing.

Since 2M(fl) + (1 2)M(f12) c M(2fl + (1 )f12), for every 2 e [0, 1], it
follows from Theorem 5.3 that

f(2fl, + (1 2)fl2) =< 2f(fl,) + (1 2)f(f12) for every 2 [0, 1],
which shows that f is convex on [0, fl].

The convexity of f implies continuity on (0, fl). Continuity at 0 + can be
demonstrated in a manner analogous to Theorem 6.5.

THEOREM 6.7 (minimum miss distance). Given the bounds p and fl there exists a

minimum bound e* such that (L) is strongly reachable if and only if e >= e*. Moreover
defining g fl]] T]

(i) e* g if f() <= 0,
(ii) e*= , /ff()> 0, where is the unique solution off(e)= 0 in (,

f(e) is defined by

f(e) sup {(s xn,x*) p[ S’x*[ x sup [(x,x*) "x 6 Mxd(e)]" [x*llx; 1}.

Proof. We first show that for some e,, >= 0, the system (L) is strongly reachable.
Let e and e, be defined as

sup {(s- x,,x*) pllS*x*llx," [x*l[x 1},

I1 + .
Clearly B([[)= {x S3" [IX[Ix3 =< I1} Mx() and for any x* X’, such

that IIx*l 1,

Il sup {(x,x*).x B(]I)} sup {(x, x*)x Mxd(e)}
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which implies that (L) is strongly reachable for e e since f(e,) =< 0. In a manner
analogous to the previous two theorems, it may be shown that f is monotonically
decreasing, convex on (g., o) and continuous on (4, e.]. A necessary cbndition for
strong reachability of (L) is M : 3 which implies e __> 4. There are two cases to
consider"

(i) f(i) __< 0. In that case (L) is strongly reachable and hence e* 4.
(ii) f(g.) > 0. Since f() _<_ 0 and f(g.) > 0, in view of the properties of f,

f(e.) 0 has a unique solution on (4, and * .
Remark. Theorems 6.5, 6.6 and 6.7 have obvious corollaries when strong

reachability is replaced by reachability.

7. Applications to control processes described by differential equations. We
shall illustrate the theory presented in the previous section by considering its
application to control processes described by differential equations.

7.1. Existence theorem for min sup problem. We consider an existence
theorem for a min sup problem analogous to the existence theorem for optimal
control problems.

Consider the perturbed control process in R"

(7.1) dx(t)dt A(t)x(t) + f(t, hi(t)) @ g(t w(t)) [0 /71]

where A(t) is a n n measurable and bounded matrix on [0, tl], f is in C in
R + and g is in C in R + ’, (n, m and p are integers >= 1). Furthermore,

(i) The initial state Xo at time 0 is given.
(ii) The admissible controllers consist of all Lebesgue measurable func-

tions t--, u(t) on the compact interval [0, t] such that u(t) U, (almost
everywhere on [0, tl]), where U is a compact set in R".

(iii) The admissible disturbances f# consist of all Lebesgue measurable
functions t--- w(t) on the compact interval [0, a] such that w(t) W,
almost everywhere on [0, l], where W is a compact set in Rp.

(iv) The cost function for each admissible u and wis given by C(u, w) g(x(tl)),
where g is a continuous function in R".

THEOREM 7.1. For the above ,system, there exists a t , and a (Y such that

C(O, #) inf[sup {C(u, w)’wfg}’u ].

Proof. Since the differential equation (7.1) is linear in x, there exists an
absolutely continuous function t x(t) defined on [0, t] which satisfies (7.1)
almost everywhere. Moreover by using the variation of parameters formula, the
solution x of (7.1)at time t may be written as,

(7.2)
X(tl) qb(tl)X0 + ((tl) alp-(s)f(s, u(s)) ds

+ 4,(t) 4’- (s)g(s, w(s))ds,

where 95 is the usual transition matrix associated with (7.1).
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Let s R" be defined by, s b(tl)xO, and define the continuous nonlinear
operators

S’L,(Rm; O, t,) - R"’u b(tl) - ’(s)f(s, u(s)) ds,

T’L(R;O,t) R"’w-c/)(t) d-(s)g(s, w(s))ds,

where LI(X; 0, tl) is the space of all integrable functions t-- x(t) with values in
X. Equation (7.2)may then be written as:

(7.3) x(tl) s + Su + Tw.

It follows from a result of Neustadt [20] that for the system (7.3) the unper-
turbed attainable set {s} + S(U) and the set T(W) are compact and hence the
theorem follows from Corollary 4.3.

7.2. Strong functional reachability. Consider the linear differential control
process

(7.4)
dx(t)

A(t)x(t) + B(t)u(t) + C(t)w(t),
dt

where x(t) R’, u(t) R", w(t) Rk (n, m, k are integers __> 1) and A(t), B(t), C(t)
are matrices of appropriate order which are measurable and bounded on the
given compact interval [0, t].

Let < p < and let LP(Rm; O, t) be the reflexive Banach space of R’-
valued measurable functions such that

The Banach space LP(Rrn; 0, tl) is normed by

u u(t) i,. dt

In a similar manner define Lq(Rk; O, t), < q < , as the reflexive Banach
space of all R-valued measurable functions with norm

fll
1/q

w = Ilw(t)lkdt

and Lr(R"; 0, 1), __< r =< , as the Banach space of all R"-valued measurable
functions with norm

x I1 x(t) R. dt

Let the control restraint set f,, the disturbance set fw and the target set B
be defined by

(7.5) fiw {w. wll, },
B {x’llx x I e, x given element in U(R"; 0, t)}.



532 M. C. DELFOUR AND S. K. MITTER

Since the differential equation is linear for given x(O)eR", uLP(Rm;O, tx)and
w Lq(Rk; O, 1), there exists an absolutely continuous function t--, x(t) defined
on the compact interval [0, 1] which satisfies (7.4) almost everywhere. Since
t--, x(t) is absolutely continuous, x Lr(R"; O, tl). The solution of (7.4) is given by

(7.6)

x(t) (t)x(0)+ b(t) qS-(s)B(s)u(s)as

AI- )(t) D- l(s)C(s)w(S) ds, te [0, t].

Let S’LV(R O, tl) U(R" O, tl) be the linear bounded transformation
defined by

(Su)(t) qb(t) - l(s)B(s)u(s) ds, O<t<=tl,

and let T’Lq(Rk;O, tl)- U(R";O, tl) be the linear bounded transformation
defined by

yw)(t) ok(t) 4)-(s)c(s)w(s)as, O=<t=<tl,

and let s U(R"; O, tl) be defined by s(t) ck(t)x(O), 0 <= <= t.
Then (7.6) may be written as the operator equation

(7.7) x s + Su + Tw.

DEFINITION 7.2. The control process (7.7) is strongly functionally reachable
with respect to (s, f,, fw, B, tl) if there exists a fie f, such that x(. fi, w) e B,
for every w ,.

Necessary and sufficient conditions for strong functional reachability can
now be obtained using the theory developed in previous sections.
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LAGRANGE MULTIPLIERS AND NONCONVEX PROGRAMS*

JAMES E. FALKt

1. Introduction. Lagrange multipliers have been used by several authors to
solve convex programming problems [5], 7] and this procedure has been especially
worthwhile when the problem has a ".decomposible" structure. As opposed to
most other methods, the Lagrangian technique preserves problem structure and
yields a sequence of fairly tractable subproblems in many instances. On the other
hand, the Lagrangian technique fails for a number of simple nonconvex problems
which can be solved using other methods.

In order to investigate the reasons for the failure of the Lagrangian technique
on some nonconvex problems, it is necessary to study the "convex envelope"
of a function. This notion is defined in 2. Also in this section we generalize the
notion of the "conjugate" of a function to apply to nonconvex functions and show
that the conjugate of the conjugate of a function yields the convex envelope of that
function under rather mild hypothesis. This latter characterization is useful since
it allows one to compute the convex envelope of separable functions over certain
rectangular domains.

In 3 we investigate the use of the Lagrangian technique in minimizing
nonconvex functions over constraint sets of the form G (3 C where G {x[Ax >__ b}
and where C is an arbitrary compact subset of E". Under proper assumptions on b,
it is shown that if Lagrange multipliers are associated with the constraints Ax >= b,
the solution of the associated "dual" problem yields the minimum over G f’l C of
the convex envelope of b taken over C. This minimum may not coincide with the
solution of the desired problem but an algorithm has been developed elsewhere
[2] which could use this information to advantage in finding the desired solution.

The algorithm developed in [2] requires the minimum of the convex envelope
of a function over a certain set. In 4 we point out that this minimum may be
obtained without explicitly calculating the convex envelope. This may be quite
useful since the calculation of the convex envelope is often computationally
infeasible.

2. Convex envelopes and conjugate functions. In this section we define the
"convex envelope" (function) of a given function 4 over a (nonempty) set C and
derive some of the properties of such functions. In addition, the notion of the
conjugate of a function as defined by Fenchel (see [3] or [4]) is generalized to apply
to a wide class of nonconvex functions. Heretofore conjugacy has been applied
only to convex functions. It is then shown that the conjugate of the conjugate
of a general function yields the convex envelope of that function and hence a
second (and more useful) characterization of the convex envelope of a function is
obtained.

The definition of the convex envelope is based on the notion of the "convex
hull" of a set. Given a set S in E", the intersection of all convex sets which contain
S is called the convex hull of S and denoted by S. Thus S is the smallest convex
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set which contains S. The set S may also be characterized as

n+l n+l

Sc--- {x’x Z OiXi’ Zi 1, z, >= O, xi S},
i=1 i=1

i.e., S is the set of all convex combinations of all (n + 1)-tuples of points taken
from S (see [4] for a proof of this assertion).

Suppose now, that is any function defined over some set C in E". The set

[4, c] {(, x)’ __> (x), x e c}

consists of all points in E"+ which lie on or above the graph of 4. Thus [b, C]
is the smallest convex set in E"+ which contains [b, C]. The "lower" portion of this
set forms the graph of bc, the convex envelope of

(2.1) (x) inf "(, x) e [4, C]c}

with domain

(2.2) DIe] {x "(, x)e [b, C] for some }.

Figure 2.1 illustrates this definition for a function of a single variable.

x x

FIG. 2.1. Convex envelope

While this definition of the convex envelope is geometrically appealing, in order
to derive some of the properties of q5 it is convenient to give an alternative char-
acterization of this function. This will be done in terms of "conjugate" functions
as defined by Fenchel ([3], [4]). The notion of the conjugate of taken over C
has heretofore been applied in the case where b was a convex function and C a
convex set. In the material which follows, however, we require only that C be
compact and c]) be lower semicontinuous over C.
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The conjugate of 4) over C is denoted by 4)* and its domain is denoted by
D[4)*]. These quantities are defined by the relations

(2.3) D[b*] {t" sup ((x, t) q(x))< oo},
xC

(2.4) 4)*(t) sup ((x, t) 4)(x)).
xC

Note that the sup operator could be replaced by the max operator in definitions
(2.3) and (2.4) since 4) is lower semicontinuous over a compact set. We do not do
this because these definitions are applied to more general functions in the next
paragraph.

It is easily Shown that 4)* is a convex function and D[4)*] is a convex set.
In fact, the above assumptions on 4) and C guarantee that D[4)*] E". The same
operation can be performed on the pair 4)* and D[4)*] to yield a new (convex)
function 4)** with (convex) domain D[4)**]. It has been shown [4] that if 4) and C
are convex and 4) is continuous along the boundary of C, then the pair 4) and C
is the same as the pair 4)** and D[4)**]. In the absence of convexity, this result
clearly is not true. It is true, however, that 4)** and D[4)**] give the convex envelope
of 4) over C which the following two theorems verify.

THEOREM 2.1. If C is compact and q5 is lower semicontinuous over C, then

c= D[4,q [4,**].

Proof. if xe C, then xe D[qbc] so that CCc D[qSc]. Now let xe D[qS].
Then there is a pair ({o, xo) e [b, C]q But this implies that there are n + 2 points
({, x) e [qS, C] such that

n+2

(o, xo) (, x)
j=l

for some set of ej s where ,+2

j=l ej and cj => 0. Hence
n+2

xO Z OjXj
j=l

with x e C so that x C (i.e., D[49c] c Cc) and the first equality of the theorem is
established.

Now let x e C. Then

for all e E". Hence

so that

(x, t5 b(x) _<-- b*(t)

(x, t5 4’*(0 _-< 4’(x),

sup {(x, t) b*(t)} __< q(x) <
E

x D[4)**],

which implies that C and hence C are subsets of the convex set D[4)**].
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To prove that D[4**] Cc, we assume that this is not true. Then there is a
point x e D[b**] such that x q C’. The set C is compact since C was assumed to
be compact. Thus there is a vector s such that

(x, s) < (x, s)

for all x e C (see [4, p. 397]). Let x* maximize (x, s) over Cc. Then

from above, i.e.,

Hence

as k oe. Now

(x*, ks) < (x, ks5, k= 1,2,3,...

(x x*, ks) > O.

(x x*, ks) o

(x, s5 4*(s)_-< 4**(xl
from the definition of 4** and

ck*(ks) max {(x, ks) b(x)} =< (x*,ks) + max {-qS(x)}.
xC xeC

(These maxima exist since q5 is lower semicontinuous and C is compact.) Combining
these last two inequalities,

(x x*, ks) max {-(x)} =< **(x).
xeC

But the left-hand side of this relation tends to + oo as k --+ + so that q**(x) is
not finite, i.e., x q D[qS**], contrary to assumption.

Thus the domains of the functions b and 4** are identical and, in fact, equal
to C’. The next theorem establishes the identity (x)= q**(x) for any x e C.
It is convenient to prove the next lemma before presenting the theorem.

LEMMA. If X0 C, then b**(x) =< b(x).
Proof. By definition

(x, t5 4,(x) =< *(t)

for any D[b*]. Thus

so that

(x, t5 4,*(t) <= ,b(x)

4**(x) sup {{x, t) 4*(t)} =< b(x)
D[4*]

and the lemma is proved.
THEOREM 2.2. If C is compact and 4) is lower semicontinuous over C, then

4)C(x)
for all x C.

Proof. Since b** is convex over C, and since q**(x) < b(x) over C, it follows
from the definition of b that

4**(x) _-<
for all x Cc.
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Now we assume that

4,**(x) < (x)
for some x e C. It follows that the point (**(x), x) is not a member of the
closed convex set

Ec, cq {(, x): __> C(x), x cc}.
Thus ther , is a vector (a, s) e E"+ which strictly separates the point (qS**(x), x)
from [bc, CC]. If a O, then

(x, s5 < (x, s5
for all x e Cc. Hence x C which is a contradiction.

Since cr 4: 0, we may assume that cr 1. Then either

(:2.5) (x) + (x, s5 > -**(x) + (x, s5
or

(2.6) -c(x) + (x,s5 < -**(x) + (x, s5
for all x Cc. If (2.5) occurs, it must be true for x x so that

-c(x) > -**(x),
which contradicts the previous assumption that qS**(x) < qC(x). If (2.6) holds,
it must be true for x e C where C(x) =< (x) so that

-(x) + (x, s) < **(x) + (x, s5
for all x e C. However,

so that

**(x) >__ -*(s) + (x, s5
-(x) + (x, s5 < *(s)

for all x C. But C is compact so that the supremum over C of the left-hand side
of this expression is attained at some point and equals th*(s) by definition. This
implies the contradiction *(s) < *(s) and the proof is complete.

The next corollary follows immediately from the preceding theorem.
COROLLARY. If C is compact and el) is lower semicontinuous over C, then the

conjugate ofel) over C equals the conjugate ofel) over C (i.e., dp* dp*).
Proof. * is a convex function defined over D[*] E" so that

*** *
(see Fenchel [3] or Karlin [4]). By the preceding theorem

])** c
so that

*** (4,c),,

and the proof is complete.
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The second characterization of the convex envelope represented by Theorems
2.1 and 2.2 is most convenient from a computational point of view since it furnishes
a method for actually constructing b in a number of cases. For example, when 4
is separable and C is "rectangular," the computational effort required to yield
4 is greatly reduced as is indicated in the next theorem.

THEOREM 2.3. If

and

i=1

C={xt<=x<=},
where each c])i is lower semicontinuous and l, L E", then

i=1

where dp is the convex envelope of el) taken over Ill, Li].
Proof.

b*(t) max {(x, t) b(x)}
xC

max {x,t,- 4,(x,)}
li <- xi <= Li

d?C(x) **(x)= sup {(x, t) *(t)}
E

sup {Xit ((ti)}
i=1 --O<ti<O

i=1

and the proof is complete.
Thus, to calculate the convex envelope of a separable function over a rect-

angular set, it is sufficient to calculate the convex envelopes of the constituents
of the function over their respective domains. In particular, if bi is concave, its
convex envelope is simply that linear function whose graph joins the endpoints
of the graph of bi.

The separability of b is crucial in the above proof since it is not true in general
that the convex enveIope of the sum of two functions is the sum of the convex
envelopes. For example, the convex envelope of the function 4(x)= x2- x2

over the interval [0, 1] is the zero function while the sum of the convex envelopes
is x2 x.
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The results of this section will now be used in the investigation of the applic-
ability of the Lagrangian technique in nonconvex programming. The character-
ization of the convex envelope of a function is especially useful in this regard.

3. Lagrange multipliers and noneonvex programming, Lagrange multipliers
have proven useful in solving convex programming problems (see [5] and [7]),
especially when these problems possess a "decomposible structure." Essentially,
the use of multipliers results in the formulation of a "dual" problem which is
then solved in lieu of the given primal problem. This duality theory and its con-
nection with the notion of conjugate functions has been examined extensively by
Rockafellar [63. The structure of the dual problem for a particular class of convex
programs was investigated by Falk [13.

While Lagrangian methods are well suited for the solution of structured
convex programs, the methods may fail for nonconvex problems where other
methods (e.g., penalty function techniques) succeed. The reason for this failure
will be investigated in this section for a particular class of nonconvex problems.
The results contained in this section suggest an application of Lagrange multipliers
to a class of nonconvex problems.

The problem we wish to investigate has the form

minimize b(x)
(3.1)

subject to Ax > b, x e C,

where q5 is lower semicontinuous (possibly nonconvex), A is an rn x n matrix,
b is a constant vector and C is a compact set.

The auxiliary function of problem (3.1) is defined by"

(3.2) 7(u) min {b(x)- (u,Ax- b)}.
xC

Since C is compact and 4) lower semicontinuous, the function 7 is defined over E
although we will only be interested in its behavior over (E") + {u e Em’u >= 0}.
It is easily shown that ?, is a concave function of u.

Associated with each u, we define the set

(3.3) X(u) {x C "x minimizes 4)(x) (u, Ax b) }.
The auxiliary problem of (3.1) is defined as"

maximize 7(u)
(3.4)

subject to u => 0.

When the constituents of problem (3.1) are convex, there is a close connection
between problems (3.1) and (3.4) as is illustrated in the following two "duality"
theorems. The proof of Theorem 3.1 may be found in [1, p. 154] while the proof
of Theorem 3.2 is new, although a version of Theorem 3.2 is proved in [1] under
different assumptions.

THEOREM 3.1. Suppose 4 is convex and C is a closed convex set. If problem
(3.1) has a solution x*, then there is a point u* which is a solution of the auxiliary
problem. Moreover, x* e X(u*) and b(x*) 7(u*).
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THEOREM 3.2. Suppose dp is convex and C is a compact convex set. If u* is a
solution of the auxiliary problem of (3.1), then problem (3.1) is feasible and hence
has at least one solution x*. Moreover, x* X(u*) and 4(x*) 7(u*).

Proof. Assume (3.1) is not feasible. Then for every x e C we have

g(x)= Ax- b

_
O.

The set F {v’v g(x), x C} is compact and convex and does not intersect
(E") +. Thus there is a vector e E such that

for all x e C and

for all u
_
(Em) +. Let

and

(t, g(x)) < 0

(t.u) >__0

/(t) max (t, g(x)5
xC

# min b(x).
xC

Note that the sequence {#(kt)} tends to
Since (t, u) _>_. 0 for all u e (E") /, it follows that O. Then

7(kt) rain {q(x)- (kt,g(x))}
xC

=>_ min 4(x)-- max (kt, g(x))
uC xC-so that ’(kt) o as k . Hence 3 cannot attain its maximum over (E") + which

is a contradiction.
It follows that problem (3.1) must have a solution. Let X + denote the set of all

solutions of problem (3.1.) and let x / X +. By Theorem 3.1, there is a vector
u + e(Em) + such that x + eX(u +) and 7(u +) 4(x+). Ifx + X(u*), we must have

)(x /) (u*.g(x/)5 > 4)(x*)- (u*.g(x*)5.

where x* is any vector in X(u*). But the right-hand side of this expression equals
?,(u*). Since both u* and u + maximize , we have

(u*) (u +)

Thus

(x+) (.*. g(x +)5 > 4(x +),

(u*.g(x/)) < o.
which is impossible since u* >= 0 and g(x +) O. Hence x +

is complete.
X(u*) and the proof
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We now wish to investigate the case where 4) is lower semicontinuous but not
necessarily convex and in this connection we compare the auxiliary function of
problem (3.1) with the auxiliary function of the problem

minimize 4C(x)
(3.5)

subject to Ax >= b, xC,

where is the convex envelope of taken over C.
Let

(u) min {qS(x)- (u, Ax- b)}
xC

i.e., / is the auxiliary function of problem (3.5). We now show that the auxiliary
functions of problems (3.1) and (3.5) are identical.

THEOREM 3.3. If is lower semicontinuous and C is compact in problem (3.1),
then

(u) (u)
for each u e (Em) +.

Proof.
y(u) min {b(x)- (u, Ax- b)}

xC

min {4(x) (Aru, x)} + (u, b)
xC

--qb*(ATu) + (u, b).

However, by the corollary of Theorem 2.2, we have

d*(ATu) dpC*(ATu)

-min {q(x) (ATu, x)}
xC

-min {(x) (u, Axe}
xeC

-(7(u) (u, b))

so that /(u) 7(u) and the proof is complete.
Before discussing some implications of this theorem, we will first prove a

related result concerning the minimizing sets X(u) of problems (3.1) and (3.5).
Let

X(u) {x x minimizes dpC(x) (u, Ax b) over CC}
The symbol (X(u)) denotes the convex hull of the set X(u).

THEOREM 3.4. If dp is lower semicontinuous and C is compact in problem (3.1),
then

XC(u) (X(u))c.

Proof. Let x e X(u). Then, since dpC(x) <= dp(x), we have

ckC(x) (u, Ax b) <_ ck(x) (u, Ax b) 7(u) 7C(u)

so that x X(u). The convexity of XC(u) implies that

(X(u)) XC(u).
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Now assume that there is a point x XC(u) such that x (X(u))c. Since x XC(u)
Cc, we can write

n+2

(4)C(x), x) ,(4)(x’),
i=1

where xi C and i >__ 0, Z’__+2 , from the definition of the convex envelope
of b. The representation of (qS(x), x) may not be unique. However, since
x 6 (X(u)), it is impossible to find a representation of (b(x), x) where x X(u),

1, ..., n + 2. From above, we have
n+2

4)(x)
i=1

It follows that
n+2 n+2

c(xO)- (U, AX0 b) 2 i()(xi)- (u, Axi- bS)> 2 i7(u)
i=1 i=1

since not all x can lie in X(u). But 7=+12
tradiction

eiT(U) 7(u) 7C(u) which yields the con-

7C(u) d?C(x) (u, Ax b) > 7C(u),

and the proof is complete.
The following example illustrates that Theorems (3.3) and (3.4) cannot be

extended to the case where the linear constraints Ax >= b are replaced by non-
linear constraints g(x) >= O, even if the components ofg are assumed to be concave.

Example.

If u 1, we have

and

On the other hand

and

minimize

subject to

qb(x) x2

g(x) x2 O,

c {x- <= x <= }

7(1)= min {(1- x2)-(1- x2)} =0
-l<x_<l

x() c.

7(1) min
-l_<x_<l

{0 (1 x)} -
XC(1) {0}.

Since the last two theorems show that the auxiliary problems of programs
(3.1) and (3.5) are identical, and since the duality theorems (,3.1) and (3.2) apply
to the convex program (3.5), it is clear that this latter problem rather than the
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desired problem is solved using Lagrange multipliers. In applications, this event
is recognized when

4(x) > (u*)

for all x X(u*), where u* maximizes y over (E’) +. We summarize these comments
in the next theorem.

THEOREM 3.5. Assume that is lower semicontinuous and C is compact in
problem (3.1). Let u* maximize the auxiliary function of problem (3.1). Then any
point x X(u*) minimizes the convex envelope of d? taken over C subject to the
restrictions ofproblem (3.1). A point x* e X(u*) is a solution of(3.1) if and only if
4)(x*) (u*).

A related result appears in [1] where it is shown that if 7 is differentiable at
the point u* of Theorem (3.5), then any point x X(u*) is a solution of problem
(3.1). In view of the preceding theorems, in such a case the convex envelope of 4
is minimized at the same points as is th.

4. An application. In the preceding section it was shown that the Lagrange
multiplier technique may yield false solutions to problems of the form (3.1) since
the convex envelope of q5 taken over C is actually minimized by this method.
This fact may be exploited in the method detailed in [2] where branch and bound
is used to subdivide the set C into successively smaller subsets. The minimum of the
convex envelope of b taken over each of those subsets subject to the constraints
Ax >= b is required. Thus at each stage of this algorithm one must solve problems
of the form

minimize OJ(x)
(4.1)

subject to Ax >= b x . C,
where J is the convex envelope of b taken over C.i. According to the theory of the
preceding section, it is sufficient to use the Lagrange multiplier technique on the
problem

minimize b(x)
(4.2)

subject to Ax >= b,

directly and thus eliminate the need to calculate OJ explicitly. If q5 is separable, and
C {x’P <= x <= U}, the calculation of ?,(u)(= yC(u)) involves finding the min-
imum of n functions each of a single variable over their intervals of definition"

rain .{(i(Xi) (ai, U)X,} "-}’- (l.l, b),
i= 114<_xi<L4

where a is the ith column of A. Of course, these minimizations may have to be
performed for a number of u values before the maximum of 7 is attained.
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OPTIMAL CONTROL OF SYSTEMS DESCRIBED BY
PARABOLIC EQUATIONS*

L. I. GAL’CHUK-

In this paper the possibility is studied of translating a system governed by a
parabolic equation into a stationary regime. This problem is equivalent to a
certain problem of moments. Conditions for the attainability of stationary states
will be given below, that is, conditions for the solvability ofthe problem ofmoments.

1. Statement of the problem. Let us consider the following problem"

(1) c3f(t, x)
c3t Lf(t, x) + u(t)ff(x),

(2) f(0, x) 0, f(t, X)lr 0,

where 0 < =< T, x fL F is the boundary of fL f is a region in Euclidean space
E", L is a linear elliptic operator with a system of eigenfunctions complete in
L2(), u(t) is a control, a measurable function with lu(t)l _-< 1, and (x) is a given
function. A control u(t) is to be found which transfers system (1), (2) in minimum
time into a stationary regime, i.e., such that

(3) Lf(T, x) vd/(x),

where v is a constant with Iv[ =< 1, and T is the minimum time.
We shall show that problem (1)-(3) reduces to a problem of moments. The

eigenvalues of the operator L will be denoted by 2k, and we shall assume that
0 < 21 -<_ 22 -<_ =< 2k =< The corresponding eigenfunctions of L will be
denoted by 0k(x), i.e.,

Lq(x)-- -Ru0u(x), q(x)lr 0.

Let

k=l

The solution to problem (1)-(2) can be written in the form

f(t, x) 2 cqg(x) u(s)e- <-s) ds.
k=l

To satisfy (3), we must have

Lf T, x) 2kcqg(x) u(s)e zT-) ds vd/(x) v cqg(x)
k= k=

Originally published in Vestnik Moskovskogo Universiteta, Matematika, Mekhanika, 1968,
no. 3, pp. 21-33. Submitted on May 23, 1967. This translation into English has been prepared by
R. N. and N. B. McDonough.
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or

2k u(s)e- 2k(T-s) ds v, k 1,2,

Thus, solving problem (1)-(3) is equivalent to solving the problem of moments"
T

(4) ) u(s)e- Xk(T-S) ds v k= 1 2
0 /k

The problem of precise end-point attainment considered by Egorov 1] reduces to
problem (4). Let us consider this.

In the region Q {0 __< =< T, 0 _< x =< 1}, the function f(t, x) satisfies

(5’)
Ot cx2

and on the boundary of Q,

c3f(t,O) 3f(t, 1)
(6’) f(0, x) 0,

63x
0,

Ox 0[u(t) f(t, 1)], 0 const. > 0,

where the control u(t) is a measurable function with ]u(t)] =< 1. A control u(t) is
to be found such that f(T, x) v, where v is a constant and [v[ __< 1. Let {#k} be
the sequence of positive roots of the equation p tan # . Let us multiply (5’) by
exp (#kzt)cos pkX and integrate over Q. Taking into account the boundary and
initial conditions, we obtain

COS #kx dx 0 cos k u(t)e -",(r-t) dt, k 1,2,

Since tk tan #k e, this can be written as

#
u(t)e -u?,(r- dt, k 1,2,

Letting #k
2 2, we then have

v v
k=l 2u(t)e- a(r-,) dt

2k

Thus the problem of reaching a constant end-point for (5’), (6’) reduces to the
moment problem (4). In [1] it is proved that it is possible to hit f(T, x) 0 and a
small neighborhood of zero. In this paper, we shall prove that it is possible to hit

f(T, x) v, with Ivl < 1.
Remark. In problem (1)-(3), L can be an arbitrary linear operator, provided

its eigenfunctions are complete in L2(). For example, we can take L c32/t?x2
with f- [0, 1]. Then the eigenfunctions are Ok(X) sin rckx.

2. Solution of the problem of moments. Let us assume in (4) that
0 < 2 <_ 22 _<- =< 2 =< .--, and o= 1/2 < o. We shall examine the system
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of vectors a l, a2,"’, ak,’’" in 12, with

(5)

e

e-(2k+ -2)T

/k+

1 1 1 1 1 )

’2 23 24 2k- ’k ’’k+
a3 {a31, aae, 1,0, 0, 0,0, ...},

ak {akl, ak2, ak3, ak4, akk- 1, 1,0,’" "},

The system (5) is such that, for k >= 3, the vector ak is orthogonal to a 1, a2, ak- 1.

Let us estimate the coordinates of a.
LEMMA. lal =< c/2 for <= <= k 1, k >= 3.
Proof. Since for k >__ 3, the vector ak is orthogonal to a l, a2,’", ak-1 we

have the equations

(ak, al) O, (Ok, a2) O, (ak- 1, ak) 0

for its coordinates This is a system of k 1 equations in k unknowns. Taking
(5) into account, we can rewrite this system in matrix form as

where
Akl bk,

! t (22 2.)T e (23 2)T e- (2k 2)

/1 /2 3
1 1

1 2 3
a3x a32 --1 0

ak- , ak- , 2 ak- ,3 1

ak

ak

ak

fflk, k

(2k--

1

bk= 0

0
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All the rows of the matrix Aa, aside from the first two, are orthogonal to one
another. Thus if we orthogonalize these two rows, and then divide each row of
the matrix by the length of the row vector formed from its terms, the resulting
matrix will be orthogonal. We shall denote by ca the scalar product of the first
two rows of Ak:

akl e -(&-;)T
c (a,, a)

,-

where a], a are the first two rows of Ak. We shall denote by dk the length of the
vector

i.e., the length of the vector obtained from the first row after orthogonalization.
The system of equations obtained in this way is"

(6) A

1 + Ca/ a 2 e -t’2-’)r + cdlla 2, dk )2dk

1

e-tZ_,-,,)T + Ca a2 2\

_e-{’’-’’)T + ca/[ a2 12

1

a
0

0

From (6) we have that a A-k- 1/a, and from the orthogonality of a we obtain

[[t 12 (X- 1/k, X-l/k) (X- lk, Ab) (XX; ’,) (, ) I1112



550 L.I. GAL’CHUK

Substituting the coordinates of the vector bk into this last, we obtain

(7) k 2 l_F(e-(’-’)T + ck/llak2[[2)2 q--
1 ]Ilall

where

From these we can deduce the following estimates"

kl e

i=2

(A,i ,q,)T7 2

Substituting these into (7) we find

Since

we have

Ilakl 2 < ---t- C, 2")k Lc3

k-1

i=l

C
lakl < 1 _< _< k 1, k _> 3,

and the lemma is proved.
Let us orthonormalize the system (5). To do this, we need to orthogonalize

the vectors a and az, and then normalize the whole system. We shall denote by
a the vector obtained from a after orthogonalization:

a) a2ax-aa- ax, la211’
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where

1 1 Z e-tZ,- ,t)T

a2
2 (a az)=

After normalization, we shall obtain in l the complete orthogonal system"

(8)

We shall now prove the solvability of the problem of moments (4).
THeOreM 1. If in (4), Ivl < 1 and = (1/2i) < , then there exists a time

T (T < ) and a measurable function u(s) (lu(s)l 1) such that the moment problem
(4) is solved.

Proof. In la let us consider a vector

k(s) {e z’(r-s) e z2(r-) -,k(r-),...,e ,...}, s< T,

and expand it in the basis (8)"

1 ’)1 a2) a

2[[- a}aik(s) k(s), / k(s),i.a2ll /
,=

k(s), I
This expansion can be multiplied by an arbitrary measurable scalar function
u(s) (lu(s)l __< 1) and integrated from 0 to T e to obtain

k(s)u(s) ds -l 2 (k(s), al)U(S) ds + (k(s), a2)u(s) ds

i=3

The series on the right can be integrated term by term since it converges in mean
square. In fact, the remainder term of the series can be estimated as

u(s) k(s)
a, ai

[i ds

<_ k(s), ai

=
ds

<(T= -e)1/ k(s), ai ai ds

(T )/ (s), a ds /.
i=n

Since T- e is fixed, for any 6 > 0 there will be a number no no(f) such that,
for n > n0,

(T ) k(s) ds < .
i=n
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Thus,

(9)
a2

2 (k(s), a2)u(s ds

+ 3 (k(s) ai)u(s) ds
,= Ila,

We shall show that the series in (9) converges uniformly both in the coordinates and
in e for e >= 0, and thus it is possible to pass to the limit as e --+ 0. We shall denote
by Aj the jth coordinate of the series in (9). From (5) we have

(lO)

ai ;To-e
Aj

i= 3 Ila, 2 (k(s), ai)u(s) ds, j 1,2,

Ilaj[I 2
(k(s), aj)u(s) ds + (k(s) ai)u(s) ds

i--+ Ila, 12
j= 3,4,.-..

We shall estimate

f (k(s), aj)u(s) ds.

From (5) we have

f:- (k(s), ai)u(s) ds

Thus

I(k(s), a,)l ds

i-1

E aije- j(T- s)

j=l

laij
e

--j=l

< I%1 +-
j= jj /i

e- a(T- s) ds

e 2i T

(11) f (k(s), ai)u(s) ds < llaill
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Let us estimate Aj. Taking into account (11) and Ilaill > 1, we have from (10) that

j=l i=3

i= + ai
2 (k(s), ai)u(s) ds

j= 3,4,---.

In the lemma it was proved that ]aijI < c/2i;thus

IAI<

12) 1/2

i= . //<Ci=3

i=1{ 1 ’-C Z <Cl
i=j+l

i= 2i’
j 1,2;

.)1/2 /1 j= 3,4,
i=1 i=1

The series on the right converges and thus series (9) converges uniformly relative
to the coordinates and to e for > 0. Thus in (9) it is possible to pass to the limit
as e---, 0, to obtain

(12)
ff k(s)u(s) ds iI]] 2 (k(s), gt)u(s) ds + (k(s), a2)u(s) ds

---3c ai+ , (k(s) ai)u(s) ds

The moment problem (4) can be rewritten in vector form as

f k(s)u(s) ds va2.

Comparing this last with (12), we find that solving the moment problem is equiv-
alent to solving the following equations"

(13)

(14)

(15)

f (k(s), ll)b/(S) ds O,

a2
2 (k(s), aN)u(s ds v,

f (k(s), ai)u(s) ds O, >__ 3.
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We shall construct a solution to (13)-(15). In (15) let us take u(s) 1. From the
conditions of construction of (5) we have

(k(s), ai) ds aije- 4J(T-s) e- 4i(T-s) ds
Lj

Thus,

C- 4iT

+

(ai, a2) + e- 4,r ai ao-- +

(ai, a2) + e- 4,r(ai, a) O.

(16) (k(s), a,) ds O, >= 3.

Thus, for any T > 0, (1 5) is satisfied for u(s) -= 1. Let us examine (13) with u(s) =_ 1.
Taking into account that

al, a2)
al al [a2

2 02,

we have

Thus,

(17) (k(s), al)ds e -41T (al, a) (a_:
(a, a2) J"
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We shall show that (1.7) is valid not because of the smallness of the function
(k(s), ?t l) for large T, but rather because u(s) 1 is "almost" orthogonal to it.
To that end, we shall find the norm in L2[0, T] of the function (k(s), a 1)"

I(k(s) a)2 (k(s) a)2 dsL2

+
i=1 i

ds.

Let us assume that 2 < 22 2 2 If this is not so, then we
combine with e--) all those coinciding with it (a finite number of them).
Let us use the notation

Then

k(s), al L= ae-*’(w-*) a fl,e-’(T-) ds
i=2

aa e- **(T-s) fl,e- ,i(r-, ds.
i=2

In the last integral, we make the change of variable e-r-* t. Then

fell 2

(18) II(k(s), a,)12 2 tx /2 ,tx, 1/2 dt.

From a theorem of Mfinz [2] it follows that the system of functions {t’- 1/2},
2, ..., is not complete in L2[0 1] and the function ’- / is thus a positive

distance from the subspace spanned by this system, i.e.,

(19) tx-/a itx’- / dt p > 0
i=

for all ,a, Since I1 c/, the function -/- =it-/ is
bounded on [0, 1], and thus

(20) x- / it--/ dt ce- r.
i=

From (18)-(20) we know that, for any sufficiently large T,

(21) [[(k(s), al) 2 02 tz, 1/2 flitx, 1/ dt Pl > O.
e-T

We shall examine in L2[0, T] the system of functions

{(.p(S) (k(s), al) (k(s), a,), >= 3}
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and expand u(s) --- 1 in this system and its orthogonal complement, which is not
empty ([2, Mtinz’s theorem])"

(22) 1 (s) + (,.l’.,q(s),

where k(s) is in the orthogonal complement of the system

{q(s), (k(s), ai), >= 3}.
Components involving the functions (k(s), ai), >= 3, are absent from (22) because
from (16), u(s)_= 1 is orthogonal to the system {(k(s), ai), i_>_ 3}. The function
q)(s) (k(s),al) is bounded. From (21), IIo(s)ll 2 >__ pl > o, and from (17), (1, q)

ce -z’T. Thus in (22) the component (1, q)0(s)/[lol[ 2 is arbitrarily small for
sufficiently large T. Since the expansion (22) is true for all s e [0, T], the function
O(s) can be made arbitrarily close to unity. Two cases are possible" either O(s) < 1,
s [0, T], or somewhere O(s)> 1. In the second case, we shall divide (22) by
r max O(s), where r is close to unity. We shall use the notation O l(s) O(s)/r.
From (22) we have

(, o)

The function l(s) does not exceed unity for s 0, T_]. Since l(s) belongs to the
orthogonal complement of the system {(k(s), al), (k(s), a), >= 3}, (13) and (15)
are satisfied with u(s) l(s). With u(s) l(s) the left side of (14) has the form

(23)
aa

(k(s), a2)’ (s) ds

r [a2[ 2 (k(s), a2) ds
(, P) for Iq9 Ila21l 2 (k(s), a2)fp(s ds.

We estimate the second term on the right"

(24)

(, o) flr 199 ;z
a2

(k(s), a2)(k(s), i1) ds

[fro (al’a2’fr J(1, p)
(k(s) a)(k(s), al) ds (k(s) aa) dsrllolllla2[I 2 fit

T

(k(s), az)(k(s), al) ds

< .e
i= /i /

--4-
i= /i

e 2i(T- s) ds

(k(S), a2)2 ds
i= ’i

2

ds<T

The integrals in the brackets can be estimated as
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Substituting these into (24) and taking account of (17), we have

(1, rp) If(25) rllqglllla2 2.. (k(s),a2)(k(s),al)ds < cTe-Zlr,

and thus the second term on the right in (23) is arbitrarily small for large T. Let us
consider the first term on the right in (23)"

1 f 1 fTo - e-A’i(T-s’ 1 21T(al,a2)(26) 711-2i (k(s), a2)ds 2 2ds l- e-
r[a2 ,=1 r r lagl[ 2"

Since r max if(s) is arbitrarily near to unity for large T, so also is the first term
on the right of (23). We shall denote the left side of (23) by w.

From (26), (25) and (23), we have

_ir(al,a2)(27) w + e c2 Te- r
r rlla21l 2

Equations (13), (15) will be satisfied for u(s) (s)v/w, since ff (s) is orthogonal
to the functions (k(s),a,), (k(s),ai), i__> 3. Equation (14) is also satisfied, since

ilazll 2
(k(s), a2)u(s)ds (k(s) a2)(s)ds -v

w a21l 2

It only remains to verify that lu(s)l 1. But since Ivl < 1 (from the hypotheses of
the theorem), I,(s)l <= 1, and since from (27) it follows that w 1 as T m, then,
for sufficiently large T, we have Iq, a(s>/wl _-< 1. Thus, the problem of moments (4)
is solved.

Remark 1. From the form of the construction, it is apparent that the control
is a differentiable function.

Remark 2. We shall show that if Ivl 1 in (4), then for no finite T does there
exist a solution of (4).

Let v 1. We take u(s) 1. Then the left side of (4) has the form

fro 1 e -2iTe- hi(T-s) ds
2i 2

But for any finite T, this is less than the right side of (4), which is 1/2; thus for
v 1 there does not exist a T < oe for which (4) would have a solution. Analogous-
ly, if v 1, for u(s) 1 we obtain the same result.

3. The existence and uniqueness of an optimal control. From Theorem it
follows that for Ivl < 1 there exists a T < oe and a measurable function u(s),
with lu(s)] __< 1, for which problem (1)-(3) is solvable.

THEOREM 2. Let Iv[ < and

Then for problem (1)-(3) there exist u*(s) and T*, where T* is the minimum time.
The control u*(s) is unique, and lu*(s)l 1 almost everywhere on [0, T].
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Proof. Existence. We shall denote by { T} and {u(s)} the times and correspond-
ing controls for which problem (1)-(3) or the moment problem (4) is solvable.
In Theorem 1 it is proved that these sets are not empty. Let us define T* inf { T}.
If T* T}, then the corresponding u*(s)is an optimal control. Suppose T* { T}.
We shall rewrite (4) thus:

.T(S)I,IT(S)e- 2k(T--s) ds k 1,2,

where gr(s) is the characteristic function of the segment [0, T], and T and ur(s)
are the time and control constructed in Theorem 1. Since T* inf {T}, there
exists a sequence T, T*, with a corresponding sequence gr.(s)ur.(s). With this,

y v
Zr.(s)ur.(s)e- k(r.--s) ds

)k

Since the set [u(s)[ __< 1 is weakly compact in L2[O, T], then for )r.(S)Ur.(S) there
exists a weak limit, i.e.,

lim )(,Tn(S)UTn(S)e- 2k(Tn--s) ds 7.T,(S)UT,(S)e- )k(T*--s) ds

T*

UT*(S)e- ,k(T*--s) ds
Rk"

The last equality can be written because it holds for all pre-limit integrals. The
resulting u.r,(s) u*(s) and is an optimal control.

The proof that u*(s) is unique, and that lu*(s)l 1 almost everywhere on
0, T], follows from Theorem 5 proved by Yu. V. Egorov in [l].

Acknowledgment. The author is deeply grateful to I. V. Girsanov for posing
the problem, and for his great attention during its solution.
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A PARAMETRIC METHOD FOR SEMIDEFINITE QUADRATIC
PROGRAMS*

M. D. GRIGORIADISt AND K. RITTER$

Abstract. A parametric method for solving semidefinite quadratic programs with a large number
ofconstraints is described. All computations are performed by pivotal operations on a tableau, or more
efficiently on an inverse which is considerably smaller than that used by other methods. This inverse
is updated by elementary row and column operations. Programming ofthe algorithm is facilitated by its
efficient use of the product form of the inverse mechanism in most commercially available linear
programming systems. An existing solution to a slightly perturbed problem, if available, may be used
as a starting solution for a new problem, with a possible substantial reduction of the required comput-
ational effort. Finally, an obvious but rather important advantage of the method is its direct use in post-
optimality studies involving the requirements vector and/or the linear part of the objective function.

1. Introduction. In recent years, quadratic programming has found several
important applications in business, science and engineering. These include
problems in portfolio selection, linear regression analysis with inequality con-
traints on the coefficients, maximization of consumer’s utility in the framework
of classical consumption theory, profit maximization under resource constraints,
quadratic approximation of general convex programs, pattern recognition and
others. This paper, however, was motivated by the application of quadratic
programming as a computational method for discrete optimal control problems
(see [21]).

Being a special case of convex programs, the quadratic programming problem
presents a most desirable feature:the linearity of the objective function gradient.
The resulting Kuhn-Tucker optimality conditions [9] are linear with the exception
of the "complementarity" condition imposed on certain pairs of variables.

Algorithms for the solution of quadratic programs are abundant in the recent
literature (see, e.g., [1], [3], [6], [10], [14], [15], [19], [20], [23], [25]). In general,
these methods have the use of the Kuhn-Tucker optimality conditions as an
auxiliary problem in common. This is usually solved by modified simplex oper-
ations on tableaux of row size (m + n). Excellent reviews of these methods may be
found in [2], [3], [8] and computational experiments on their relative efficiencies
for small problems found in [13].

Recently, general treatment of this auxiliary problem was effected by the so-
called "complementary pivoting theory" (see, e.g., [5], [12], [22]). It provides a
unified approach for solving quadratic programs and determining equilibrium
points of bimatrix games, and forms the basis for identifying classes of problems
which have a complementary solution (see, e.g., [4], [7], [11], [16]). The resulting
computational scheme, however, also requires tableaux of row size (m + n).

The parametric method outlined in this paper is a generalization of the basic
idea in [17] to the semidefinite case. Nonnegativity restrictions are represented
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and handled implicitly. For problems with m __< n a constant tableau size of
m + n, and for problems with m > n a constant tableau size of 2n + 1 is used for
all computations. The method is particularly suited for use with the product form
of the inverse mechanism of existing LP codes after minor modifications. The
inverse is updated by elementary row and column operations. The most important
and obvious advantages of this method are its use for postoptimality studies,
i.e., varying the requirement vector b and/or the linear part of the objective func-
tion, and its ability to utilize an existing solution to a slightly perturbed problem
as a starting solution.

2. The problem. The Quadratic Programming Problem (QP) is defined as"

(2.1) max {Q(x) c’x -1/2x’CxlAx <_ b,x >= 0},

where c and x are n-vectors, C is an (n, n)-symmetric positive semidefinite (p.s.d.)
matrix, b is an m-vector and A an (m, n)-matrix. Prime denotes the transpose.

In this paper, QP will be treated by considering the Parametric Quadratic
Program (PQP)" For each 0 in a given real closed interval, say [0, 0o], find

(2.2) max {Q(x, O) (c + Od)’x 1/2x’CxlAx <- b + Of, x >__ 0},

where d and f are given n- and m-vectors respectively. Clearly, PQP reduces to
QP for 0 0.

The Kuhn-Tucker necessary optimality conditions [9] for PQP state that if
x Xo solves PQP for some 0 00, then there exist Lagrange mutipliers u and v,
associated with the respective constraints of (2.2), such that

(2.3.1) Cx + A’u v=c + Ood,

(2.3.2) Ax + y b + Oof,

(2.3.3) v’x + u’y 0,

(2.3.4) x, y, u, v >__ 0,

where u, v are m- and n-vectors and. y is an m-vector of slack variables. These
conditions are also sufficient when C is p.s.d. We note that the relations (2.3),
to be referred to later as the Auxiliary Problem (AP), are linear except for the
"complementary slackness" conditions (2.3.3.).

An important aspect of the proposed algorithm is its ability to determine the
nature of solutions to QP or PQP from information available in the simplex
tableau of AP. For example if, for some 0 0k, PQP (or QP) have no feasible
solution, it may be determined from the corresponding AP by a simple test.
Similarly, if for some 0 0k, PQP (or QP) have no optimal solution, or have an
unbounded solution (provided that they have nonempty feasible domains), this
may be detected from the corresponding AP.

Constraints of the form Ax b may be represented by Ax <= b and the additional constraint
-a,+ ix =< -/where a,,+l Z’= a, and/? Z’= l(b)i.
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3. The algorithm. The first step toward obtaining an optimal solution to a
given QP, is to choose an Xo and determine d, f and 0 so that Xo is an optimal
solution to PQP. The selection of"

{-1 if(c)i >= 0(3.1.1) (d)i
otherwise)’

1, ..., n,

{1 if(b)__< O(3.1.2) (f)=
0 otherwise)’

j= 1,...,m,

(3.1.3) 0o max {0, (c), (b)j}, 1, -.., n, j 1, ..., m,
i,j

insures that Xo 0 is an optimal solution to PQP for 0 0o. If 0o 0, then
Xo 0 solves QP as well as PQP. Assuming 0o > 0, we intend to solve QP by
parametrically solving PQP for values of 0 < 0o until a solution, if it exists, is
obtained for 0 0. Such successive solutions are obtained by using simplex
tableaux of the corresponding AP. Initially, for 0 0o, (2.3.2) and (3.1.2) give
Yo b + Oof and Yo >_- 0. Similarly, (2.3.1) implies Vo -c Ood and (3.1.1),
(2.3.1) imply Vo _>-0. Therefore (Xo 0, Uo 0, Yo, Vo) solves AP for 0 0o.
In later cycles the conditions (2.2.3) are handled by the proper choice of pivot.
A "pivot operation" is regarded as an exchange of an active constraint and an
inactive one, or as it is frequently portrayed, as an exchange of a basic slack
variable (corresponding to the inactive constraint) and a nonbasic one (correspond-
ing to the active constraint).

Since PQP has n variables, at most n constraints are needed to determine
the optimal solution of PQP for some 0 =< 0o. This implies that at most n com-
ponents of u can be basic in AP. Hence, at least (m n) components of y, cor-
responding to the inactive constraints, are basic in AP. In degenerate cases, some
of these may be at zero level.

This observation suggests partitioning the rows of A as follows. Assume that
for 0 0k =< 0o, we have p(=< n) active constraints. Denote by A the (n + 1, n)-
submatrix of A which includes the p active rows and (n p + 1) of the inactive
ones. These will be referred to as the "current" rows of A. Similarly, let A denote
the (m n 1, n)-submatrix of A, consisting of the remaining inactive rows of A,
to be referred to as the "stand by" rows of A. The corresponding partitioning of
u and y gives (uc, u) and (y, y) respectively. This is shown in Fig. 1 where v, y and
y have been included for exposition purposes.

X, ttc, I, yC tts, yS
n { C Ac’ -I 0 0 =c+Od

0 0 =b+Ofn+l{A 0 0

o o o o J
n n+l n n+l m-n-1 m-n-1

FIG.1. Matrix structure of Auxiliary Problem (AP)

We further observe that since y is basic and u 0, all information concerning
the solution of AP may be obtained from the (2n + 1, 4n + 2)-submatrix within
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dashed lines in Fig. 1. Thus, the necessary variable exchange (pivot) operations
may be performed on the Reduced Auxiliary Problem (RAP):
(3.2.1) Cx + AC’u v c + Od,

(3.2.2) A‘:x + y‘:= b‘: + Of’:,
(3.2.3) x, u‘:, v, y‘: _>_ 0,

always taking into account the side conditions v’x + u‘:’y‘: 0 (and uS’y 0).
Since initially x0 0, Uo 0, the variables v and y are basic in the tableau

of RAP. If, during the course of the algorithm, a constraint in A becomes active,
the current partitioning of A will be updated to include this constraint in A‘:,
in exchange for a currently inactive one in A‘:, which is brought into AS. This
operation, also handled by pivoting, requires less effort than an ordinary pivot
step.

At any parametric step (0 0k =< 00), the (2n + 1) order working basis Bk
induces the following partitioning on the RAP matrix

(3.3) (Bk, Bzk)

X k U k l,tCl k yCl X 2k l) 2k blC2 k yc2k
c,, o ’, 0 0 0

C I A]’2 0 C22 I A’2 0 n p

A21c/110 0 0 A]2 0 0 0 q "/

[_A21 0 0 l A2 0 0 I }n + q

where xlk, vlk, u’k, Y]k denote the basic RAP variables and where the partitions

Cll C12
C21 C22

A] A2 x (x1, x2) u (u1,/)2),

yC UA21 A2 2 yC yC2 u] u2

have been used. Corresponding partitions are: (c + Od)
(b] + Of], b2 + Off2) and A (A], A).

For convenience let M {1,...,m}, N= {1,...,n} and IM,
P M I be the index sets corresponding to the rows of A and A respectively.
Let JB - N contain all indices of the components of the p-vector xl and IB I
contain all indices of the active constraint rows (or the components of the q-vector
u].) Similarly, let J N- Jn be the indices corresponding to the (n- p)-
vector v and 1 1 In be those corresponding to the (n + q)-vector y].
The basic variables (with respect to Bk; 0 0k) will be denoted by (xk) for
j Jn (/)lk)j for j J (UClk)j for j e In and (yClk)j for j I. We consider (y,)j for
j I as "implicitly basic" since they are basic in the tableau of AP but do not
appear in the RAP basis.

The current basic solution to RAP, as a function ofthe parameter 0 is given by

(3.4.1) Xlk(0) C + Odx p d- OP2
C2 -f- Od2 P3 A- Op4(3.4.2) v k(O)

B;
(3.4.3) Ulk(O) b] + Of] P5 + Op6

(3.4.4) Y]k(O) b2 + Off2 P7 + Ops
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and the implicitly basic slacks"

y,(O) b + Ofs-

or"

(3.4.5) y(O) (b Alp l) + O(f A]p2) P9 + Opxo,

where the pi(i 1, ..., 10) have been introduced for notational convenience.
Now assume that for 0 0k an optimal solution Xk(Ok) has been obtained.

We wish to obtain the smallest value of the parameter, say 0 Ol <-_ Ok, such that
xk(O), O < 0 < Ok remains both optimal and feasible.

First, we determine the smallest 0, say 0 0’ 0k, such that the optimality
conditions Vk(O) 0 and U]k(O) >- 0 are satisfied. From Vk(O) >= 0 and (3.4.2)
we have

(3.5.1) 0] -(P3)u,/(P4)u, m.ax {-(P3)/(P,,)j[(P4) > 0 and j

If (Pg)j _<- 0 for all j Jk, let 0’ 0. From u]k >_- 0 and (3.4.3)

(3.5.2) 0’2 -(Ps)u2/(P6),2 m.ax {-(Ps)j/(P6)I(P6)j > 0 and j Ink}.

If (P6)j < 0 for all j IBk, let 0’2 0. Thus 0’ max {0’1,0’2} and the limiting
variable index is p #i if 0’ 0, 1, 2.

Second, we determine the smallest 0, say 0 0’* <__ 0k such that the feasibility
conditions x lk(0) >= 0, y]k(O) >= O, y(O) >= 0 are satisfied. These conditions, in the
given order, with (3.4.1), (3.4.4) and (3.4.5), give

(3.6.1) 0* -(P),,/(Pz)t, max {-(P)/(Pz)[(P2) > 0 and jJB,}.

If (Pz)j < 0 for all j Jnk, let 0’1" 0.

(3.6.2) 0’* -(PT),2/(Ps), max {-(PT)j/(Ps).iI(Ps)j > 0 and j

If (Ps)j =< 0 for all j I, let 02" 0.

(3.6.3) 0’* -(P9)3/(Po),., max {-(P9)j/(Plo)jI(Po)j > 0 and jI}.

If (Pl0)j _-< 0 for all j 1,, let 0’2" 0. Therefore, 0* max O’{;*]i 1, 2, 3 } and
the limiting variable index is p p if 0’* 0* 1, 2, 3. Finally,

(3.7) 0 max {0’, 0’*} max {0’, O’{z, 0{’, 0?,

Next, we investigate the nature of the basic solution to AP for 0 0 e > 0
for a small e > 0. Depending on the limiting value of 0 in (3.7), an appropriate
basis change must be performed in order to restore optimality or feasibility. The
corresponding variable exchange, performed by a pivot operation, is equivalent
to updating the status of a constraint, be it a nonnegativity restriction or an
ordinary constraint, from "active" to "inactive" and vice versa. In the absence of
degeneracy, once the exiting variable is defined by (3.5) or (3.6), the entering
variable is uniquely determined by (2.3.3). The value of the objective function is
not altered by such exchanges.

We now examine the types of pivot operations which will restore optimality
(Case 1) or feasibility (Case 2) for 0 Ol- e. Characteristically, in Case a
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currently (i.e., for 0 Ol) active constraint will be reclassified as inactive, and in
Case 2 a currently inactive one as active. Thus, one of the following operations
must be performed for 0 0t:

Case (0 0’). The constraint to become inactive is a"

(i) nonnegativity restriction (Or O 0’{ <= Ok). From (3.5.1), (Vk), 0
for at least one/t e J. In view of (2.3.3) replace (v), by (Xk)u.

(ii) ordinary constraint (0 O Oz <-Ok). From (3.5.2), (U]k)u 0 for
at least one/ IBm. In view of (2.3.3), replace (Ul)u by (Yzk)u.

Case 2 (0 0’*). The constraint to become active is a"

(i) nonnegativity restriction (Ol 0’* 0’* < 0). From (3.6.1), (Xk)p 0
for at least one p J. In view of (2.3.3) replace (x )p by (Vzk).

(ii) ordinary constraint in A (0 0’ 0’2" < 0). From (3.6.2), (yCk) 0
for at least one p I. In view of (2.3.3), replace (y’)o by (Ulk)o.

(iii) ordinary constraint in A (0 0’* 0’3" =< 0). From (3.6.3), (y,)o 0
for at least one p 1,. By definition, (y,)o is implicitly basic. Now that the
pth constraint in A will become active, we must:
(a) Update the definition of the current and stand-by constraints, i.e.,

update the sets I and P, by defining the pth constraint presently in A as
current, in exchange for an inactive constraint presently in Ac, say the rth.
Such a constraint will always be present in A since not more than n of the
(n + 1) constraints in A may be active. This updated partitioning of A defines
a new RAP. It is obtained from the current RAP by updating B- as shown
in 4. This has the effect of replacing the elements of the row corresponding
to the Tth constraint by the elements of the pth constraint (which is to be made
active) and furthermore, of replacing the basic variable (y’) by the implicitly
basic variable (y,)o. (Note that the updated partitioning (y, y) requires that
(Y,)o be denoted by (y]). This notational liberty should not cause confusion).
In the new RAP, (y]) is at zero level and must be removed from the basis
by (b).

(b) Replace the currently basic (y) by its complementary variable
(uC)o. This step is the same as (ii) above.
Lemma 2 guarantees the nonpositivity of the pivot element. If it is negative,

we perform one pivot step (see 4) and return to (3.4).
If the pivot element is zero, the sought exchange of variables requires a pair of

pivot steps. Their validity and existence is demonstrated in Theorem 2. The
question of a zero pivot (in Cases and 2) and its remedy will now be discussed in
detail.

Case 1. If the pivot element is zero, it can be shown (Lemma 3) that PQP
has an infinite number of optimal solutions for 0 0. However, through simple
examples it may be shown that not all elements x of this infinite set of optimal
solutions need have the property that a function x(O) exists, such that x’ x(O)
and such that x(O) solve PQP for some interval 0p =< 0 __< 0 with 0p < 0. A zero
pivot indicates that x does not have this property. In order to continue our
parametric procedure we must obtain an optimal solution x’*, if it exists, for
which a function x(O)exists with the previous property. This is accomplished by a
simplified Search Procedure (SP) outlined below.
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Define the directions"

(3.8) s’ {slk frCasel’i’ { s2kfrCasel’i’=sk=
s]’’ for Case 1.ii, s’ for Case 1.ii,

where (s’, t’, t2, Szk)’ B- la, (s] t3, t4, s2k B- e,+u, a is the /tth
row of (C’12,C’22,ACl’z,AC2"2), en+ u is the (2n + 1) order (n +/0th unit vector,
sly, s]’ are p-vectors and Szk, s’ are (n + 1 q)-vectors.

By Lemma 3, x(2) x’ + 2s’ is optimal for all 2 for which it remains feasible.
Furthermore, by construction of s’, all constraints active at x are satisfied by
x(2); 2 0. Thus, the smallest 2 for which x(2) is feasible is determined by satisfying"

(a) the inactive constraints in Ac, yClk(Ol) q- 2Sk 0, which gives

(3.9.1) 21 --(yClk)r,/(Sk)r, m.ax --(yClk)j/(Sk)jl(Sk) > 0 and j e Ik}

If Sk 0 for all j Ik, then 21 .
(b) the inactive nonnegativity restrictions, (x’ + 2s)j 0 for all jJB,

which gives
, J}o(3.9.2) 22 --(X’)2/(Sk),2 m.ax {--(X’)j/(Sk)jI(Sk)j > 0 andje

If (s’)j __< 0 for all j JB, then 22 --O.

0(C) the (inactive) constraints As, AS(x + 2s’) bs + if which gives

(3.9.3) 23 -(Y)3/(q),., m.ax {-(Y,)j/(q)jl(q)j < 0 and j
_

I’,},
where q ASs. If (q)j => 0 for all j e I,, then 23 -. We let

(3.10) 2, max {21,22,23} and a ai if 2, 2i; 1,2, 3.

If 2, -, then QP has no optimal solution (Theorem 1). If a feasible
solution to QP exists, then for 0 < Ol >-_ O, PQP (and QP) has an un-
bounded solution. (Remark 5.2). If < 2, < 0, then Xk X(2,)

X’ + 2,S’ is an optimal solution to PQP for 0 Ol, which can be used
to continue the parametric procedure. This completes SP.

The transition from x’ to x*, accomplished by a pair of pivots explained
below, causes the ath constraint to become active instead of the/th.

In terms of variable exchanges, in Case 15, (Vlk), and (Xlk), could not be
exchanged due to a zero pivot element. Now we can replace

(3.11.1) (vlk)u by(Uk) and (yck), by(x2k)u if tr=rrl,

(3.11.2) (vl)u by(V2k), and (xl) by(x2k)u if o-=cr2.

For a a3, we must first bring the ath constraint from A into A in exchange
for an inactive constraint, say the rth, in Ac. This is accomplished in a manner
similar to Case 2.iii.a. Then, we replace

(3.11.3) (Vlk), by(u,) and (Yk) by(Xek),.
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In Case 2.ii, (u]k), and (yk), could not be exchanged due to a zero pivot.
Now we can replace

(3.12.1) (U]k)u by(ua) and (Y]k) by(yk), if a=l,

(3.12.2) (u’), by(v2)o and (xl)o by(yk), if 0r=a2.

For a a3, we apply the procedure preceding (3.11.3). Then we replace

(3.12.3) (u]), by(u,) and (y]) by(x2),.

Case 2. Here a zero pivot implies (Lemma 2) that the #th constraint, which is
to become active for 0 _<_ 0, is linearly dependent on the constraints already active
at x. x(O). The Constraint Replacement Procedure (CRP) outlined below,
identifies an active constraint, say the ltth one, which if replaced by the pth con-
straint, insures that the so altered set of active constraints is linearly independent
and xk+ 1(0) xk(Ol) solves RAP for some interval Oq <= 0 Ol, Oq 01.

Since (by Lemma 2) the pth constraint

(3.13) a’x a’lX q- a2x2

is linearly dependent on the active constraints at x’, there exists an (n- p)-
vector zl and a q-vector z2 such that

(3.14.1)
A121 2a2 I c’

Using (3.3), it is easily verified that

(3.14.2) z’ (0, z], z, 0) (a’, a, 0, 0)B/- ’.

As shown in Lemma 4, if

(3.15) (z)j __<. 0 for all .j IBm,,
then PQP has no feasible solution for 0 < Ol. However, if z has at least one positive
component,

(3.16.1) v (vl)u,/(zl),l m!n {(vl)/(zl)jl(zl) > 0, and j J},

(3.16.2) vo2 (u])u,_/(zl),. m.in {(u]k)j/(z2)jl(z2).i > 0, and j e IBk},

(3.16.3) V0 min {v,v} and/ =/i if Vo v), i= 1,2,

identify the/th constraint to be made inactive and terminate CRP.
In Case 2.i the pth nonnegativity restriction, represented by letting al 0,

az eo in (3.13) and (3.14.2), is to become active. However, (x)o and (v2)0 could
not be exchanged due to a zero pivot. N provided (3.15) is not satisfied, we
can replace (Theorem 2)

(3.17.1) (xl)o by (v2), and (xlk), by (v2)o if/t #1,

(3.1.7.2) (xl) by(y), and (u), by(v2,) if/t=kt2.

In Case 2.ii, the pth ordinary constraint, represented by letting
and a2 a2o in (3.13) and (3.14.2), is to become active. However, (u]k)o and
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(Yzk)p could not be exchanged due to a zero pivot. Now, provided (3.15) is not
satisfied, we can replace (Theorem 2)

(3.18.1) (U]k)p by (VZk), and (Xlk), by (Yzk)o if

(3.18.2) (HClk)p by (YC2k)" and (Uk). by (YC2k)o if/t ]2.

Thus the appropriate pivot or pair of pivot steps, specified by Case 1 or 2
above, is executed by updating the current inverse (see 4) which is then used to
continue the algorithm from (3.4).

A summary of the algorithm follows.
Step 1. Use (3.1) to construct vectors d and f such that for 0 0o the point

xo(Oo) 0 solves PQP. Construct Bo by (3.3), define the sets JBo, Jo, IBo, Io,
I and obtain B 1. Let 0k 0o, BR Bo.

Step 2. If Ok 0, then Bk is optimal and Xk(O) solves QP. Terminate. If Ok > O,
compute vectors pj,j 1, ..., 10, using (3.4). Apply (3.5)-(3.7) to obtain 0t =< Ok.
If 0 0 then Xk(O) solves QP. Terminate. If 0 > 0, go to the appropriate case of
Step 3.

Step 3.

O 071
Case 1.i

0, 0?2
Case 1.ii

0 071"
Case 2.i

0
Case 2.iii

Exchange the pth
constraint in A and
the zth constraint in
A by a special pivot
step (see (4.1.2)) and
update B-1. (Case
2.iii.a)

Try to exchange"

(xt,)o and (v2,)o (Y,k), and (U$k)o (Y],), and (u$,)o

If pivot < 0, perform one pivot step to obtain B/-1, go to Step 6.
If pivot 0, go to Step 4. Upon return If pivot 0, go to Step 5. Upon return perform the pair of
perform the pair of pivots" pivots"

(3.11.1) or (3.11.2) or
after exchanging a
constraint (see
(2.iii.a)) perform
(3.1 1.3) to obtain

(3.12.1) or (3.12.2)
or after exchang-
ing a constraint
(see (2.iii.a))
perform (3.12.3)
to obtain Bi- 1.

(3.17.1) or (3.17.2) (3.18.1) or (3.18.2) (3.18.1) or (3.18.2)
to obtain B/- 1. to obtain B- 1. to obtain B/- 1.

Go to Step 6

Step 4 (SP). Compute Sk, Sk by (3.8) for the current case (either 1.i or 1.ii)
of Step 3, and obtain 2,, a by (3.9), (3.10). If 2, -oe, no optimal solution to
QP exists. (If QP has a nonempty feasible domain, then 2, -oe implies that
QP has an unbounded solution). Terminate. If -oe < 2, __< 0, return.

Step 5 (CRP). If entering from Case 2.i, let a 0, a2 eo. If entering from
Cases 2.ii or 2.iii, let al alp, a2 a2p. Compute z’ (a], a, 0, 0)B- 1. If (z)j __< 0
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for all j IBk then QP has no feasible solution. Terminate. If not, compute p by
(3.16), return.

Step 6. Let Ok+ 0, B;+ll B- and update the basic index sets to obtain

JBk ,, J 1, IB ,, I 1, I 1" Let k + k and start the next parametric cycle
at Step 2.

Remark 3.1. Let exactly one of the AP variables be zero for 0 Ol in (3.7). A
basic solution, valid for Ol+ <= 0 <= Ol, 0l+1 < Ol, is obtained after one pivot
operation, provided the pivot element is negative. If the pivot is zero, a basic
solution is obtained after a pair of pivots provided that SP or CRP determine a

unique constraint.
The degenerate case where several basic variables of the current AP vanish

for 0 Ol, may be reduced to the above situation by an appropriate choice of the
components of d and f. For instance, if several components of yCk and/or y, are
zero, we can increase all but one of the corresponding components of f by a
finite amount and obtain a case with exactly one vanishing component of Y]k or
y,. Similarly, if several components of Vlk are zero, we can decrease all but one of
the corresponding components of d. If several, say n l, components of Xk vanish,
we can choose one of them, perform the pivot operation dictated by the algorithm,
and then decrease the component of d corresponding to the new basic variable
which then becomes positive. This results in a case with (nl 1)vanishing basic
variables. Finally, if several components of uk are zero, we can choose one of
them, perform the necessary pivot step and then increase the component off
corresponding to the new basic variable. Clearly, any ambiguity caused by com-
binations of the above cases or by the failure of SP or CRP to determine a unique
constraint can be resolved in a similar manner.

Without loss of generality we may therefore assume that Step 3 gives a basic
solution, the x part of which is an optimal solution to PQP for some interval

Ol + <. 0 < 01 with 0l+ < Ol"
4. Computational aspects. For problems with m >> n, for which this method

is primarily intended, the (2n + 1)-order working basis is decisively smaller than
the (m + n)-order basis commonly used by other algorithms. This reduction is
enjoyed at the expense of CRP and its relative merit depends on the particular
structure of the constraint matrix. It is clear however, that for problems with
m =< n the definition ofAP and RAP coincide, the working basis is oforder (m + n),
and Case 2.iii of the algorithm does not arise.

The main computational tools required for efficient programming of the
proposed algorithm are similar to those used by most commercially available
large linear programming codes. (See e.g., [24].) The following remarks on the
nature of these operations will clarify the necessary revisions to the components
of these codes.

We consider the usual elementary transformation"

(4.1.1) B-+11 Ek + 1B 1,

where Ek+ is an "elementary matrix". Let (s, p) be the designated pivot position
and gp the "pivot column". A variable exchange operation consists of constructing
an "elementary column matrix" E,+ as an identity matrix with its sth column
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(h) (h)_x 1 (h)s+ (h)2.+ /
(h)’ (h) ’(h)’ (h) (h)

where h B agt, is the updated gp, and later applying (4.1.1) with Ek+ E,+ .
The reclassification of a stand-by constraint as current is accomplished by

first constructing an elementary row matrix E,+I, which is an identity matrix
with its ath row replaced by

(4.1.2) q,’+ (g;, e;),

where the p-row vector g’ (a’ a’), e’ is the (2n p + 1)-unit row vector with
in the rth position and a., ao are the rth and pth rows ofA and AS respectively.

Then, (4.1.1) is applied with Ek+l E,+. This transformation on B/- has the
c, by s’ in Beffect of replacing at ap

In the course of the algorithm, B/- is used to update a column or row vector
(e.g., (3.4), (3.8), (3.14.2)). These operations may obviously be performed using
the explicit form of B- by direct multiplication. However, when A is sparse, it is
preferable to keep B-1 in the "product form": B-a E,E,_ E1 where Ej
may be a column or row elementary matrix. Updating operations are then handled
by special formulas:

(4.2)

The transformation of a column vector g by a single Ej is given by

(Ejg)i (g)i + (rli),(g)s for/ - s; Ej E,
(rl"))i(g) for/= s; Ej E},

=(g)i for/C-z’ Ej=E},
2n+l

(rli’)u(g)u for z Ej Ei,
#=1

while the transformation of a row vector g’ by a single Ej is given by

(4.3)

(g’Ej)i (g)i for/ - s; Ej E,
2n+

(g)u(rli)" fori=s; Ej=E,
=1

(g) + (r/})(g) for/= z; Ej E},

(r/)i(g) for/= : Ej E.
The updating ofg requires the repeated use of (4.2) to form

(4.4) h (E(E_ (... (E+ (E(E_ (... (E]g)...))))...))),

computed in the order the Ej were generated. The operation of updating a row
vector g’ by the current inverse is

(4.5) h’ (...((((...((g’E,)Ef,_ 1)...)E + 1)Er3E,_ 1)...)E,

computed in the reverse order from that in which they were generated.
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The transformations (4.2)-(4.5) and reinversion algorithms are integral parts
of most large linear programming codes. Slight modifications may be required to
handle the case Ej E. for some of these codes.

5. Validity of the algorithm. In this section, discussions will be based on a
simplified RAP basis:

X, W

’1 A]2
with/11

I

where A1 denotes the matrix of active constraint rows and w (u’i, v). The
basis B may be identified within dashed lines in the partitioned RAP matrix

(5.2)

X X2 U V U V2 Y Y2 Y
Cll C12 Ai 0

C21 C22 A’2 --I

A A]2 0 0

0 -I 0 0
0 0

Ai -1 0 0 0

A’2 0 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

where the nonnegativity restrictions for X2 and their slack variables y have
been shown explicitly. For a basic solution x2 0, yz 0, the columns of x2 can
be removed, the slacks y and the inactive rows A may be appended with no
effect. Thus, B corresponds to Bk in (3.3). In the following paragraphs the term
"constraint" will refer to nonnegativity restrictions and ordinary constraints alike.
We will also let b (b], 0) and fl (f’i, 0).

LEMMA 1. Let Q(x(O)) (c* + Od*)’x -1/2x’Cx. Suppose B is nonsingular and

(5.3.1) x(O) dl + Od2, Wl(0) d3 + Od4

is the solution of

(5.3.2)

Then c3Q(x(0))/c3010 0o
where Xo =dl + Ood2 and wl,o =d3 + Ood4. Furthermore,
d*’d2 + f’’d4 <= O.

Proof. Substituting (5.3.1) into (5.3.2) gives

Cdl + OCd2 + A’d3 + OA’d4 c* + Od*,

Ad + OAld2 b + Of
for all 0. For 0 0, Cd + A’id3 c* and Adi bf. Hence

(5.3.3) O(Cd2 + A’d4) d*, A,d2 f.
Now, using x(O) from (5.3.1),

Q(x(O)) c’d, 1/2d’Cd, + (c’d2 + d*’d, diCd2)O + (d*’d2 1/2d’2Cd2)O2.

Cx + A’lW c* + Od*,

A tx b + Of;.
Cad*’xo + f’w,o and c32Q(x(O))/c30210=Oo d*’d2 + f d4,

if C is p.s.d.,
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Differentiating with respect to 0 and using (5.3.1)-(5.3.3),

c3Q(x(O))/c30lO=Oo c*’d2 -i- d*’dl -I- d’Cd2 -+- (2d*’d2 d’zCd2)Oo

d*’xo + f’wl,o.
Next, differentiating d*’x(O) + f’wl(O) and using (5.3.1) gives

c?2Q(x(O))/cO21o=oo d*’d2 + f’d4.
Since C is p.s.d., Q(x(O))is concave and therefore d*’d2 + f’d4 <= O.

Remark 5.1. In order to put the above result in a form useful for proving
Lemma 2 we consider the two cases of pivoting below.

Case 1. For 0 0, the #th constraint is to become inactive, i.e., (wx)u and
(Y2)u are to be exchanged in the (RAP) system:

(5.4.1) Cx +. A’wl + (wl)uau c + Old,

(5.4.2)

(5.4.3) a.x + (Y2)u (bl)u + Ol(f).,
where presently (Y2). 0 is nonbasic and (w1).--0 is a basic variable.2 The
current basic solution of (5.4.1)-(5.4.3) is given by

(5.4.4) Wl B-1 bl + Olfl -B-[ le.+u(y2). gl hl(Y2).,
(wl). (bl). + Ol(f,).

where the vectors gl, h have been introduced for convenience, (Yz)u 0 and

C A’x au \
Bx A1 0 0 )o o

In particular,

(5.4.5) (h

where (hi),, the/th component of hi, is the "pivot element" in Case 1. Now
consider (5.4.1)-(5.4.2) and a’ux (bl), + Ol(fl)u (Yz)u. If we let c* c + Old,
d* O, b (bl + Olfl), (b)u + O(f)u), f’ e, and 0 (Y2)u, (5.4.5) and
Lemma give
(5.4.6) c2Q(x(O))/c302 (h), O.

Case 2. For 0 0t, the pth constraint is to become active, i.e., (Y)o and (w2)p
are to be exchanged in the (RAP)system:
(5.4.7) Cx + A’Wl + (Wz)pao c + Old,

(5.4.8) Ax b + Ofl,

(5.4.9) @x + (Yl)o (b)o + O(f)o,
where presently (w2)p 0 is nonbasic and (Yl)o 0 is a basic variable. The current

This system representation is valid for both Cases 1.i and 1.ii. In Case 1.i the exchange of (vl)u by
in the basis Bk (3.3) is clearly equivalent to the exchange of (vl). by (y). in the basis B (5.2).
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basic solution of (5.4.7)-(5.4.9) is given by:

X C + Old a,

(5.4.10) W Bfi bl --{-- Oljl -B-} 0 (w2)p g2 h2(w)p,

(Y,)p (b2)p + Ol(f2)p 0

where the vectors g, h have been introduced for convenience, (w) 0 and
Bu is obtained by replacing the last column of B, by the column vector (0, 0, 1).
In particular,

(5.4.11) (Y,)p (g2)p -(h2)p(w2)p,

where (h2)p, the pth component of h2, is the pivot element in Case 2.
LFMMa 2. Consider Cases and 2 of pivotal operations and the corresponding

systems (5.4.1)-(5.4.3) and (5.4.7)-(5.4.9). Then
A. The pivot element in both Cases and 2 is nonpositive.
B. Let Sl and s2 denote the first n components of gx and ha respectively as

defined by (5.4.4). If, in Case the pivot element is zero, then, Q(s /s2) is either
constant or a linearfunction of 2.

If, in Case 2, the pivot element is zero, then, the constraint a’x (b z)p nt- Ol(fz)p
is linearly dependent on the constraints (5.4.8).

Proof. For Case the assertions follow immediately from (5.4.6). For Case 2,
from the definition of Bt and (5.4.10)-(5.4.11), it follows that

C A’
(5.5.1) (h2)o -(a,, 0)

A 0 0

Let (v*, z*) be the unique solution of the system

(5.5.3) A 0

Substituting (v*, z*) into (5.5.1), premultiplying (5.5.2) by v*’ and using (5.5.3) gives:

(h)o (a;, O) v*’Cv*.
z*

Since C is p.s.d, this implies (h2)o N 0. If v*’Cv*= O, then Cv*= 0 (see [22,
Lemma 1]) which, by (5.5.2) gives A]z* ao.

Lgga 3. Suppose the pivot element in Case is zero, i.e., (h ), O, for 0 0.
Let (x, w, (w),) be the solution of RAPfor 0 O and Q(x) the corresponding
value of the objective function of PQP. Furthermore, let s be the vector d@ned by
SP. Then,

A. Q(x + 2s)= Q(x) for all 2 E.
B. w(2)= w jbr all 2 e E.
Proof.
A. Reviewing the definition (3.8.1) of s and comparing the RAP bases

B(3.3)and Bt (5.4.4.) it can easily be seen that(x + 2s) is equivalent to (s 2s2).
Hence, by Lemma 2, Q(x + 2s) is either constant or a linear function of 2.
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A l(X’ + ,s’)= bl + Olfl for all 2E implies A1s --0. Hence, using
RAP (in particular (5.4.1)),

(c + Od Cx)’ s (Awl)’s’ + (wl)uaus 0

since (w), 0. This proves the first assertion.
B. Since Q(x’ + 2s’) Q(x), we have s’Cs 0 which implies Cs O.

Hence C(x + 2s’)= Cx for all 2, and since the columns of A’ are linearly
independent, it follows from RAP that w]’ is independent of 2.

TIOM 1. Let x’ x(O) be an optimal solution to PQP for Ol > O. Suppose,
for 0 Ol, Case applies and the pivot element is zero.

If SP yields 2, oe, then QP has no optimal solution.
Proof. The assertion is clear, if QP has no feasible solution. Let xo be any

feasible solution to QP. By assumption, A(x’ + 2s’) <= b + Olfand x’ + 2s >= 0
hold for all /l __< 0. Therefore, As’ 0 and s’ _-< 0. Thus, Axo <__ b and Xo _-> 0
imply

(5.6.1) A(xo + 2s) =< b, x0 + 2s >__ 0 for all 2 0.

From the definition of s’ and from Lemma 1 it follows that, for 0 Ol,

c3Q(x + Rs)/c321z=o (c + Old Cx)’s (Wl(Ol))t O.

It is clear that in Case 1, (w 1). < 0 for 0 < 01 Hence,

(5.6.2) (c Cxk(O))’s (wl(0)), < 0.

By Lemma 3, for 0 Ol, c32Q(x 4-,s)/c3,2= 0, thus s*’Cs*= O. Hence, for
0=0,

Q(xo + 2s) C’Xo -xoCxo + (c Cxo)’S2
(5.6.3)

C’Xo 1/2-x’oCxo + c’s2
since s’Cs 0 implies Cs 0 (see [22, Lemma 1]). The latter with (5.6.2)
gives c’s < 0. But then (5.6.1) and (5.6.3) show that the objective function of QP
can be made arbitrarily large over the feasible domain.

THEOREM 2. Let the designated pivot element be zerofor some 0 Ol. Suppose
that in Case 1, SP terminates with - < 2 < 0 corresponding to a constraint to
become active or in Case 2, CRP yields a currently active constraint to become
inactive.

Then, the exchanges prescribed by SP or CRP can be accomplished by a pair
of pivot steps. The new basic variables are nonnegative for 0 <

Proof.
Case 1. Consider the current form of RAP"

(5.7.1) Cx + A’wl + au(wa)u + ao(w2)o c + Old,

(5.7.2) Alx b + Olfl,

(5.7.3) aux
(5.7.4) aox + (y l)o [31 + Olfl2
(5.7.5) (wl)u(Yz)u 0, (wz)p(Y)o O,

where (5.7.3) is to become inactive and (5.7.4) is found by SP to become active.
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Since the pivot is zero, (wl), and (Y2), could not be exchanged. Application of SP
indicated that (yl)o should leave and (w2)o should enter the basis. We will show that
it is always possible to exchange (wl), and (w2)o and then (Yl)p and (y2).

Consider the current nonsingular basis

x, w, (w).,
C A’ a. 0

B A1 0 0 0

a, 0 0 0

ao 0 0

and the matrix B} obtained by replacing (wl), by (W2)p, i.e., by replacing column
(a,, 0, 0, 0) in B by column (ap, 0, 0, 0). We recall that according to SP

for all 2 < 0,
A 0 W 2s’* b + Ofl

where s, (s’, s’*’) consists of the appropriate components of h in (5.4.4).
Obviously Bs 0. Since by assumption, SP terminated finitely with a’,x as the
first constraint encountered, *a,Sk =/: O. Clearly then column (%, 0) cannot be a
linear combination of the columns of B. The same is true for column (ao, 0, 0, 0)
and the rest of the columns of B which are linearly independent since they also
belong to B/. Therefore, B2 is nonsingular, the pivot step exchanging (w 1), and
(w2)p is valid and (w2)p enters the basis at zero level.

To show that the second pivot step is possible, consider the matrix B/3 obtained
from B by replacing (Yl)o by (Y2),, i.e., by replacing column (0, 0, 0, 1) in B/2 by
(0, 0, l, 0). Since column (ao, 0) is linearly independent of the columns of B, column
(0, 0, 1, 0) cannot be a linear combination of the remaining ones in B3. Thus,
B3 is nonsingular, the pivot step exchanging (y 1)o and (Y2), is valid and (Y2)u enters
the basis at a positive level.

Now we show that (WE)0 > 0 for 0 < 0. Let (x*(O), w(0), (w(O)),, (ya(O))o)and
(x**(O), w*(0), (w2(O))p, (yz(O)),) denote the basic solution of (5.7) before and after
the pair of pivot operations, respectively. Let s’ be the vector determined by SP.
Then, considering (5.7) with x x + 2s’ and 0 0 it can easily be shown that
AIS, O, ,

a,Sk > 0 and a’os’ < 0. For the first basic solution, (5.7.1) post mult-
l(O))uausk This impliesiplied by s gives (c + Od Cx*(O))’s (Alw’(O))’s + (w *

(c + Od)’s" < 0 for 0 < Ol since Cs 0 (proof of Theorem 1), and since in Case 1,
(wl(0)), < 0 for 0 < 0. Similarly, for the second basic solution

(c + Od Cx (0)) Sk (A’ w*(O))’s + (Wz(O))oaoSk.

Therefore, for 0 < Ol, *(wz(O))paos (c + Od)’s < 0. But since apSk’* < 0 we must
have (w2(O))o > 0 for 0 < Ol.

Case 2. Let (5.7.4) be the constraint to become active. Since the pivot is zero,
(Yl)o and (w2)o could not be exchanged. Suppose, CRP determined (5.7.3) to

become inactive. Applying arguments similar to the above it can be shown that
first (wl), and (W2)p and then (Yl)o and (Y2). can be exchanged by a pair of pivot
operations. Lemma 4 below assures that for 0 < 0 the new basic variables (wz)p
and (Yz)u are nonnegative.



SEMIDEFINITE QUADRATIC PROGRAMS 575

LEMMA 4. Let A1 in (5.1) be an (m, n)-matrix offull row rank and consider the
equations

(5.8.)
A1 0 b+Of

where c is an n-vector, b andf are m-vectors and 0 >_ O. Let

B- M1 M2
M’2 M4

and suppose, for 00 > 0, (5.8.1) has a solution (xo(O), uo(O)) for which uo(Oo) >= O,
d’xo(Oo) + 0o, and d’xo(O) < + O .[or 0 > 0o, where , are scalars and the
n-vector d is a linear combination of the columns ofA’, i.e., d A’x z for some z.

(i) If M’zd <= O, the inequalities Ax _< b + Of, d’x <= + Off are inconsistent

for 0 < 0o.
(ii) Suppose M’zd has at least one positive component. Let, for 0 0o,

!o (Uo)/(M’2d) min {(Uo)j/(M’2d)j > 0; all j}.

Replace the k-th row of A by d’ and denote the new matrix by A. Furthermore,
replace the k-th components ofb and f by and [1, respectively and denote the new
vectors by b* and f*. Then, the columns of A are linearly independent and the
system

(5.8.2)
Cx + A";’u c,

A";x b* + Of*

has a solution (xx(O), ux(O)) for which ua(Oo) >= O, xa(Oo)= xo(Oo) and a’kX(O)
< (b)k + O(f)k for 0 < Oo where a’k denotes the k-th row ofA.3

Remark 5.2. Theorem 1 and Lemma 4 state an important property of the
algorithm which allows the detection of abnormal termination conditions for
QP or PQP by simple tests to be performed on RAP.

If, for some 0 0, the pivot in Case 1 is zero and 2, , it is immediately
concluded that no optimal solution to PQP, for 0 < Ol, (or to QP) exists. If,
however, it is known a priori that QP has a nonempty feasible domain, then the
conclusion is that PQP, for 0 < 0, and QP have unbounded solutions over their
respective feasible domains. As a further clarification, consider the case of an
unbounded feasible domain and an objective function whose value is bounded
from above on this domain. Then, the SP will yield a finite 2, and the normal course
of the algorithm is followed.

An empty feasible domain in PQP for 0 < Ol, and hence for QP, may be
detected from RAP by a zero pivot element in Case 2 and the failure of CRP
evidenced by (3.15) or by part (i) of Lemma 4.

THEOREM 3. The algorithm outlined in 3 gives one ofthefollowing alternatives
after afinite number ofsteps:

(a) an x xk(O) which is an optimal solution to QP,
(b) the information that QP has no optimal solution.

The proof of this Lemma is given in [18].



576 M. D. GRIGORIADIS AND K. RITTER

Proof. In view of Remark 3.1 we may assume that at each parametric step, we
obtain an interval [0k+l, 0k] with 0k+l < 0k, such that xk(O) (Xlk, 0) with xlk
given by (3.4.2) is the optimal solution of PQP for 0 [0k+l, 0k]. The represent-
ation of xk(O) as function of 0 is uniquely determined by the set of active constraints.
Therefore, there is only a finite number of different functions xj(O) which represent
the optimal solution to PQP for some interval [0j+ 1,0j]. Hence, the algorithm
described in 3 gives, after a finite number of steps, an interval [0k+l, 0k] and a
corresponding optimal solution xk(O) to PQP, such that either 0 [0k+l, 0k] or
the algorithm fails for 0 < 0k- 1. In the first case xk(0) is an optimal solution to QP.
The second case occurs if the pivot element is zero. Then, depending on which
case applies, either SP gives 2. c or CRP is unable to determine a constraint
to become inactive. Both alternatives indicate that QP has no optimal solution
(Theorem 1, Lemma 4).
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A NEW NECESSARY CONDITION OF OPTIMALITY FOR
SINGULAR CONTROL PROBLEMS*

D. H. JACOBSON’

1. Introduction. Necessary conditions of optimality for nonsingular, uncon-
strained, control problems are well known. When control and state variable con-
straints are present, the situation is more complex, but recent research [1]-[7]
indicates that many of the subtleties of this class of problems are now uncovered.
In the classical calculus of variations literature, little space is devoted to the
analysis of singular variational problems. Recently, interest has been aroused in
singular optimal control problems [8]-[19], owing to the appearance of such
problems in, for example, the aerospace field and the chemical industry. Kelley
discovered [20], and Robbins [21], Tait [22] and Kelley et al. [23] generalized,
a new necessary condition of optimality for singular arcs. The condition, known as
the generalized Legendre-Clebsch condition, has, in a number of cases, proved
useful [16], [18], [23] in eliminating some stationary arcs from the class ofcandidate
arcs for minimizing solutions. The generalized Legendre-Clebsch condition is
proved using special control variations. In this paper, by the use ofa different special
control variation, an additional necessary condition of optimality is derived,z

The differential dynamic programming approach, outlined in [7], [24]-[26],
is used to calculate the expression for the change in cost produced by the introduc-
tion of the special variation. The new necessary condition is deduced from this
expression. Control problems without terminal constraints are considered first.
For this class of problems, the special control variation is a rectangular pulse.
With terminal constraints present, the rectangular pulse is followed by a control
variation which is designed to keep the terminal constraints satisfied to first order.

2. Preliminaries. Consider the class of control problems where the dynamical
system is described by the differential equations:

(1) 2 f(x, u, t), X(to) Xo,

where

(2) f(x, u, t) =- A(x, t) + f,(x, t)u.

The performance of the system is measured by the cost functional

(3) V(xo, to) L(x, t)dt + F(x(tf), ty)

* Received by the editors November 27, 1968.- Division of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts
02138. This work was supported through the Division of Engineering and Applied Physics, Harvard
University by the U.S. Army Research Office, the U.S. Air Force Office of Scientific Research and the
U.S. Office of Naval Research under the Joint Services Electronics Program by Contracts N00014-67-
A-0298-0006, 0005 and 0008 and by the National Aeronautics and Space Administration under Grant
NGR 22-007-068.

Many additional references are given in [11, [21] and [23].
Some control problems are described which illustrate the necessity of the new condition in cases

where the generalized Legendre-Clebsch condition is satisfied.
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and the terminal state must satisfy

(4) (x(t), t) o.
The control u is required to satisfy the constraint

(5) lu(t)l =< 1, e [to,

Here, x is an n-dimensional state vector, and u is a scalar control, fl and fu are
n-dimensional vector functions of x at time t, and L and F are scalar functions.

ff is an s-dimensional column vector function of x(ts) at ts. The final time is
assumed to be given explicitly. The functions f, L and F are assumed to be three
times continuously differentiable in each argument.

The control problem is: determine the control function u(.) to satisfy (5)
and (4) and minimize the cost V(xo, to).

3. Necessary conditions of optimality. It can be shown, for the case where
terminal constraints are absent, that the following necessary conditions of opti-
mality hold"

(6) x H(.,

where

(7a) fi arg min H(2, u, Vx, t)
llul _-5

and

(7b) H(x, u, Vx, t) L(x, t) + Vx, f(x, u, t)).

Here, if(. ), (. denote the candidate state and control functions. The derivative
Fx(ff, t) is the partial derivative 3 of Fthe cost produced by the control function
(. ). Here, V can be identified with Pontryagin’s adjoint variable. Note that V
may not be equal to the first partial derivative V of the optimal cost V which is
obtained when optimal feedback control Js used.

In general the optimal control finction (for the class of problems formulated
in 2) will consist of bang-bang subarcs and singular subarcs. A bang-bang
arc is one along which strict equality holds in (5), except at a finite number of
’switch times’ where the control fi changes sign. A singular arc [15] is one along
which

(8) t-I.(x, Vx, t)= o
for a finite time interval. Note that this implies that, on a singular arc, H is indepen-
dent of the control u.

Along a singular arc, Kelley et al. [20], Robbins [21] and Tait [22] prove that
an additional necessary condition of optimality is as follows"

(9) (- 1)p ttu(, Vx, t) O,

F, is determined by changing x but keeping the control function unchanged at (. ).
From this point on, "arc" and "subarc" are used synonymously.
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where the 2pth time derivative of Hu is the first to contain explicitly the control u.
Inequality (9) is known as the generalized Legendre-Clebsch condition.

4. Expression for change in cost when control variation is present" terminal
state unconstrained. If a control function (. + u(.) is applied to the system,
then a trajectory 2(. + Sx(. is produced. At time t, V(2 + 6x, t) is the cost to
go, from to the final time I, when starting in state 2(t) + 6x(t) and using controls
fi(-) + 6u(. ). Let us assume that the cost can be expanded in a Taylor series
about 2, t:

(10)
(v(x, t), x5 + 1/2(x, v=(x, t)x5

higher order terms.

The partial derivatives in (10) are obtained by changing x but keeping the control
function fixed at (. + 6u(. ). V(, t), the cost to go from to t.r when starting in
state if(t) and using controls (. + 5u(-), can be written as

(11) V(2, t) V(Y, t) + a(2, t),

where a(ff, t) is the change in cost, when starting at time in state 2(t), produced
by the variation6 6u(r), r e It, tl].

Using (11 in 10)"

(12)
v(x + ax, t) V(x, t) + a(X, t) + ( v.(x, t), ax5 + .1/2(6x, Vxx(, t)6x)

+ higher order terms.

From (3) it is clear that

(13) 9(2 + 6x, t)= -L(Y + fix, t),

whence,

(14) --7-( + (3x, t)= L(2 + fix, t) + (Vx( + cSx, t), f( + iSx, + 6u, t)).

Substituting (12) into (14) and expanding L and f in Taylor series about 2, we
obtain

ct &

(15)

#t
6 - x,---(Sx + higher order terms

H(2, fi + 6u, V, t) + (H + Vf,

f+ {-<ax, (Ux + fv= + V=L +- Vxx + Vx=f)ax>

+ higher order terms.

All derivatives in (15) are evaluated at 2, fi + 6u, Vx, t.

or. 3.
We shall in this section obtain an expression for a(, t)" this will allow us to compute the change

in cost produced by the control clmnge 6u(-).
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Since equality holds for all 6x, we equate coefficients to obtain

cV ca
Ot ct H(, ft + 6u, V t),

(16)
Hx(, + 6u, V,t) + Vxf(, + 6u, t),

rH(, + 6u, Vx, t) + fx( , + 6u t)V,

+ Vf(, + 6u, t) + 1/2Vxf(, + 6u, t)

+ 1/2fr(, + 6u, t)Vx.

The higher order equations are not presented.
Now,

d_ d

rd
--:(V + a)= ar-;T V - + ( V, f(, fi, t))

Therefore,

(17a) =(V + a) -.(V + a) + (V,, f(ff, fi, t))
af

and

(17b)
c3t + v.f(x, , t),

c3t
1 1

+ - V,,f(, , t) + - fT(, , t)V,x,.

Using (17) in (16), the following equations result:

--gt H H ff t Vx
12 H + Vxx(f f(2, fi, t)),

(18)
T-/x Hxx + fx V, + Vxfx + 1/2Vxxx(f f(, , t))

+ 1/2(f f(, , t))r Vxxx,

where, unless otherwise specified, all quantities are evaluated at , + 6u,
V, t. Using the special structure off, equation (2), equations (18) become:

g Hufu,

-f/ Hx + (Hx. + VL) 6u,
(19)

T-lPx U + fVx + If + (H,x. + fT.V + Vfx.
T+ -Vf. + -f, Vx)6u.

In (19), all quantities are now evaluated at if, fi, V, t. Boundary conditions for
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(19) are, clearly,

(20)

a(tz) o,

v(tz) F(Y, re),
V..(tz) F.(X, re).

The change in cost owing to the presence of a control variation 6u(); v It1, t2],
t2 > l, is given by

(21) a(tl) a(t2) + a(t) dr.

5. New necessary condition" unconstrained terminal state. A singular arc
is assumed to lie in an interval It,, t]. A control variation in the form of a rec-
tangular pulsev of height rt and duration T is introduced in an interval Its, t2]
where

< < t,, 1,2, t2 > l.(22)

See Fig. 1.

u(t)
T

t tf

FIG.

The change in cost produced by this variation is given by

(23) a(t 1) dt + a(t2) Hu u dt + a(ta),

where Hu is evaluated at , Vx, t. Expanding the integral in a Taylor series in T,
the expression for the change in cost becomes8

ld
(24) a(tl) H 6ult_T - -ft [H 6u]

At time tz, one has

Tz + + a(t2).
t2

a(t2)-- 0,

(25) V(t2) V(t2),

Vxx(t2)-- Vxx(t2)
where Vx(t2) and ,,(t2) are computed using (19) and (20) with 6u(t) O, (tz, tf].

r/can always be chosen so that the control constraint (5) remains satisfied.
Note that in (24) quantities are evaluated at the time instant immediately prior to time tz.
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Since (t2) is on the singular arc, Hu(, Vx, t2) 0. Thus, the first nonzero
term in expansion (24) is the T2 one. We have that

d
(26) d H,, 6u]

t2

From (19), (20),

(27) I:t,(ff, V, t)l,2 yr, Vx + fr,[_ Hx (Hx, +

The first two terms in (27) sum to zero.9 Using (27) and (26) in (24), the change in
cost is

(28)
a(tl) r--f,,(x, t2)[Hx,(, x, t2) + F,fu(, t2)]r/2T2

+ higher order terms.

For the singular arc to be a candidate as a minimizing arc, it is necessary that the
change in cost, owing to the presence of the control variation, be nonnegative.
From (28) this implies that

(29)

where

(30)

and

(31)

Tf, (x, t)[H,(X, , ,, t) + Vxxf,(ff, t)] => 0,

H(, , <,, Hx,(:, , <, t) + fr(X, , t)<,, + <,,L(ff, , t)

E(t) v,((t), t),
E(t) lx((t) t)

Inequality (29) is the new necessary condition of optimality for singular control
problems with unconstrained terminal states.

6. Examples.
Example 1. Consider the following scalar control problem:

(32) 2 u, x(0) 1,

(33) V(1,0) x2 dt,

lul =< 1.

(34)

The optimal control is

(t) 1, [0, 1],

fi(t) 0, (1,2].

The arc in x, space along which u(t) is zero, is singular.

T--I2Iu(, , tz) 0 f. V rf H(x, , , tz).
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(35)

(36)

(37)
whence

For the above problem we have that

H(x, u, V, t) x2 + Vxu,

Hu(x, Vx, t)

Px 2X, x(t) O,

-lq)-:2 Vx 0

/:/= -2x and = -2u,

(38)
c3u Hu -2,

so that the generalized Legendre-Clebsch condition is satisfied.
It is clear that

(39) r

and from (36)

(40) Vxx(z) 2z,

where

(41) z 2- t.

From (40),

(42) Vxx(z) _-> 0 for every z e [0, 1],

so that the new necessary condition is satisfied.
Let us consider now the following cost functional

(43) V(1,0) X2 dt 1/2Sx2(tf),

where S is positive. The control program (34) is a stationary solution for this cost
functional because the first order necessary conditions of optimality are satisfied.
Moreover, the generalized Legendre-Clebsch condition is satisfied. However,
the differential equation for Vxx is

(44) ixx 2, Fxx(t) -S,

and hence

(45) Vxx(z) -S + 2z.

Since S is positive, the new necessary condition is violated for sufficiently small.
It can be verified directly that, for S > 1/3, a control function

u(t) 1, [0, 1],
(46)

u(t) e,, [1,2],

produces a cost lower than that resulting from the use of the control program
(34), confirming the nonoptimality of that control program.
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(47)

(48)

(49)
Here,

(50)

and

(51)

Example 2. Consider the following second order control problem:

2 X2, XI(0 0,

92 U, x2(O 1,
3r/2

V(xo, O) 1/2- (x2 + x) dt,
0

lul _-< 1.

-.v v =0--X.,

Px x: + Vx, v(t.l o

H. Vx2, ,-- --U nt- X1,

/:/.= -x:- Vx,,
so that the generalized Legendre-Clebsch condition is satisfied. The expression
Tf (Hx,, + x:f.) is equal to x2x, and

(52) V.(,)-- 77 -- 773,
so that the new necessary condition is satisfied. It can be verified [9] that this
problem has a stationary solution which exhibits a singular arc. Moreover, the
stationary solution is minimizing.

Consider now the following cost functional:

(53) V(xo, O) 1/2 (-x21 + x)dt.

Here,

x X1,
(54) -x + vx
and

(55)
/:/.= -x2- V,,

so that the generalized Legendre-Clebsch condition is satisfied.
It is easy to see that

(56) Xl(t) sin t, Xz(t) cos

is a singular solution, and the cost functional value corresponding to this trajectory
is zero.

One can verify that the equation for Vx2(77) is

_1_773(57) Vx22(77) 77 a

which is negative for 77 > x/" that is, the new necessary condition is violated
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for : > x/. The control function corresponding to the trajectory (56) is,

(58) (t) sin t.

Consider the control function

(59) u(t) (t) + e,

where e is a constant. Then, the resulting trajectory is

(60)
Xz(t) + 6Xz(t)= cost + et,

Xl(t) + 6x l(t) sin + 1/2et2.
The integrand in (53), corresponding to trajectory (60) is"

4(61) sint + et sin + + (cost + 2etcos

Using (61)in (53),

V(xo,O)= cosat-sinat+e(2tcost-tsint)+e + dt

(62) =-2 sin 2t + et cos + e
0

(63) -40.7e,
which is negative, confirming the nonoptimality of the singular trajectory.

The above examples illustrate the necessity of the new condition of optimality.
Also demonstrated is the nonequivalence of the new condition and the generalized
Legendre-Clebsch condition.

7. A]g terminal estmt. Here we consider the case where equality
(4) is present. The equality constraint can be adjoined to the cost functional by a
vector b of Lagrange multipliers, in the following way.

(64) V*(xo, b, to) L(x, t)dt + F(x(tf), ty) + (b, O(x(ty), tf)).

Assume that (. ), and fi(. are stationary solutions of(64); the following necessary
conditions are satisfied along a singular arc"

Vx* H(X, fi, F,t), F(t) Fx(X, t)+ (X, t),
(65)

H,(X, V, t)= 0.

I V*(xo, , to) has an unconstrained minimum with respect to u(. at fi(-), the
following condition must hold along the singular arc"

(66) f,r(x,- t)[U,(ff, V, t) + -*Vf,(x,- t)] 0,

where
T--, Vxxf Vx(tf) Fxx(, tf) + x( tf)(67) x H + fVxx +

Condition (66) follows from 5.



CONDITION OF OPTIMALITY 587

However, failure of condition (66) does not imply that if(.), fi(.) is not a
minimizing solution for the constrained problem where equality (4) is enforced.
This is so because a minimizing solution of the original constrained problem need
only be a stationary solution of (64) for fixed b b. In order to determine whether
(. ), fi(. is a possible minimizing solution, one has to ensure that, on the intro-
duction of a control variation, equality (4) remains satisfied.

8. New necessary condition: constrained terminal state. Let us assume, as
in 5, that a control variation consisting of a rectangular pulse of duration
t2 T and height r/is introduced in the singular control interval [ta, tb]. A
further control variation is now introduced in the interval (t2, tb] in order to force
equality (4) to remain satisfied. We shall assume the following form for the control
variation in the interval (t2, tb]:

(68) 6u(z)

Here,/(r) is a time varying, s-dimensional row vector and a is a constant s-dimen-
sional vector. For fix and u sufficiently small, the following equations are valid"

(69)

where 6X(t2) :/: 0 owing to the rectangular pulse variation prior to t2. In order that
the control constraints (5) remain satisfied when (68) is used, it is assumed that
fi(z), z (ta, tb) is in the interior of the control constraint set. o

The solution of (69) is"

(70a) x(t) c/)(t, t) x(t) + (t, z)f,(r)(r)a d:,

with

(70b)

where th(t, ) satisfies the differential equation

d
(71) dSdP(t, r.) f(X, , t)(t, r), (r, r) 1.

At ty, we require, for 6x(t) sufficiently small, that

(72) (X, ty) 6x(tf) O.

Setting ty in (70), and using (72), we obtain

(73) 0 Ox(ff, tf)(tf t2)bx(t2) + Ox(2, tf) 4(tf z)(z)fl(z)a dr,

which, by (70), is equivalent to

(74) 0 0(2, t)(tz, t) x(t) + 0(2, tz) (tz, r)f.(r)() dr.

to If the singular control and the nonsingular "bang" control are continuous at t, then (68) is

used up until t e, > 0 to ensure that the control constraints remain satisfied in the interval (, t).
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Let us choose

(75) T, T() f )d? , )(, t).

Using (75) in (74), we obtain

Ox(2, s) qS(ts, z)f,(z)f’I,’(z)c/)r(tc, z)dz O(ff, ts)
(76)

-O(ff, tf)(tf, t2)6x(t2).

Denoting the contents of the square brackets on the left-hand side of (76) by

(77) W(t2, tb)

we obtain 11

ff --[0x(N, tr)W(t2, tb)pTx(ff, t.r)]-ld/x(ff, tr)dp(ts, t2)6x(t2)
(7S)

], (Sx(t2).

We have, for cx(t2) sufficiently small, i.e., for r/ (or T) sutticiently small, that if
expressions (75) and (78) are used in (68), then equality (4) is maintained to first
order. That is, the change in 6x(tz) is at most of order [x(t2)] 2.

For : e (t, tz] we have the same equations for Vx* and Vx%, namely
T-V* Hx(X, fi, V*, t), V*(ts) F +

(79) )x Hxx(x, fi, V, t) + f[(X, , t)V + V.L(x, , t),

v(tz) Fxx + bOxl,.

For e (t2, tb] the dynamical equation is

(80) (x + x)’= f( + x, + a, r)

and the cost functional is

(81) V*(ff + 6x, , )= L( + 6x, t)dt + *(ff + 6x, , t).

Since the cost V*(ff + 6x, , r), e It2, t] depends on , let us make this depen-
dence explicit by defining

J(X + 6x, g, , r) v*(x + 6x, g, r)(82)

so that

(83) J(Y + 6x, F, or, ) L( + 6x, t) dt + V*( + cx, , tb).

In a similar way to that demonstrated in 5, the following equations can be

t It is easy to show that, if the linear system 62 fx (x + f. cu is completely controllable, and
if O’(ff, ts) has full rank s, the inverse in (78) exists.
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obtained"

(84)

Jx(tb)-- V(tb),

J=(tO v(t,),

J(t) O,

Jx(t) O,

J(t) O,

where all quantities in (84) are evaluated at 2, ft. These equations can be integrated
backwards from t until 2 is reached. At t2, a is given by (78), and the expansion
for J( + 6x, b, a, t2) to second order in 6x(t2) and a is

J( q- cx, b, a, t2) J(, b, 0, t2) + (Jx, 6x) + (J,, a) + (6x,

+ 1/2<6x, JxxSX> + 1/2<,
Substituting into (84) the value of a, we obtain

(85)
J(ff + 6x, b, 7 6x, t2) J(2, b, 0, t2) + (Jx, (3x) + (J,,, y 6x) + (Ox, Jx,7

+ - <ax,S xaX> +  <ax, ax>.
Renaming the left-hand side of (85) as ai(ff + 6x, , t2) we obtain

(86)
and

Jxx-- Jxx -+- ?TJ7 4" Jx.’ -+- 7TJax

(87) 3x Jx, since J 0.

Equations (86) and (87) are the second and first partial derivatives of the cost at
t2, given that the terminal constraints (4) are satisfied to first order.
From 5, the change in cost, owing to the presence of the rectangular pulse

in the interval It1, t2] is

(88) r-,/ (x, t2)[Hxu(, Jx, t2) d- Jxxfu(, t2)-]r/2 T2 + higher order terms

Thus the new necessary condition ofoptimality for singular problems with terminal
constraints is

(89) TJ, (x, t)[H,,.(X, Jx, t)+ Jxxf,(2, t)] >= 0.

As mentioned earlier, the control fl(z)a only ensures that the terminal constraints
are satisfied to first order. In the Appendix it is demonstrated that if the terminal
constraints are satisfied to second order, conclusion (89) is unaffected. This is true
also if the terminal constraints are satisfied to higher order, or satisfied exactly.

9. Example. Consider the following scalar control problem"

(90) 2 u, x(O) 1,

(91) V(1,0) x2 dt 1/2Sx2(2),

with the terminal constraint that

(92) x(2) 0
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and. the control constraint

(93) lul _-< 1.

In 6 it was demonstrated that, in the absence of equality (92), and for S > 0,
the following control program is a stationary, nonminimizing solution"

u(z) 1, z e [0, 1],
(94)

u(z) O, z (1,2].

We shall demonstrate now that with equality (92) present, the new necessary
condition (89) is satisfied (by inspection the control program (94) is optimal for
all S).

Since the singular arc extends from 1 to 2, we have tb =ty- 2.
For the above problem, equations (84) become

-ix 2x, -ix, Jxx,

(95) -j,, 2, -j,, 2J:.

Boundary conditions for (95) are zero at 2, except for

(96) Jx(2) -S.

From (95) and (96), we obtain the solutions

J (’C O, J (’c --S’ -- T,2,

(97) d(r) S + 2r, J,,(r) Sr2 + 32-r 3

J() o,
along the singular arc.

In addition,

(98) -- ,
where r 2 t, >= 1. From (86), (97) and (98),

(99) 3, -S + 2r + 2(-St + r2)(-r a) + (-)2(-SrZ + 32-r3)
and we have that

(100)

so that the new necessary condition is satisfied for all => 0, independent of S;
this is the desired result.

10. Generalized Legendre-Clebseh necessary condition. In [23], Kelley
et al. used a special control variation of the form shown in Fig. 2 to derive the
first generalization of the Legendre-Clebsch condition. They gave an heuristic
argument to demonstrate that, if the control problem is normal, then a control
variation can be found such that the terminal constraints (4) are met, at least to
first order, and the resulting change in cost owing to this added variation is
negligible compared to that caused by the variation shown in Fig. 2.
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6u(t)

to ta t2 tf

FIG. 2

If our rectangular pulse is replaced by Kelley’s special variation, and if
(68) is used to maintain the terminal equality (4) to first order, then expansion of
(21) yields--upon requiring a(tl) to be greater than or equal to zero--the first
generalization of the Legendre-Clebsch condition

(101) Oudt2H.(,], t2 ) <= O.

The normality assumption of Kelley and Robbins is the same as our assumption
of controllability of

(102) 6 fx 6x + f, 6u
and the maximal rank of r required to ensure the existence of the control vari-
ation fl(,)a which maintains satisfaction of terminal constraints (4) to first order.
The complete generalized Legendre-Clebsch condition can be derived by using
Kelley’s generalized special variation.

11. Conclusion. In this paper we have derived a new necessary condition of
optimality for singular control problems. The control problem without terminal
constraints was treated first. With terminal constraints present, a special admis-
sible control variation has to be constructed; this requires that the control problem
be normal. 12

The differential dynamic programming technique was used to obtain an
expression for the change in cost produced by the control variation. For the
singular arc to be minimizing it is necessary that this change in cost be nonnegative
from this requirement the new necessary conditions were deduced. Simple examples
were used to illustrate the nonequivalence of the new conditions and the general-
ized Legendre-Clebsch condition. Finally it was remarked that the generalized
Legendre-Clebsch condition can be obtained by expanding (21) and using
Kelley’s special variation followed by the variation (68) which maintains satisfac-
tion of the terminal constraints, (4), to first order.

12 Note that if the linearized system is completely controllable then condition (89) applies equally
well to the control problem without terminal constraints" that is, (89) must be true for all matrices
of full rank.
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It should be noted that the new necessary conditions are derived for the
case of u a scalar and the final time s fixed. There appear to be no conceptual
difficulties in extending the derivations to include vector controls and implicitly
given final time;however, the algebraic manipulations become involved if ts
is not given explicitly.

A comment on the complexity of the new necessary conditions is in order.
For the free endpoint problem, Vxx has to be obtained from the backward equation
(30); however, this is a linear differential equation whose fundamental (transition)
matrix is the same as that ofthe Vx equation, so that computation of Vx is straight-
forward. Note that V is an n x n symmetric matrix. The fixed endpoint problem
requires the integration of the extra J and j differential equations and 7 has
to be calculated (78). The jx, equation is linear and its fundamental matrix
is the same as that of the V equations. Note that J,, is an n x s matrix and that,
like V,, Jx is an n x n matrix. The simple scalar example of 9 required the
integration of four linear differential equations to obtain J, J, Jx and J,,.

In some aerospace problems, stationary control functions have been deter-
mined which pass the generalized Legendre-Clebsch test, but whose optimality
remains in doubt. The new necessary condition of optimality should prove useful
in ascertaining whether indeed these control functions are extremal or not.

Further, it is hoped that a useful sufficiency condition of optimality will
evolve from the type of arguments presented in this paper, and that this will lead
to the development of numerical techniques for solving singular optimal control
problems.

Appendix.

AI. Satisfaction of terminal constraints to second order. Expansion of equality
(4) to second order in 6x(ty) about ff(ty) yields 13

(A.1) Ox(ff, ty) 6x + 1/20xx(ff, ty) 6x 6x O,

and the expansion of (1) to second order in 6x and 6u, about if, is

(A.2) 6: J 6x + fu 6u + f, 6u 6x + 1/2L 6x 6x,

The solution of (A.2), correct to second order terms is

(A.3)

where

(A.4)

X(t2) =/= 0.

4(t, ) f(t, ), b(’c, z) I,

13 Oxx(x tf) X 6X Z: ZT=l lx,xj (Xi (Xj" similarly forLx 6u 6x andLx 6x 6x
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and

(A.5) qx(t, r) fqSx(t, r) b(t, r)f + fqS(t, r), qS(r, r) 0.

The quadratic terms on the right-hand side (RHS) of (A.3) contain fix(t). For
(A.3) to be correct to second order terms, the following expression can be used for
fix(t) in the RHS of (A.3)

(A.6) x() 4(t, t) x(t) + 4(t, r)f,() u(r) d.

Substituting (A.6) into the RHS of (A.3), we obtain

x(t) 4(t, t) x(t) + 4(t, )f() u() dr

+ 4(t, t) 4(t, t)x(to) + 4(t, )() u() dr x(t)

+ 4(t, ) 4(t, t) x(t) + 4(t, ’)f,(’) u(’) d’ u() dr.

The fo ofu(), based on satisNction of the terminal constraints to first order is,
from (68),
(A.8) 6u(r) #(),
where a is given by (78) as

(A.9) a 6x(t)
so that is of first order in x(t2).

Let us assume now that u(r) is of the form

(A. 0) 6u(r) () +
where is of order X2(t2). Then, to second order in 6x(t), x(ty) is as follows:

x(l 4(, 9 x(t + 4(, L((r[ + ]

+ x(tf, t2)[(tf, t2)6X(to)+ frf (tf,z)fu(z)fl(z)adz 6x(t2)

4(z, t2) 6x(t2) + 4(z, v’)f.(z’)fl(z’)a dz’ dz

+ 4x(t, (, x(t
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If(A.11) is now substituted into (A.1), then the first order terms in a vanish, because
of (73), leaving

(A.12) [f kx(, t)f,()fl() dl + terms of order 6x2(t2) O.

The quantity in the square brackets on the LHS of (A.12) is, from (76), just

(A.13) Ox(, tf)W(t2, tb)d/T(ff, tf),
which is invertible. So, from (A.12), can be found and it is of order 6x2(t2). Thus
a control variation of form

(A.14) 6u(z) fl(z)[a + ],

where a is first order in 6x(tz) and a is second order in 6x(t:) maintains the
terminal equality (4) correct to second order terms. Now if (A.14) is substituted
into (85), we find that, because a is second order in 6x(t2), and J, 0, (86) and (87)
do not contain a; thus the conclusion (89) is unaffected if we satisfy the terminal
constraints to second order rather than to first order. Satisfaction of terminal
constraints to higher order yields the same result. This confirms that, in order to
include all second order terms in an expansion of the cost functional, it is only
necessary to expand the Hamiltonian to second order terms and the dynamic
and terminal constraints to first order terms.
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SEQUENTIALLY BEST FILTER*
FRANK P. ROMEO, JR."

Abstract. The noisy-state noisy-observation filtering problem is broached in the language of
stochastic differential equations. The state and observation equations are nonlinear and time varying,

(1) dx(t) m(x(t), t) dt + a(x(t), t) d(t),

(2) dy(t) n(x(t), t) dt + drl(t).

By taking (t) and q(t) to be independent Brownian motions, (1) and (2) define a two-dimensional
diffusion process. The pair 4 and f/ simulate white Gaussian noise processes which drive the state
variable x(t) and corrupt the observation y(t), respectively.

Only recursive estimators will be considered, so only filters whose dynamics can be put into the
form

(3) dz(t) g(z(t), t) dt + f(z(t), t) dy(t)

will be admissible. (z(t) is the estimation of x(t), the instantaneous value of the state variable.)
Even though the square loss function is assumed, ambiguity persists with respect to the time

at which E(z(t) x(t)) should be minimized. A precise criterion is provided with the definition of the
sequentially best filter. A filter is sequentially best if every other dynamic scheme which has a smaller
error at some instant does so by accruing a larger error beforehand.

A dividend of the above criterion is that the point by point optimization lends itself to an
algorithm for the generation of the sequentially best f(.,. and g(.,. in (3).

To demonstrate the usefulness of this philosophy, an analytic (linear case) and a computerized
(a nonlinear case) example are described.

A heuristic proof of the coincidence of the sequentially best filter and the uniformly best (Kalman-
Bucy) filter in the time-invariant case is offered.

1. Statement ofthe problem. The purpose of this paper is to propose a reason-
able recursive estimation scheme for filtering a noise driven state variable from a
noisy observation. The behavior of the state variable x(t) is described by the non-
linear time-varying equation"

(1.1) dx(t) m(x(t), t) at + a(x(t), t) d(t),

where the driving function (t) is a sample from a Gaussian white noise process.
The observation variable y(t) is related to the state by way of the time-varying
function n(., t) and is corrupted by another additive white noise 0(t):

(1.2) dy(t) n(x(t), t)dt + drl(t).

The restriction to recursive estimates means that only those filters which can
be described by a differential equation will be considered. More precisely, if z(t)
denotes the estimate of x(t), then

(1.3)

or

dz(t) g(z(t), t) dt + f(z(t), t) dy(t)

(1.4) Z(t2) Z(tl) g(z(’), Z) dz + f(z(z), z) dy(z),
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for some pair g(.,. andf(.,. ), defines the admissible class of filters. Because )(t)
contains a white noise process, only linear operations on the observation are
mathematically justifiable (see [1]). Thus (1.3) embodies considerable generality,
the only restrictions being that z(t) is scalar-valued and Markovian. Defining the
incremental behavior clearly implies the recursiveness of the estimator, i.e., (1.4)
testifies that the new estimate depends only on the old estimate and the received
data.

It is expedient to point out here that substitution of (1.2) into (1.3) results in:

(1.5) dz(t) [g(z(t), t) + f(z(t), t)n(x(t), t)] dt + f(z(t), t)drl(t).

The transition density for the two-dimensional diffusion process (defined
by (1.1) and (1.5)) has an implicit representation provided certain conditions on
the coefficients are satisfied. These conditions are mild restrictions on the smooth-
ness of m(.,. ), n(-,. and ((-,.). It is assumed that they are satisfied by the
model defined by (1.1) and (1.2). (A thorough discussion of the regularity needed
is given in [1].) The joint probability density for the (x(t), z(t)) process, defined by

Pr{x(t) < 0 and z(t) < fl} P(a, b, t) da db,

can be shown to satisfy:

--P(a, b t) (m(a, t)P(a b t))
8t a

(1.6)
(0b

[(f(b, t)n(a, t) + g(b, t))P(a, b, t)]

(2 (2
+ oa3-kS-2 (aZ(a’ t)P(a, b, t)) + - ---b (/2(b, t)P(a, b t)).

Equation (1.6) comes directly from Kolmogorov’s forward equation when the
initial distribution on (x(0), z(0)) is integrated out.

The usual square loss function is used so all criteria will be based on reducing

(1.7) E(z(t)- x(t))2.

The quantity (1.7) is smallest when

(1.8) z(t) E(x(t) y(), 0 <= = t),

i.e., the conditional expectation (conditioned on the entire observation curve)
minimizes the mean-square error. The incompatibility between estimator (1.8)
and recursive estimation schemes is well known (see [2], [3], [4] or [5]). The
difficulty is essentially that if z(t) is defined by (1.8), then

ctz(t) [z(t), E(xk(t) y(z), 0 = = t)], k 2, 3,...

for some function -, i.e., the rate of change of the conditional mean is not finite-
dimensional in the general (nonlinear) case. If, on the other hand, one imposes
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(1.3) on the form of the filter and strives to minimize the error at fixed time T or
the average error over [0, T],

(1.9) E(z(T)- x(T))2

or

(1.10) T
E(z(t) x(t))2 dt

respectively, the computational problems are prohibitive. In theory, the technique
of minimizing the error at T would be to choose g(.,. and f(.,. globally on
(-, ) [0, T] such that the solution to (1.6) minimizes (1.9) or (1.10). Even
if implementation of the above were feasible, one would need justification for
either putting all the weight on instant T or uniformly on [0, T]. Thus the artifice
that insures realizability (adoption of (1.3)) raises problems as to a precise defini-
tion of the criterion as well as calculus of variation problems of extreme difficulty.

In 2 a criterion is suggested for which a tractable algorithm for finding
g( .,. andf( .,. exists. The justification of the criterion lies not in its implementa-
tion; rather it will be shown to have intuitive appeal and indeed may be argued
to be the ideal in many situations.

2. Sequential criterion and main result. Each filter may be identified with its
error-time curve, i.e., for each pair of functions g(.,. and f(-,. the resulting
solution of (1.6) results in a real-valued function of time (t), where

,(t) e(z(t)- x(t)).
Necessarily (0) will be the same for all filters. A ranking may be placed on the
set of filters by way of the error-time curves. The logic is best understood by first

considering the discrete analogue ofthe problem. Suppose one receives information

sequentially, i.e., first Ayl, then Ay2 To conform with the doctrine of recursive
estimation, one must operate on Ay and the initial estimate to get some number
N1, then operate on N1 and Ay2 to get the final estimate z2. (z2 is the estimate
of xz.)

Obviously the added requirement that N be a good estimate of x may
reduce the maximum accuracy of z2. A pair of discrete error-time curves appears
in Fig. l a. According to the criterion defined below, while filter 2D is the better
"predictor," the filter with the curve denoted by 1D is preferable to 2D.

DEFINITION. A filter is sequentially best if every other filter that has a smaller
error at any time t also has a larger error for some interval (t, t2) [0, t_-].

The criterion is demonstrated in Fig. lb. By definition, filter 1C is sequentially
better than filter 2C. The sequentially best filter in this sense is the best "tracker,"
the one that operates on the current estimate and the new data to best update the
new estimate without regard to the future. Notice that if a uniformly best estimator
exists, i.e., a filter whose output always has the smallest error, then it must also
be sequentially best. (See Example 1.)

Having made the criterion precise, there remains only the problem of finding
this optimal filter. The algorithm is given in the following theorem, the main result.
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THEOREM. If a sequentially best estimator exists, it must simultaneously satisfy
(1.6) and

g(b, t) (b, t) f(b, OFt(b, t),

(2.2)

where

f(b, t) nx(b, t) b(b, t),

?(b, t) r(a, t)P(a, b, t) da P(a, b, t) da

for r(a, t) equal to re(a, t), n(a, t) or n(a, t)a.
Thus to find the sequentially best filter one must solve the Kolmogorov

forward equation where the coefficients depend on the solution by way of certain
conditional expectations.
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3. Proof of the main result. All calculations will begin with discrete time
versions of the processes involved; thus transition density functions will be needed
for the resulting difference equations. The state and observation equations are
repeated here:

(3.1) dx(t) m(x(t), t) dt + a(x(t), t) d(t),

(3.2) dy(t) n(x(t), t) dt + drl(t),

where (t) and r/(t) are independent standard Brownian motions. The reader will
recall that the Brownian motion process is the zero-mean Gaussian process with
E((s)- (t))2 E(rl(S)- r/(t))2 -Is t[. (Let (0) and r/(0) be identically zero.)
The motive for the incremental equation for x(. and y(. instead of &(. and p(.
is that the problem may now be treated within the framework of stochastic dif-
ferential equations as defined by Ito. (Ito’s work [6] is definitive, but [7] is suffi-
ciently thorough and more accessible.)

Equations (3.1) and (3.2) are replaced by their corresponding Markov chains.

Xi+ Xi "- m(xT, t) At" + a(xT, tT) A7,

Yi+ Yi + rl(XT, tT) At" + AnT,

Zi+ Z + g(zT, tT) t" + f(zT, ti)(Yi+ YT)

z7 + [f(zT, tT)n(xT, tT) + g(zT, tT)]At" + f(zT, tT) AnT.
The subscript n denotes partition T,, where

and

Let

T. {t 0, t], t2, "", t." T}

max
l<_k<n

x7 x(tT), Y7 Y(tT), A,". (tT+ ,)- (t7), etc.

Since A’ and Ar/ are increments of Brownian motion, the transition densities are"

P(xT+, xT, zT) (2na2(xT, tT) Atn) 1/2

exp { (xT+-xT-m(xT’tT) At")2}-2a2(xT, tT) At"

P(zT+ xT, zT) (2nf2(zT, tT) At")- /2

(zi+l zi If( i, tT)n(xT, tT) + g(z’], t’l)3 At")2
exp 2f2(z,"., t,".) At"

Lemmas 1, 2 and 3 will serve to prove the form of the discrete sequentially
best filter up to terms that vanish faster than At, i.e., modulo O(At). The proofs will
be by an inductive construction. It is assumed that f(.,. and g(.,. have been
specified up to time t,"._ , so the joint distribution of x’ and z’ are completely
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determined. Minimizing the error at the next instant, i.e., minimizing

)2E(xT+ zi+

is accomplished by the choice off(zT, tT) and g(zT, tT). Finally, the theorem will be
proved by a limiting argument on At".

LEMMA 1. The sequentially best (discrete case) estimator has the property

(3.3) E(xT zT) zT.
Proof The operation on z’ that minimizes

(3.4) E[(xT+ zT+ 1)2 zT]

will be

 3.5) z7+1 e(xT+ z,),

from which Lemma 1 follows. (The fact that (3.5) implies (3.3) is proved in [9,
p. 3503.)

Ordinarily results that require a one line proof are not relegated to separate
lemmas, but (3.3) has special significance. Its analogue in the continuous case is

(3.6) z(t) E(x(t) z(t)).

Relation (3.6) provides the compatibility between the essentials of z(t) being both
the estimate and a functional of the observation on which the estimate is based.

LEMMA 2. The sequentially best (discrete case) estimator has the property

g(zT, tT) (zT) f(zT, tT)ft(zT),

where

and

t(zT) m(xT, tT)P(x7 zT) dx7

(zT) n(xT, tT)P(x7 zT) dxT.

Proof The requirement that E(xT+ zT/ zT) 0 may be written"

f_o f_ (XT+ 1)p(x7+ zT)dxT+ dzT+

dx’(XT+ zi+n )P(x’+ Zi Xi, zi)P(xilz’)dxi+ dZi+l

Ix7 + m(x, t’) At" z7 f(z’], t’])n(x, t’]) At" g(z, t) At"]

P(x7 z7) dx7

znAt" f( i, ti)n(zi) At" g(z7, tT) At" O,
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because

f(x7 zT)P(xT zT) dx7(3.7) 0

by Lemma 1 and the fact that the filter has minimized the error at time tT. This
proves Lemma 2.

It is interesting to note that if one ignores bias and tries to reduce error by
manipulating g(.,. and f(.,. independently, the result is that g(zT, tT) comes
out to be proportional to (At")-1. In the limit, as At" 0, g(.,-)= +__ , an
unacceptable answer but not a surprising one. What the mathematics is saying is"
If the new data causes one to decide the estimate is low, the drift coefficient g(-,-
should be assigned the value that will raise the expectation of the new estimate
the fastest. Of course there is no fastest and the derivation leads to a nonsense
answer. It is analogous to control problems with a bounded set of controls where
the answer is "bang-bang" or one of two extremal points is always optimal.

LEMMA 3. The sequentially best (discrete time) estimator has the property

f(zT, tT)= nx(zT) zTYt(zT) + O(At"),
where

nx(zT, tT) n(xT, tT)xTP(x7 zT) dxT.

Proof Minimizing E[(zT+ xT+ 1)21 zT] is equivalent to minimizing

(3.8) (-2x7+ lzi+ + (zT+ 1)2)P(xT+ 1, zi+ zT)dxi+ dzi+ 1.

With an expansion of the density function and integration over xT.+ and zT+ 1,

(3.8) becomes"

f_o [_ + f(zT, tT)n(xT, tT) At" + g(zT, tT) At")2(x7 t,n.) Atn)(z7 +

Z+ (z7 + f( i, tT)n(xT, tT) At" + g(zT, t’) At")2 + f2(z7, tT) At"]P(x7 zT) dxT.

A regrouping of terms yields:

f (- ZxTz7 + dx7(zT))P(xT zT)

+ At" (f2(z, t’) 2n(xT, tT)xTf(zT, tT)

+ 2n(xT, tT)zTf(z’], tT))P(x’] zT) dx7

+ At" (2zTg(zT, tT) 2xTg(zT, tT))P(x7 zT) dx7 + O(At").

The first integral is independent of f(zT, tT) and g(zT, tT) and the last integral is
zero by Lemma 1. Clearly the second integral is minimized whenf(zT, #) (zT)

 (zT)zT, which proves Lemma 3.



SEQUENTIALLY BEST FILTER 603

Proofoftheorem. The theorem is almost obvious in light of Lemmas 2 and 3.
If two estimators agree up to time (they necessarily agree at 0) and then
differ over an interval (t, + A), there must be a discrete approximation such that
t,". and t,".+ (t, + A). Since the algorithm for the discrete case definesf(.,.
and g(.,. uniquely up to sets of measure zero, the filter that does not satisfy
(2.1) and (2.2) (the same as not satisfying Lemmas 2 and 3) must have a larger error
and is therefore not sequentially best. This proves the theorem.

To prove that a unique sequentially best estimator exists is to prove that the
simultaneous solution of equations (1.6), (2.1) and (2.2) exists and is unique. Any
restrictions on the problem will necessarily be expressed in terms of m(.,. and
n(.,. and a(.,. ), the only unspecified quantities. Although suitable conditions
on these coefficients to insure the existence of a unique set of solutions f(.,.
and g(.,. to (1.6), (2.1) and (2.2) have not been discovered at this time, examples
of the next section, expecially the linear case, show that the preceding theorem
cannot be vacuous. Indeed, it is suspected that it is rather widely applicable. A
rigorous proof of existence of a solution would be truly interesting, but will not
be pursued here.

4. Examples. If (1.1) and (1.2) are linear, then the model conforms to the
case solved by Kalman and Bucy [8]. It is interesting to examine exactly how the
algorithm reduces in this instance.

Example 1. First, of course, a(x(t), t), m(x(t), t) and n(x(t), t) must be linear;
let a(x(t), t) a(t), m(x(t), t) m(t)x(t) and n(x(t), t) n(t)x(t). By Lemma 1,

g(z(t), t) E(m(t)x(t) z(t)) f(z(t), t)E(n(t)x(t) z(t))

m(t)z(t) f(z(t), t)n(t)z(t).

Now all the coefficients of (1.6) are specified with the exception off(z(t), t).

f(z(t)) E[n(t)x(t)x(t) z(t)] E[n(t)x(t) z(t)]E[x(t) z(t)]

n(t)E[x2(t) (E(x(t)] z(t))2 z(t)],

i.e., f(z(t), t) is proportional to the conditional variance of x(t).
Now consider a Gaussian solution of (1.6). When P(a, b, t) is a bivariate normal

distribution, the conditional variance is not a function of the conditioning variable,
i.e., f(z(t), t) f(t). Hence all the coefficients of (1.6) are linear and if a solution
exists it must be Gaussian.

If the only unknown isf(t), which in the linear case has the property of being
the mean-square error at time t, is it still necessary to solve (1.6)? The answer,
thanks to Kalman and Bucy, is no. A major contribution of their work is the proof
that the evolution of the mean-square error is a Riccati equation. Thus the reduc-
tion is complete. The filter, f(t) and g(z(t), t)= m(t)z(t)- f(t)n(t)z(t)= g(t)z(t),
does indeed coincide exactly with the Kalman filter.
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In lieu of an analytic example of the algorithm for the sequentially best esti-
mator in a nonlinear situation, a numerical solution of the simultaneous equations
(1.6), (2.1) and (2.2) was undertaken.

Example 2. In the numerical solution of the algorithm a certain instability is
inherent. Equation (1.6) is replaced by a difference equation over quantized time
and space; (2.1) and (2.2) are replaced by relations among summations over the
space variables. The evolution of the filter coefficients g(b, t) and f(b, t) is
achieved by using P(a, b, tj) to calculate g(b, tj) and f(b, tj) which in turn are
used to update the density or find P(a, b, tj+ ). Thus errors are cumulative and
the error introduced by the truncation of the domain of P(., .,. bounds the
number of iterations before the density blows up and future calculations are
meaningless.

In order to get to an interesting region of operation the linear time-invariant
case is assumed to have started at -oe; thus at 0 the state x(0) and esti-
mator z(0) have reached a stationary bivariate normal distribution. At 0 non-
linearities are introduced through re(a,. and n(a,. ). The resulting growth of error
is computed both when the original linear filter is retained and when the filter is
modified by the sequential criterion.

The numbers used in the calculations indicate only relative magnitudes, so
of course are dimensionless. To facilitate the computations the following were
assumed:

m(a,t)= -0.1a, n(a,t)=a and r(a,t)= 1.

By the results of Kalman and Bucy it is straightforward to find the optimal steady
statef(b, and g(b,. for this case. Implementation of the above coefficients results
in an error of .93, i.e., when the above constants are put into (1.6) the resulting
normal density yields E(x(t) z(t)) .93.

Incrementing began at 0 with At 0.1 seconds. With everything linear
the error was maintained almost constant for seven iterations while the optimal
f(., t) and g(., t) for 0, .1, .2,..., .7 were generated and stored on magnetic
tape.

Having carried out the above to test the stability as well as generating the
"computerized version" of the linear filter, we imposed nonlinearities on the
system. Coefficients re(b,. and n(b,. were changed to the solid line graphs shown
in Figs. 2 and 3. The resulting f(b,. and g(b,. are shown in Figs. 4 and 5. The
change of coefficients was accompanied by a growth of mean-square error. The
errors are compared in Fig. 6. Lastly, the evolution of the density was recomputed
with the nonlinear m(.,. and n(.,. ). This time instead of calculating f(-,. and
g(.,. each time around the loop, the functions generated in the linear case were
read in from the tape. This simulated filtration of the nonlinear system using the
best Kalman or linear filters. The resulting growth of error also appears in Fig. 6.
The fact that the sequentially best scheme had a smaller error than the linear filter
on the nonlinear system indicates the power of the "sequentially best" estimation
scheme.

5. Time-invariant case. Consider the time-invariant case where m(.,. ),
a(.,. and n(.,. are functions of one variable and such that x(. is a stationary
process. It is desired to find a time-invariant filter with the smallest possible error.



SEQUENTIALLY BEST FILTER 605

.8 re(a,"

-.4-- .2

--I0 --8 I0

--.4

FIG. 2

Fro. 3



606 FRANK P. ROMEO, JR.

,TI.O f(b," -’"/’ / ’,,,
I

i

/ --.7

o

o

b
-I0 -8 -6 -4 -2 0 2 4 6 8 I0

FIG. 4

6 4 2

FIG. 5



SEQUENTIALLY BEST FILTER 607

1.1

1.08

1o04

1.00

.92

TIME (SECONDS)

LINEAR CASE, LINEAR FILTER

NONLINEAR CASE, LINEAR FILTER

NONLINEAR CASE, SEQUENTIALLY BEST FILTER

FIG. 6

By suppressing the time dependence, (1.1), (1.3) and (1.6) can be rewritten"

dx m(x) dt + t(x) d,

dz g(z) dt + f(z) dy,

m(a)P(a, b)] --, [(f(b)n(a) + g(b))P(a, b)]
8a

1 (2 (2
+ - ca--Z-v[rZ(a)P(a’ b)] + ,[fZ(b)P(a, b)] 0,

where P(a, b) is the joint density for the x and z processes and the left side of (1.6)
is identically zero.

Equation (5.1) always has at least one solution because if g(b) andf(b) vanish,
the marginal density of the x process satisfies

1 (2
[m(a)P(a, b)] + [t2(a)P(a b)] 0
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Now suppose a pair of real-valued functions g(b) and f(b) exist such that the
solution of (5.1) defines a two-dimensional process with the property that z is the
minimum variance unbiased estimate of x.

Lemma 2 still holds so,

(5.2) g(z) N(z) f(z)(z),

where

(z) m(a)P(a z) da,

Now iff(b) did not satisfy

etc.

f(z) -(z)- (z)ff(z),

then one could operate on the output of the filter with one satisfying both (5.2)
and (5.3) to obtain a smaller variance with another time-invariant filter. This
argument leads to a contradiction; thus (5.3) must be satisfied.

The implication is that if the state and observation variables have a stationary
distribution, then the minimum variance, unbiased, time-invariant filter is given by
the simultaneous solution to (5.1), (5.2) and (5.3). Hence the "sequentially best"
algorithm yields the uniformly best time-invariant filter.

6. Acknowledgment. The author is extremely indebted to Professor Eugene
Wong for his encouragement and counsel throughout the research of the topic
and preparation of the manuscript.
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AN OPTIMAL CONTROL PROBLEM FOR
SYSTEMS WITH DIFFERENTIAL-DIFFERENCE

EQUATION DYNAMICS*
D. W. ROSS AND I. FL1]GGE-LOTZ

1. Introduction. This paper is concerned with the optimal control of systems
in which time delays appear explicitly in the system model. The systems under
discussion will be described by constant coefficient, linear differential-difference
equations of the type:

(1.1) Yc(t) Ax(t) + Bx(t 1) -+- Du(t)

in which x(t) is an n-dimensional vector, A and B are constant n n matrices,
u(t) is an r-dimensional vector called the control (r <= n), and D is a constant
n r matrix. The assumption of a single delay is for convenience; the results for
multidelay problems are minor variations of those presented here and are dis-
cussed in [1]. Without loss of generality, we assume that the (constant) time delay
is normalized to unity.

The differential-difference equation model is applicable in many engineering
problems;see [1, Chap. 1], [2], [3], [4, Chap. 8], for examples. Many aspects of
the theory of differential-difference equations have been considered by Bellman
and Cooke [5].

The time-optimal control of such systems has been discussed by Oguzt6reli
[6], and more general optimization problems have been considered by Khar-
atishvili [7, pp. 212-226] and Chyung and Lee [8]. All of these works concerned
the derivation of necessary conditions for optimality. In each case, the necessary
conditions were presented in the form of a maximum principle.

The problem considered here is more specific than those of references [6]-[8];
it is to investigate conditions to be satisfied by the control u(t), >= O, for the
performance criterion

(1.2) J[tp, u] [x’(t)Qx(t) + u’(t)Ru(t)] dt

to be minimized.
Here Q and R are positive definite matrices (of conformable dimensions) and

q is the initial condition for (1.1) which is taken to be a collection of n continuous
functions (one for each component of x) defined on the interval [- 1, 0]. Primes
will be used throughout this paper to indicate the transpose of vectors or matrices.

This problem has been studied previously by Krasovskii [9], [10] using a
sufficient condition for optimality. This approach led to the conclusion that,
under certain conditions, a linear control law is optimal for criterion (1.2). How-
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ever, the resulting analysis did not put in evidence an explicit characterization of
the optimal control and some key statements remained unproved.

The present paper also addresses the problem using sufficient conditions for
optimality, but the emphasis is upon explicit conditions for optimality in the style
of Kalman’s [12] algebraic Riccati equation characterization of optimal controls
for a similar problem without time delay. In this paper we present sufficient
conditions for a linear control law to be optimal for criterion (1.2) and we derive a
specific set of equations to be satisfied by the (optimal) control law parameters.
These equations play the same role in our problem as the Riccati equation derived
by Kalman 11], [12] does in characterizing the optimal control for criterion
(1.2) when B 0 in (1.1). In fact, Kalman’s solution 11], [12] is obtained as a
special solution ofthe equations we derive, by simply letting B 0 in our equations.

Sections 2 and 3 of this paper will deal with preliminaries and the discussion
of underlying concepts. A statement of the main results (Theorem 4.1) of this
investigation will be given in 4. Section 5 is devoted to the presentation of
sufficient conditions for optimality. In 6 we use this result in deriving our main
results (Theorem 4.1). Finally, computational aspects of the problem are treated
in 7.

2. Basic definitions and concepts. Let us first introduce some notation.
C C([-1, 0], E") will denote the Banach space of continuous functions

with domain [-1,0] and range in E". The norm of this space is defined as
I1011 max-l_<0_<o Iq(0)l, where Io(0)l is the usual Euclidean norm of q in E"
(at time 0). Occasionally Isl will denote the absolute value of the scalar, s; the
usage should be clear from context.

For >_ 0, let xt denote the element of C defined by xt x(t + O) for
-1 =< 0 =< 0; in other words, xt denotes the segment of the trajectory of (1.1)
on a time interval of length equal to the time delay, prior to time t. If x and u(t)
(for >= tl) are specified, then solutions of (1.1) are uniquely determined. Since the
quantity, x, is the minimal set of data which (in conjunction with knowledge of the
future control, u(t)) allows one to completely determine the evolution of system
(1.1) it is called the state of the system (1.1) and the corresponding state space will
be C.

The symbol x(t) will denote the value, in E", ofx at time (the reader is strongly
urged to note the difference in meanings of the symbols x(t) and x and the corres-
ponding norms). A more specific symbol, x(t; u, q), will denote the value, in
E", of x at time when the control function is u(. ), the initial state is 99, and the
initial time is to 0.

2.1. Functional-differential equations. If the control in (1.i) is taken to be
an explicit function of the state, i.e., u(t)= u(xt), then the differential-difference
equation becomes an (autonomous)functional-differential equation"

(2.1) .(t)=f(x(t+ 0)), -1 <=0<0, >= to
(with X(to + 0) qg(0)for -1 =< 0 < 0).

Solutions to (2.1) exist and are unique if the functional f(x(O)) satisfies certain
conditions. For instance, iff(x(O)) satisfies a uniform Lipschitz condition, i.e.,

f(x(O)) f(y(O))l < Lllx
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for some constant, L, then solutions to (2.1) exist and are unique for => to (see
_13, pp. 127-128]). Thus solutions to (1.1) will be well-defined if u(t) is a functional,
u(xt), which satisfies a uniform Lipschitz condition.

Let us now assume that the control, u(t), in (1.1) is a functional for which (1.1)
becomes an equation of type (2.1) with well-defined solutions. The following
stability concepts (see 14] for a more complete discussion) will refer to system
(2.).

DEFINITION 2.1. The null solution (x =- 0) of (2.1) is said to be stable if for
any e, > 0, there is a > 0 such that if goll < 3, then ]x,l[ < e for all _>_ 0.

DEFINITION 2.2. If in addition to being stable we have x - 0 as , then
x 0 is said to be asymptotically stable (and if all solutions approach zero as

then x 0 is said to be globally asymptotically stable).

3. Admissible controls. Our problem suggests the following question" If the
initial state, go, is an arbitrary function in the state space C, is there a control

function u(t), for _>_ 0, such that J[go, u] < ? Of course, the problem posed by
(1.1) is completely meaningless if such is not the case for any go.

As mentioned in 2, the quantity which describes the state of the system (1.1)
and completely determines (for known u(t)) its evolution in the future (t >= to) is the
segment, X(to + 0), for 1 =< 0 < 0, of the system’s motion. Thus it is natural to
form the control u(t) at each instant of time using the information xt x(t + 0),
-1 =< 0 =< 0, on the preceding time interval, It 1, t]. In fact, it follows from
Bellman’s principle of optimality that an optimal control (if one exists) for our
problem is a (time-invariant) functional, u(t)= u(xt), which maps C into Er.
This observation motivates a more restricted question than asked in the previous
paragraph, namely" Is there a control law, u(xt), which yields J[go, u] < for
arbitrary go?

From the design viewpoint, there is another point to consider. If the answer
to this last question is affirmative, we would hope that the controlled system is
asymptotically stable (hereafter, the term "asymptotically stable" will be used in
the global sense).

The preceding paragraphs lead us to the following definition.
DEFINITION 3.1. An admissible control for system (1.1) is to satisfy the require-

(i) u(t) u(xt); in other words, the control at time is the value, in U, of
a (time-invariant) functional of the system state, x.

(ii) The functional u(xt) is such that solutions to (1.1) exist and are unique
for => 0 and for all initial states, go. (A sufficient condition for this require-
ment is that u(x,) be continuous in the topology of space C, and also
satisfy a uniform Lipschitz condition.)

(iii) The null solution of (1.1) with control law u(t) u(x) is required to be
asymptotically stable.

(iv) The control u(x,) must yield a firiite value for the performance criterion
(1.2) for all initial states, go, from the state space C.

Of course, Definition 3.1 is meaningless unless one can establish conditions
for the existence of admissible controls for system (1.1). Necessary and sufficient
conditions have recently been established by Osipov [15]; however, those condi-

ments"
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tions are difficult to apply;in some cases the following simple sufficient condition
applies.

PROPOSIXION 3.1. The linear constant system with time delay

(3.1) .(t) Ax(t)+ Bx(t- 1)+ Du(t)
has a (linear) admissible control u(xt) /f (i) the columns ofB are linear combinations
of the columns ofD, (ii) D has rank r, and (iii) (A, D) is a completely controllable pair
(i.e., the rank of the matrix [D[AD[AZD[ [A’-1D] is n).

Proof. We first remark that u(xt) is said to be a linear control law if

u(oxt + flYt) u(xt) + flu(Yt)
for all x,, Yt in C and all scalars ,/3.

Using (i), let fi(t) be defined by Dfi(t) Du(t) + Bx(t 1) then (3.1) becomes
(3.2) (t) Ax(t)+ DR(t).

Now, it is well known [12] that if system (3.2) is completely controllable
there is an r n matrix, K, such that if (t) Kx(t) then the null solution of (3.2)
is asymptotically stable.

Using (ii) we have u(t) (t) (D’D)-1D’Bx(t 1); consequently the linear
law

u(t) Kx(t) (D’D)- iO’Bx(t 1)
causes the null solution of (3.1) to be asymptotically stable. This completes the
proof.

Clearly, any nth-order differential-difference equation in a scalar variable
and scalar control of the form

d"y ,_ d"- y
+ + oy(t)

dt" dr"-
fl,-x d"- XY( 1)

+ dt"-i +"" + floy(t- 1)= u(t)

meets the conditions of Proposition 3.1, for in that case we may take A, B, D to be

0

0

0 0

0 0 0

0 0

0

0 0

--oo --o

0 0 0

0 0 0

/o /

(here xi(t) dyi- (t)/dti- for 1, 2, 3, ..., n).

On- 1.2

D--
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In summary, under either the conditions of Proposition 3.1, or those given in
[15], there are admissible controls for our problem.

4. Main results. The following theorem summarizes the main result of this
paper; it is a statement of sufficient conditions for a linear control to be optimal
for criterion (1.2).

THEOREM 4.1. A linear control law

u(t) -R-D’l-Iox(t) R-D 1-I(O)x(t + O)dO, >__ O,
-1

provides the absolute minimum of criterion (1.2) for the dynamical system (1.1)/f:
(a) u(t) is a stable control law (since u is linear, stability and admissibility are

equivalent)"
(b) Ilo is a symmetric positive definite matrix which, together with the n x n

array, 1-I 1(0), offunctions defined on [- 1, 0], and an n n array, 1-I2(, 0),
of functions in two variables having domain -1 <= <= O, -1 <= 0 <_ O,
satisfies the relations"

(4.1a) A’Ho + HoA [loDR-1D’[lo + Hi(0) + II1(0) + Q 0,

(4.1b)
dI-I 1(0

dO
(A’ IIoDR- 1D,)H 1(0) + [12(0, 0),

(4.1c)
c[12({, 0) cII2({, 0)

+ -H’(g)DR-1D’FII(0),
0

-1 =<0=<0,

-1 =<0<0,

(4.1d) gll(- 1) [loB,

(4.1e) lq2(-l, 0)= B’l-Ii(0), -1 < 0 5 0.

Furthermore, under these conditions, the corresponding representation of (1.2) in

terms of the initial function is

Slip, u] (p’(0)IIo(0) + 2’(0) I-I l(0)q(0) dO
-1

’()II2(, O)q)(O) d dO.

The proof of Theorem 4.1 will be deferred until 6 while necessary inter-
mediate material is developed in 5.

Assuming that one has solved (4.1) and u is stable, we note that the optimal
control

u(t) R 1D’noX(t) R D’ FI l(O)x(t + O) dO
-1

generalizes the result for ordinary differential equations (see [12]) in a natural way
it is a linear, constant law which includes compensation for hereditary effects
through the term

R- 1D’ [l l(O)x(t + O) dO.
-1
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Also note that if B 0 in (1.1) then a solution to equations (4.1) is

(4.2a) H1(0)=0 for -1__<0=<0,

(4.2b)

(4.2c)

H2(,0)=0 for-1 =<=<0, -1 =<0=<0,

Ho satisfies’A’Ho + HoA HoDR-1D’Ho + Q 0.

Noting that (4.2c) is the algebraic Riccati equation derived by Kalman
in [11 and [12] we see that the results include those of the linear optimal control
problem for ordinary differential equations.

The result of Theorem 4.1 is particularly interesting since a single calculation
which yields the quantities Ho and H 1(0) is all that is needed to optimally control
the system for any initial conditions. A convenient computation procedure for
this determination of Ho and H 1(0) is presented in 7.

5. A sufficient condition for optimality. In this section we present a Hamilton-
Jacobi type sufficient condition for optimality which will be used in 6 for the
proof of Theorem 4.1.

Some simplifying notation will be used in the theorem below. Let

g(xt, u(t))= x’(t)Qx(t) + u’(t)Ru(t)

(the integrand in (1.2)), and if V[xt] is a continuous scalar-valued functional of the
state, xt, of system (1.1) at time t, define

17, lim (V[xt+ hi V[xt])/h.
h-O

(Whenever the limit exists, the subscript indicates that the limit is evaluated along
the motion corresponding to control function u(t).)

Now the sufficient condition is stated.
THEOREM 5.1. If there is an admissible control u(t) u(xt) and a continuous

nonnegative scalar functional V[xt] (which is zero for xt O) which together satisfy
the conditions"

(5.1) (/’,o + g(x,, u(x,))--O, >__ O,

(5.2) uO + g(x,, u(x,)) <= , + g(x,, u(t)), >= 0

(for any (measurable) control function u(t)), then u provides the minimum of the
performance criterion (1.2) among all admissible controls. Furthermore,

v[o] j[0, u],

the optimal value ofthe performance criterion.

Proof. (The proof is a slightly different version of Theorem 3.1 of [9] .)
Integration of (5.1) from 0 to oo (which is valid due to the asymptotic

stability) gives (if q is the initial state)

V[q] g(x,, u(xt)) dt J[q, u].
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But, from (5.2), if u(xt) is any other admissible control, then

(/, >__ -g(x,, u(x,)).

Thus, integrating both sides of this inequality (again using the asymptotic
stability property of admissible controls) yields"

V[0] __< g(x,, u(x,)) dt J[o,

Consequently, J[o, u] __< J[o, u] and so u is an optimal control among
the admissible controls. This completes the proof.

Remark. The reader may recognize that this sufficiency condition is similar
to that recently used by Boltyanskii [16, Theorem 3_] in connection with dynamic
programming.

In this paper we shall seek a control u(x) and a functional V[x] which
together satisfy (5.1) and (5.2). We shall proceed as follows"

(a) choose a particular form of u(xt);
(b) from that choice, express J[qg, u(x0] as an explicit functional of the initial

state, i.e., find V such that V[q)] J[qg, u(x,)]
(c) use equations (5.1) and (5.2) as constraints on the parameters of the

assumedform of u(x,).
This approach reduces the solution of the optimal control problem to a

solution of equations in which the unknowns are the parameters of the optimal
control law. The same state of affairs occurs in [11], where the solution for the
optimal control reduces to the solution of the Riccati equation for the parameters
of the optimal law.

6. Proof of the main theorem. Since system (1.1) is linear and performance
criterion (1.2) is quadratic, one would intuitively feel that in our problem the
optimal control is a linear functional of the state, x; that is, u(x) K(x,) for

_>_ 0, where K is a (constant) linear operator mapping the function xt from space
C into Er. Of course at this point this is only a conjecture, but in view of the com-
ments at the end of 5, it motivates us to ask the question" "What is the general
representation of J[qg, u(x)] when u(x) is a control from the class of linear admis-
sible controls?".

One cannot make arbitrary choices of V[x] and u(x) in attempting to
satisfy conditions (5.1) and (5.2) of Theorem 5.1. More to the point, if u(x) is
considered a candidate for the optimal control, then the corresponding choice of
V[xt] must be J[x, u] which is evaluated from (1.2) for initial state, x,. For a
given class of candidates for the optimal control, u(x), there is a corresponding
class of functionals, V[x].

For the class of linear admissible controls one can show [1 that the functional
V is a quadratic functional of the form given in the following proposition.

PROPOSIa’ION 6.1 (see [1] for a proof). If uL uL(x,), >= O, is a linear admis-
sible control which satisfies a uniform Lipschitz condition, and q) is an arbitrary
initial function in space C, then the functional

V[q J[q, u] [x’(t)Qx(t) + u’(xt)Ru(x)] dt



616 D.W. ROSS AND I. FLGGE-LOTZ

has the quadratic representation"

(6.1)

o

VEfD (f}’(0)1"Io(4’)(0) + (f)’(O) 1ZI 1(0)(19(0 dO
-1

+ q,’(_)n(_, 0)0(0) dO

fo dO}-,
’(o)n;(o) (o)

in which
(i) Ho is a symmetric n n positive definite matrix;

(ii) 1-I1(0) is an n n array of functions continuous on the interval [- 1, 0]"
(iii) FI2(., 0) is an n n array of continuous functions of two arguments

defined on the square" <

_
<_ O, < 0 <= O. Also Flz(., 0) H2(0, ).

The essence of the proof of Proposition 6.1 is to construct the functional
V[qg] in a manner similar to the classical Riesz representation theorem offunctional
analysis, using the linearity (linear, because UL(Xt) is linear by assumption) of
(1.1) (now a functional-differential equation). One first approximates the given
initial function, q, by a finite sum of "step functions" (see the proof given in [1]).
This approximation is denoted by 95. One can express V[qS] as the sum of a finite
number of terms. This summation is recognized to be a Stieltjes summation. As
the approximation, 95, approaches q then V[qS - V[q]. In the limit, the expression
for V[qg] becomes a quadratic functional represented in Stieltjes integral form.
Then one can show that the integrals are also defined in the Riemann sense. This
Riemann representation involves Ho, Hi(0), and I-I2(, 0).

In the following, we establish conditions for which a linear admissible control
and its corresponding quadratic function, V[99], of the form (6.1) together satisfy
the sufficient conditions for optimality given by (5.1) and (5.2). More to the point,
we specify a trio of quantities Ho, lq 1(0) and I12(, 0) from which both the optimal
control and the optimal performance criterion representation can be determined.
Explicit equations are given for Ho, H and H2.

For any >__ 0, let
o

V[xt] x’(t)Hox(t) + x’(t) H l(O)x(t + O)dO
-1

(6.2) + ;0 x’(t + 0)I-I](0) dO x(t)
-1

 ofo-1- x’(t nI- )1-I2(, O)x(t nt" O)d dO

be a (nonnegative) quadratic functional of the state at time along motions of the
system

2(t) Ax(t) + Bx(t 1) + Du(t), Xo q).

Now, by letting u(t) be any (measurable) control function (t >__ 0) the calcu-
lation (as in (5.1), (5.2)) of the quantity

(/, + x’(t)Qx(t) + u’(t)Ru(t)
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when V is the functional of (6.2) yields’

(6.3)

x’(t)[HoA + A’FIo + Q]x(t) + 2x’(t)HoBx(t 1) + 2x’(t)A’

FI (O)x(t + O)dO + 2x’(t- 1)B’ FI (O)x(t + O)dO

-1-- X’(f) Il(0 dO - 1-Ii(O)dO
dO dO

+ f fo dx’(t + )
-1 -1 d

FI2(, O)x(t -3
I- O)d dO

fofo+ x’(t + {)1-I2({ O)dx(t + O)

-1 -1 dO

+ u’(OD’ n(O)x(t + O)dO + u’(t)eu(t).
-X

d dO + 2x’(t)HoDu(t)

If (6.3) is minimized with respect to u, as is required in (5.2), it is clear that
there is a unique u which minimizes (6.3), namely"

o

u*(t) -R-1D’I-lox(t)- R-XD FIx(O)x(t + O)dO.
-1

(6.4)

Moreover, this control is linear and therefore compatible with the assumption
of a quadratic V[xt].

Next we substitute (6.4) into the expression (6.3) and require this to vanish
for all >= 0, and, in particular, it must vanish for 0 and any continuously
differentiable initial state, q0. After some manipulation, including some integration
by parts (assuming FIx(0) and 1-I2(, 0) have continuous first partials on their
respective domains) we obtain"

(6.5)

(6.6a)

o’(O)[A’no + noA noDR-’D’no + n’(o) + n,(o) + Q]q0(0)

+ 2o’(0)[1-IoB 1-I (- 1)]o( 1)
o [ dH (0)

+ 2q9’(0) .-
-1 dO

+ (A’- FIoDR-1D’)Hx(O)+ H2(O,O)]q)(O)dO
o

+ 2(p’( 1) [B’n, (o) n2( , o)]o(o) dO
-1

+ o’() -[I’()DR-XD’FIx(O)
# 80

(p(O) d dO O.

Since q9 is arbitrary, (6.5) vanishes if and only if H o, FI and 1-I 2 satisfy"

A’I-Io + HoA HoDR 1D’lqo + 1-I’(0) + 1-11(0) + Q 0,

(6.6b)
dn (0)

(A’ noDR- D’)n (0) + n2(o 0) < 0 < 0
dO
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(6.6c) + 0

(6.6d) FI 1( 1) HoB,

-n’(ODR-’D’n,(o),

-1<= <=0, -1<=0<=0,

(6.6e) FI2(-1,0)= B’FI,(0), -1 =< 0 =< 0.

The above conditions are thus necessary in order that (6.3) vanish for => 0
when the control is (6.4). However, these conditions are clearly also sufficient for
(6.3) to vanish for all > 0.

In summary, conditions (6.6) are necessary and sufficient conditions for the
control u*(t) of (6.4) to minimize expression (6.3) and to make it vanish as required
in Theorem 5.1.

There is only one additional condition which u*(t) must satisfy before
Theorem 4.! is proved. This condition is that u*(t) must be admissible, in other
words, the stability statement (iii) of Definition 3.1 must be satisfied. If the control
law u*(t) of (6.4) formed using a solution for FIo and lql obtained from (6.6) is
stable, then it follows from Theorem 5.1 that u*(t) is also optimal. This is the state-
ment of Theorem 4.1, and so that theorem has been proved.

The results of Theorem 4.1 are difficult to apply rigorously to the design of
the optimal control law for system (1.1) for two reasons. First, there are no known
algorithmic ways in which the stability of control law u*(t) can be assessed;
secondly, only "approximate" methods for solution of the optimality equations
(4.1) exist. The "approximate" method discussed in 7 is characterized by replacing
the derivatives in (6.6) by difference quotients. In this manner a control law fi*(t)
can be found. The use of difference quotients instead of derivatives necessarily
obliges the user of this method to check whether diminishing the step size or mesh
size yields convergence of *(t) towards a well-defined limit.

In practice, Theorem 4.1 is applied in the following manner" (a) first, one
solves (numerically, as described in 7) equations (6.6) for the parameters FI0
and FI that determine a control u*(t) given by (6.4); (b) then one "tests" the stability
of the "closed loop" system via simulation for a variety of initial conditions;
(c) if only stable behavior is observed, it is probably’safe to conclude that u*(t)
is stable, and therefore, by Theorem 4.1, it is optimal. The computational exper-
ience of the authors with some practical examples has shown that the solution
of the optimality equations (6.6) by the approximate method of 7 results in a
control law that indeed yields stable behavior.

The authors remark that it is possible to derive (6.6a)-(6.6e) from an infinite-
dimensional Riccati equation similarly to the development of Falb and Kleinman
[17]. One parallels their development using the inner product defined by

0

(xt, Yt) x’(t)y(t) + x’(t + O)y(t + O)dO
-1

and by defining the linear operator FI(t) (see [17]) in terms of FIo, FI and FI2 as
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follows .1

1-I(t) * xt(O) 1-lo(t)x(t) + 2 II l(t, a)x(t + a) d for 0 0,
-1

1-I2(t;O, )x(t + )d for 1 __< 0 < 0.
-1

However, this alternate derivation of (6.6) is nonrigorous due to topological
difficulties (the space C is not a Hilbert space using the above inner product).

7. Computation of the optimal control. By Theorem 4.1, the solution of the
optimality equations (4.1) provides the solution of the given optimal control
problem (providing the resulting control law is stable).

The existence of an exact solution to these equations is discussed in the
Appendix; here we offer an "approximate" solution in this sense" if one replaces
(4.1b), (4.1c) by corresponding finite difference formulas (and requires condition
(4.1e) to hold at discrete times in the interval -1 __< 0 __< 0), then the (difference)
solution exists and is in a one-to-one correspondence with the solution of a finite-
dimensional optimization problem which is uniquely solvable.

Letting m be a positive integer, partition the interval -1 __< 0 __< 0 into
equal segments whose endpoints are 0 -i/m, 0 <= <__ m. Also, for this same
value of m, partition the unit square -1 __< =< 0, -1 __< 0 0 into a grid of
smaller squares whose vertices are (,0)= (-i/m,-j/m) for 0 _-<iN m and
0 __< j __< m. Then replace (4.1) with"

(7.1a) A’l-I0 + rloA IIoDR-1D’IIo + HI(0) + 1-I1(0) + Q 0,

HI 1)/m) 1-I 1( i/m)

(7.1b)
1/m

(A’- IIoDR-1D’)l-Ii(-(i- 1)/m)

+ I-I2(0,-(i- 1)/m) for 1 __< =< m,

n2(-(i- 1)/m,-(j- 1)/m)- H2(-i/m,-(j- 1)/m)
1/m

H2(-(i- 1)/m,-(j- 1)/m)- 1-I2(-(i- 1)/m,-j/m)
(7.1c) + l/m

-I-I’a(-(i- 1)/m)DR-ID’I-II(-(j- 1)/m)

forl <i=<m, < j <= m,

(7.1d) 1-I1(- 1) IIoB,

(7.1e) 1-1(- 1 -j/m) B’I-I l(--J/m), 0 < j <-- m
Let A, B, D, Q, R be the matrices appearing in (1.1) and (1.2), and for this

same value of the integer, m, let P be (the) positive semidefinite solution of the
algebraic Riccati equation

(7.2) F’mP + PFm- PDmR-1D’mP + Qm 0

The symbol I-l(t) * xt(O) represents the linear operator Fl(t) operating on the function xt(O).
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in which F,,, Q,, and Dm are defined by

-A 0 0

ml -mI 0 0

0 mI -ml 0
F

(7.3)
Q 0 0

0 0

0

0

0

0

0 0 0

B

0

0

0

(I is the n x n identity matrix, F,, and Q,, are square matrices having n x (m + 1)
rows and columns, D,, is n x (m + 1) by r).

If one considers the (symmetric) matrix P to consist of (m + 1)2 subblocks,
Pi,.i for 0 __< m and 0 j __< m, of size n x n"

-Po,o Po,
PI,O P1,1

(7.4) P
Vl ,m

(we remark that Pi,j P), by the symmetry of P), then (7.2) becomes a set of alge-
braic equations in the unknowns, Pi,j. And, if one dissects (7.2) and compares those
algebraic relations with the algebraic relations (7.1), the two sets of equations are
found to be in direct correspondence (see [1, Chap. 5] for the details). Specifi-
cally:

(7.5a) rio Po,o,
(7.5b) I-I 1(-- i/m) mPo, +1, 0 < rn l, II 1(-- 1) HoB Po,oB,

II2(- i/rn, -j/m) mZPi + 1,j+ 1, ONi<=m- 1 and O<=j<=m- 1,

(7.5c) H2(-1,-j/m) B’ril(-j/m) for0 =< j =< m,

II2(-i/m,- 1)- II’(-i/m)B for 0 _<-_iN m.

The equivalence relation (7.5) provides the basis for a computation scheme
which has proved successful (see [1, Chap. 7]) for relatively low order systems
(n < 4). Specifically, we perform a sequence of calculations for m 1, 2,-..,
and for each m, we solve the associated Riccati equation for the values of Pi,j; then
equations (7.5) are used to determine Ho, H l(-i/m) for 0 =<i__< m, and
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H2(--i/m,--j/m) for i, j 0, 1,..-, m. Interpolation between points gives an
approximation to the optimal values of Ho, Hi(0) and 1-12(, 0). The computation
is terminated when no significant improvement in the approximation of Ho,
lI 1(0), 1--I2(, 0) occurs.

The introduction of the matrices Fro, Qm, Dm can be understood if one con-
sults [18]; there the linear (ordinary) differential equation

.9(t)-- Fmy(t) + D,nu(t)

is taken as a finite-dimensional approximation to the dynamics of the system with
delay (1.1). (The first n components of y(t) approximate x(t), the next n components
approximate x(t- l/m), ..., the last n components approximate x(t- l) (see
[18] or [1, pp. 66-69]).)

This can be given an interesting interpretation in light of the work of this
section. The apparent conclusion is that the approximate solution of the equations
for optimality (4.1) is equivalent to the solution of an optimal control problem
involving a dynamic approximation.

Appendix. In this Appendix we show that the existence of an exact solution
to equations (4.1a)-(4.1e) is equivalent to the existence of a solution of a certain
hyperbolic quasi-linear partial differential equation.

The proof of Proposition 6.1 of this paper (the proof appears in [1) shows
that if the conditions of Theorem 4.1 are satisfied then I-Io, H and H2 are related
through a fourth function, V(, 0). Namely,

(A.la) Ho V(0, 0),

(A.lb) Hi(0)

(A.lc) FI2(, 0)

(also V(, 0) V’(O, )).

v,0, 0)

Using these relations, we can show that the solution of equations (4.1) is
equivalent to another problem, in which a second order partial differential
equation plays the main role.

Define the function G(, 0) by
v(, 0)

G(, 0)

Then it follows from (A.1) and the fact that V(, 0) V’(O, ) that

G(, 0)
(A.2a) H2(, 0) --0--"
(A.2b) I-I1(0) -G’(0,0), H’(0) -G(0, 0).

Thus by using equations (4.1c) and (4.1e) in conjunction with (A.2) we have a
single second order partial differential equation for G(, 0):

G(,0) G(,0)
(A.3) cO + cO2 + G(, O)DR- ID’G’(O, O) 0
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with a boundary constraint"

(A.4)
c3G(- 1, 0)

B’G’(O, 0).
0

Assuming that a solution, G(, 0), for (A.3) and (A.4) can be found, we note
that the functions H(0) and 1-12(, 0) can be recovered from G(, 0) through
equations (A.2). Knowing I-I(0), we would then know H(0) which could be
substituted into equation (4.1a) leaving an algebraic Riccati equation in the single
unknown, Ho. Thus the second order partial differential equation (A.3) is potenti-
ally the key to the solution of equation (4.1). However, there are two conditions
which must be met. First, the choice of boundary conditions for the partial differ-
ential equation (A.3) must not violate the constraint (A.4). Secondly, the choice
of the boundary conditions must be such that the quantities Ho, FII(0) and
1-I2(, 0) recovered from G(, 0) yield a nonnegative functional (6.1) for any initial
function.

Thus the question of existence of a solution to equations (4.1) is equivalent
to the question of the existence of a solution of equation (A.3) which satisfies the
boundary constraint (A.4) (and has the required nonnegative property for the
functional (6.1)). So, the whole question of the existence of solutions to (4.1)
reduces to the question of existence of appropriate boundary conditions for
G(, 0).

In the scalar case (n and G(, 0) is a real-valued function) equations of
type (A.3) have been extensively studied. In fact, equation (A.3) is then called a
"hyperbolic, quasi-linear partial differential equation" (see [19, Lemma 2, p. 87]).
For such equations, the known existence results which appear to be applicable
to our problem are contained in the following theorem, which presents the exist-
ence conditions for the so-called "Cauchy problem."

THEOREM A.1 (see [19, Theorem 28.5, pp. 125-126]). Let Z() be a continuously
differentiable function for all and P() be a continuous function for all .

Then there exists a function G(, O) such that"
(i) G(, O) has continuous second partials;
(ii) G(, O) is a solution of (A.3) in the region =< =< 0, =< 0 0;
(iii) for all , G(, O)= Z()and G(, 0)/t00]0=o P().
Theorem A.1 guarantees the existence of a solution to (A.3) whenever G(, 0)

and c3G(, 0)/c0]0=o are preassigned functions. Consequently, in view of boundary
constraint (A.4), the proof of the existence of a solution G(, 0), -1 __< __<. 0,

__< 0 __< 0, satisfying (A.3) and (A.4) is complete if one can show that there exists
at least one set of preassigned values of G(O, 0) and 8G(O, )/c31=o for which the
resulting solution G(, 0) satisfies" cG(- 1, 0)/c0 -B’G(O, 0).

Acknowledgments. The authors wish to thank A. J. Tether and Frank J. Rees
for many valuable suggestions.
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SURVEILLANCE PROBLEMS: POISSON PROCESS
UNDER COSTLY SURVEILLANCE

C. BRADLEY RUSSELL,/

1. Introduction. This paper is concerned with a one-dimensional Poisson
production process x(t) introduced by Savage [13]. Instantaneous errorless
inspections can be made at any time at a positive cost L, the costly surveillance
criterion. Repair of the process returns it to the origin and takes m > 0 units of
time at a cost of K > 0 per unit of time. The objective function which we seek to
maximize is a form of the long run average income.

When the process is in state x and is producing, income is received at a rate
i(x). Under the assumption that i(x) is a monotone nonincreasing function sat-
isfying lim,_ i(x)< -K, it is proved ( 3) that I*, the maximum (possibly
supremum) attainable income rate, can be approximated arbitrarily closely by
the income rates obtainable with nonrandomized stationary strategies and ( 4)
that there exists a nonrandomized stationary strategy whose income rate is I*,
i.e., an optimal nonrandomized stationary strategy exists. Many qualitative
properties of such optimal strategies are given in Savage [13], and a computer
program for obtaining an optimal strategy within this class is given by the author
12]. With the results of this paper, these are placed on a sounder theoretical
basis.

The surveillance model considered here is related to a classical model which
has appeared in the works of Derman [2, [3], Howard [5], Maitra [8], and Ross
[10], [11], among others. It differs from the classical model principally in the fact
that observations and actions may be taken at any time rather than at equally
spaced time points. This difference necessitates use of a different objective func-
tion, and hence precludes direct use of results on the existence of optimal non-
randomized stationary strategies for the classical model [2], [3], [10], [11. Yet
without the existence ofoptimal stationary strategies, computational methods such
as the policy improvement technique of Howard [5], [6] are inapplicable.

The existence of optimal nonrandomized stationary strategies for a model
which resembles the surveillance model more closely than does the classical
model has been investigated by Chitgopekar [1].

2. Description of model. During production, the process x(t) is a Poisson
process with parameter A, which we take without loss of generality to be A 1.
While production is taking place in state x, income is received at rate i(x). In-
stantaneous errorless inspections may be made at any time at a cost (paid before
the inspection) L > 0, and repair, which returns the process to the origin, may be
made immediately following an inspection. Such repair will take m > 0 units of
time at a cost of K > 0 per unit of time. Upon completion of repair, no inspection
need be made previous to placing the process in production or to repeating the
repair.
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Let the end of the nth stage of the process be signaled by the (n + 1)st occur-
rence of event A 12 B, where A is the taking of an observation and B is the comple-
tion of repair. Let X,, r, denote, respectively, the position of the process at the
end of the nth stage and the total elapsed time until the end of the nth stage. We
will take Xo 0 and the 0th stage to consist of repair, hence ro m.

Under a strategy S, let C, be the income received during the nth stage, the
duration of which is T.. Let I(NIS) be given by

N

I(NIS) N

n=0

The objective function, which is maximized, is I(S)= liminfu_oo I(NIS), and
I* =- sups I(S).

One restrictive assumption will be made throughout the paper. That is,
i(x) will be taken to be a nonincreasing function with the property that limx-. i(x)
< K. It is conjectured that this assumption could be weakened to the condition
that i(x) satisfy limsup i(x)<-K, dropping the monotonicity assumption,
without changing the results of this paper. The proofs given here, however, will
not generalize directly to accommodate this weakened assumption.

Two other assumptions will be made throughout, but without loss of gener-
ality. These are (a) that i(0) 0, and (b) the class of strategies {S" 1(S) > -K}
is nonempty. That these assumptions may be made without loss of generality is
easily seen. If i(0) A - 0, we simply define an analogous problem for which
i’(x) =- i(x) A, K’ K + A, and (1")’ I* A, clearing the first assumption.
If {S’I(S) > -K} is empty, the strategy of eternal repair is an optimal nonran-
domized stationary strategy and the problem is trivial. Thus we need only consider
those strategies in the nonempty set {S’I(S) > -K}.

3. Approximating I* with nonrandomized stationary strategies. In this
section it is proved that if * is the class of nonrandomized stationary strategies,
then

I* sup 1(S).
S eSe*

First, however, some definitions are needed.
Let denote the action space. For our present purposes,

That is, an action a s consists of either the decision to repair or the decision to
continue production for a time [0, De) before observing the process again.
Later, in Theorem 3.3 and Lemma 4.1, ’ will be restricted.

Let A, s be the action taken at time
DEFINITION 3.1. A decision procedure given a history

H, (Xo, to, Ao, X,,

is a probability function (density) on the space s. That is, for each a 1, Da(H,)
P(A, alH,), where P(. IH,) is to be interpreted as a probability function or

density as the situation dictates.
DEFINITION 3.2. A strategy is a sequence {9,} of decision procedures, where

@n {O,,(Hn)}.
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DEFINITION 3.3. A nonrandomized strategy is a strategy such that 2, is degen-
erate for each n.

DEFINITION 3.4. A stationary strategy is a strategy such that for each n,
2, {Da(x)}, where X, x. That is, 2, depends only on the current observed
position of the process.

For nonrandomized stationary strategies one need only notice the present
position of the process to determine the present action.

DEFINITION 3.5. It was assumed that any strategy S under consideration
satisfies I(S) > -K. This is equivalent to saying that for each S there exists an
integer No(S) such that whenever N >= No(S), I(NIS) > -K. The numbers No(S)
so defined will be extensively used in the proofs to follow.

THEOREM 3.1. To any strategy S there corresponds a strategy S’ with the
following properties"

(a) I(S’) >_ I(S), and
(b) Under S’, production is continued only when the process is observed in a

subset of the finite set Co {x’i(x) > K}.
Proof. Define strategy S’ as follows"
Step 1. Let S’ be the same as S until a point in Co, the complement of Co,

is observed.
Step 2. Then conduct, with no real time, a random experiment simulating the

path of the production process under S until a repair is made. Since I(S) > -K,
a repair will be made with probability one.

Step 3. Under S’, immediately make as many observations as were made in
the random experiment, then repair.

Immediately upon completion of Steps 2 and 3, the position of the process
under S’ is the same as the simulated position under S, both being the origin.
Up to this point only the histories differ under the two strategies.

Step 4. To continue the definition of S’, use the (partially synthetic) history
under S as if it were the true history under S’ up to this point and proceed as
before beginning with Step 1.

Notice that at each stage the histories used in determining the actions under
S’ have the same distribution as the histories under S. Hence for each stage where
repair or production is called for under S’, the total expected income and total
expected time for that stage equal those for the corresponding stage under S.
Furthermore, observations are taken at the same stages under each strategy.

Let N >= No(S), as in Definition 3.5. In the first N stages of the process under
S"

Let A denote the total expected income from production under S from those
stages in which production was begun at a point in Co, minus the costs of observa-
tions and repairs.

Let B denote the total expected production time under S from those stages
in which production was begun at a point in Co, plus the time of repairs.

Let T denote the total expected production time under S from those stages
in which production was begun at a point in Co. Then

A-KT
B+T >= I(NIS) > -K.
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Hence A/B > -K and
A A-KT > I(NIS)I(NIS’)
B B / Y

for every N >= No(S). Thus (a) holds, and condition (b) is clear.
Let I(x, T) be defined as the conditional expected income from production

given that production is begun in state x and continued for time T.
LEMMA 3.2 (Collected properties of I(x, T)).

(a) I(x, T)=
e-TT" i(x + y)T

0 tll r=o n+l

(b) For each T >= O, I(x, T)/T is nonincreasing in x.
(c) For each x >= O, I(x, T)/T is decreasing in T and limT- I(X, T)/T < K.
(d) Let T* inf { T >= O’I(x, t)/t < -K for >= T} and let T’ be the radius

of convergence of I(x, T) as expressed in (a). Then for each x, T* < ,
T* <= T,, and if I(x, T) -, T < T,.

(e) I(x, T) is continuous on [0, Tx*].
Proof. The proof of part (c) will be indicated. The others are straightforward.
That limT-.o I(X, T)/T < --K follows from

i(x + y)
lim =0 < -K,

n+l
which is true since lim_ i(x) < -K. Showing monotonicity of l(x, T)/T is based
on the evident monotonicity of (=o i(x + y))(n + 1) and monotone likelihood
ratio theory [7, Lemma 2].

THORZM 3.3. To any strategy S there corresponds a strategy S’ such that
(a) I(S’) >= I(S)and
(b) P(t,+ ) <= T*.) for each n such that x(r..) ColS’) 1, where t, denotes

the (random) amount ofproduction time in stage n under S’.
Proof. Let n be the first stage at which P(t, > T,._,,)IS) > 0, and let n

denote the ith such stage. Define S’ as follows"
Step 1. Until stage n is reached, S’ and S agree.
Step 2. If at the nx th stage, repair or production and a time t,, < T*,,.

before the next observation is called for under S, let S’ and S agree.
Step 3 If at the nth stage, production and a waiting time t, >T* isX(7(n ))

called for under S, then for the nth stage under S’ simply make an observation.
Perform a random experiment given t,, to obtain a synthetic history for the nath
stage under S. Thus we have a partially synthetic n stage history under S. Let
the actions taken under S’ from the (n + 1)st stage to the nzth stage be determined
by those decisions made under S during that time given the n stage history de-
scribed above. The actions under S’ at stage rt2 and beyond are determined anal-
ogously.

Notice that under S’, the process is always at least as close to the origin as
the hypothesized process under S, and inspections are made at the same stages
under each. Hence the rate of income from production under S’ is at least as high
as it would be under S. Furthermore, (b) is satisfied by the same reasoning.
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Let N > No(S) be given, and in the first N stages use the following notation"
Let A be the contribution to the expected income under S when repairs or

production beginning at a state x and lasting for a time T* before observing
are called for, minus the costs of observation.

Let A’ be the same as above for S’.
Let B be the contribution to the expected time under S (or S’) when repairs or

production commencing at x and lasting =< T* units are called for.
Let T be the contribution to the total expected time from those stages when

production commences at x and lasts for a time > T* before observation.
Then it is true that

A+cT
I(N]S) > -K,

B+T

where c < -K. But then A/B > -K, and A/B >= (A + cT)/(B + T). Thus

A’ A A+cT>- > I(NIS).I(NIS’)=
B B= B + T

Thus we have reduced the problem to consideration of a class of strategies
which allow production only when the process is observed in a state x Co.
When such an x is observed and production is called for, the production time
until the next observation satisfies [0, T*].

DEFINITION 3.6 (L6vy metric). Let F and G be distribution functions on the
real line. The Lvy distance L(F, G) between these functions is given by

L(F, G) inf {h" F(x h)- h <= G(x) <_ F(x + h) + h for all x}.
Define u to be the class of discrete distributions whose mass is concentrated

at points of the form k. 2 -u, where k is an integer.
LEMMA 3.4. For every e, > 0 there exists N(v,) such that whenever N >= N(e)

and F is a distribution on the real line, there exists a distribution FN N-satisfying
L(Fu, F) < , and Fu(y) >= F(y) for each y. Furthermore, if F is concentrated on
[0, T], Fu can be taken as concentrated on [0, T].

Proof. Let N(e) be such that 2 -() < e, and suppose N > N(e). Define FN
as follows"

k+l
Fu(y)= F

k+ k
<

2 2 Y < 2

This lemma, along with the equivalence of L6vy convergence and weak
convergence [4, p. 33], yields the following corollary.

COrOLLArY 3.5. For every > O, there exists N*(e) such that if x Co, F is a
distribution concentrated on [0, T*], and N N*(O, there exists a distribution

FN N concentrated on [0, T*] such that

(3.1)
3o do

and

(3.2) f d FN(t) f d F(t) < .
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LEMMA 3.6. Let S be a strategy satisfying I(S) > -K. Then for N >= No(S),
N (N + 1) min (L, mK)

K

Proof. Recall that i(x) <__ 0, and that for N >= No(S),
N

N

-0

But ,u_ o EC, _< -(N + 1) min (L, mK), hence

or

(N + 1) min (L, mK)
N

----0

N

n=0

(N + 1) min (L, inK)
K

THEOREM 3.7. Let S be a strategy. Then for every a > 0, there is an integer N(a)
such that whenever N >= N(e,) there is a strategy SN satisfying:

(a) I(S) > I(S)- ,.
(b) The production times called for in each stage under SN are integral multiples

of 2-.
(c) Production under Sv is allowed only when the process is observed in a

subset of Co.
(d) If production is continued for time when the process is observed at x Co

under Sx, then 0 <= <= T* a.s.

Proof. Define Su as follows"
At each stage where S calls for production for time t, SN calls for production

for time t’ [2ut] 2- At each stage where S calls for repair, Su does also. More
precisely"

S and Su agree at stage 0, both calling for repair.
At stage 1, the process begins production at the origin, and S calls for a time

tl until the next observation. For SN, then, produce for t] [2t] 2- units
of time then observe the process at, say, x]. Perform a random experiment to
determine the position, x, of the process under S at time m + t, given that it was
at x’ at time m + t’ and was allowed to continue in production until m + t.
Let H be the (partially synthetic) history of the process under S given by the
history Ho of stage 0, the motion of the process from 0 to x’ at time m + t], and
by the random experiment from this point to x at time m + t.

Given H, then S dictates an action for stage 2. If repair is called for, repair
under Su. If production time t2 is called for, produce under Su for t [2vt2] 2-time units, observing the process in a state x at time m + t] + t. Perform a
random experiment to determine the position of the process under S at time
m + tl + t2 given that at time m + tl + t it was in state x + x x’ and
production was allowed until time m + tl + t2. Let H2 be the (partially synthetic)
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history of the process under S, given by H1, the motion of the process from Xl at
time m + tl to x + Xl x’t at time m + t + t corresponding to the motion
from x’ at time m + t’l to xh at time m + t + t under SN, and by the random
experiment from this point to x2 at time m + t + t2.

Proceed to stage 3 and beyond analogously.
Notice that if Fxln is a distribution which determines the waiting time until

observation, given that the process was just observed at x with history H under S,
then the above method for determining the action under SN is equivalent to
defining a distribution Fr,xln as in the proof of Lemma 3.4. Let 6 > 0 be chosen
corresponding to e > 0 as in Lemma A in the Appendix. Corollary 3.5 provides
an integer N*(6) N(e) such that for N __> N(e) and x e Co, there exists
satisfying

(3.3)

and

(3.4)

f* d F,xln(t) f *
d Fxln(t

f *
I(x, t) d F,,lu(t) f I(x, t) d Fln(t

Let A, and A’, be the expected incomes in the nth stage under S and SN,
respectively, and let B, and B’, be the expected times in the nth stage under S
and S.

Recalling the definitions of x’, and x, made earlier in the proof, it is clear that
x’. _< x, for all n. Hence I(x’,, t) >= l(x,, t) for each and n. Thus by (3.3) and (3.4)
it is true that for each n,

A’,-A,> -6

and

B’n- Bn> --.
Hence by Lemma A there is a positive integer No(S) such that M >= No(S) implies
that

M M

n=O n=O
M M

n=0 n=0

or

I(S) > I(S)-

for N >= N(e). Properties (b), (c) and (d) are clear.
THFOREM 3.8. Let S be a strategy and let e > 0 be given. There exists a positive

integer N(e) such that for N >- N(e) there exists a nonrandomized stationary strategy
S} satisfying"

(a) I(S) > I(S)- .
(b) Production under Sv is continued only when the process is observed in a

subset of Co.
(c) If at state x Co, S calls for production for time t(x), then 0 < t(x) <= T*.
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Proof. Let 5u be the class of all strategies satisfying (b), (c) and (d) of Theorem
3.7. Consider the set Co to be a single state such that observing the process in
Co calls for repair. Then this model with the class of strategies 5u has finite state
and action spaces. Hence by Derman’s Theorem 3 (see [23), (Assumption A is not
necessary), there exists a nonrandomized stationary strategy Sv e 5u satisfying

I(S;) sup I(S) >= I(Su) > I(S)- e,,
S

where SN is the strategy in 5u guaranteed by Theorem 3.7.
DZVINITION 3.7. Let * be the class of nonrandomized stationary strategies

which allow production only if the process is observed in a state x e Co, and when
x Co and production is allowed, the time t(x) until the next observation satisfies
O t(x) 5 T.
Coo 3.9. I* sups ,I(S).

4. Existence of an optimal nonrandomized stationary strategy. The fact that
I* supss,l(S) suggests the possibility of a limiting procedure to obtain an
optimal strategy S* e *. That possibility is exploited in this section. Briefly, the
proof is as follows. There exists a sequence {S,} = 5* such that lim, I(S,) I*.
A subsequence {S’,} {S,} is obtained which converges to a limiting strategy
S* *. Finally it is shown that I(S*) I*.

For each S 9* let C(S) Co be the set of states which call for production
under S, the continuation set, and write (see 2]),

(4.1)
p(x)[I(x, ts(X))- L] ps(R)mK

I(S)
p(x)t(x) + p(R)m

C(S)

where p(x) is the steady state probability under S of being observed in state x,
t(x) denotes the time called for under S between observing the process in x and
observing again, and R equals C(S).

An equivalent and equally useful formulation of (4.1) is as follows. A cycle
is defined as being the (random) sequence of observed states starting from the
beginning of production after repair until the recurrence of that event. If n(x) is
defined as the expected number of times per cycle that the state x is observed under
S, it is clear that n(R) 1, and, in general

.n(x)

Hence (4.1) may be written as

E
(4.2) I(S) cs)

p(x)

n(x)[I(x, t(x))- L] mK

ns(x)t(x) + rn
C(S)

Let C {x’xC(S) for some S09*}. Define for each x eCd, ,T
inf t(x)’S 5* and x e C(S)}.
LZMMA 4.1. For each x C,,T, > O.
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Proof. For any S 5* we can write, by (4.2),

n(x)[I(x, ts(X))- L] mK

n(x)t(x) + m
C(S)

Recalling that i(x) <_ 0 for each x, we write

n(x)L- mK
(4.3) K < c(s)., n(x)t(x) + m

C(S)

Since the quantity in the denominator of the right-hand side of (4.3) expresses
the expected time per cycle under S, it is easy to see that an upper bound for this
quantity is

G=maxx+maxTx* +m,
eCo Co

from properties of the Poisson process.
Furthermore, if N(S) denotes the expected number of observations per cycle

under S, it is clear that N(S) ,c(s)n(x) + 1. Hence

-K<
N(S) min (L, inK)

or

GK
N(S) <

min (L, mK)

for each S
Now for each S e 5* and x C(S), it is clear that n(x) < N(S). Furthermore,

n(0) (m + 1)e-"ts)(1 e -ts))
1
e -ts(O)"

m=O

But then it must be that

GK
(4.4)

e -t()
<

min (L, mK)"
Let To inf {t’t satisfies (4.4)}. Then 0 < To < ,To. Further we can let

P, min { e-Tx! e-(T);x!
and write for x C(S), x O,

n(x) P (m + 1) e-m()(1- e-
m=0

and in an analogous way obtain 0 < T N ,T.
We now define a limiting strategy S* e* which Theorem 4.2 will show to be

optimal.
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By the preceding lemma and 3 we have obtained a class 5* of nonran-
domized stationary strategies satisfying"

(a) If S e 5z*, the continuation set C(S) is a subset of C,
(b) x C(S) implies t(x) [, Tx, r*],,T > 0, and
(c) I* supss, I(S).
By property (c), there exists a sequence {S,} of strategies in 5* such that

lim,-.oo I(S,)= I*. For each point x e C, S, determines an action a,(x) to be
taken. Such an action is denoted by a point in the set s’x [,T, rx*] U {r},
where r denotes repair. Define a topology on sg’, as follows" Let the open sets in
s’ be those ofform 0 or 0 U r}, where 0 is open in the usual topology on [, T, T*].
That S’x is compact under this topology is easily seen. Due to this fact and the
fact that C$ is finite, one can obtain a subsequence {S,} c {S,} of strategies such
that’

(a) For each x C, {a’,(x)}, the sequence of actions called for at x by {S’,},
converges to a point a(x) [,T,, T*] U {r}, and

(b) lim,-oo I(S’,) I*.
Let S* e 5* be the strategy calling for the action a(x) at x e C], then
THEOREM 4.2.1(S*) 1".
Proof. The proof of this theorem follows that of Lemma 4.3.
It is a property of convergence in the topology on s’ defined above that

there exists an integer N such that if a(x) r and n => N, then a’,(x) r. Hence by
considering only the tail of the sequence of strategies, namely {S’,},=N we
may speak of a well-defined continuation set C, the same for all strategies in
{S* U {S,}, N The remaining set of states C, calls for repair, and this set will
be designated as R. For brevity of notation write rr,(x) pa(x) and re(x) p,(x).
Thus, the convergence mentioned in the following lemma is defined.

LEMMA 4.3. Let rr’ (r(0), r(l), r(R)) and r’, (r,(0), rr,(1), rr,(R))
where the components of these vectors are defined above. Then lim,_oo r, n
in the sense of elementwise convergence.

Proof. For each n _>_ N, where N is defined above, re, is the unique solution
to

where Q, {,qij} is the matrix of transition probabilities under S’, and
U’ (1, 1, ..., 1). rr is the unique solution to the analogous equations

(4.6) rr Q’rr, U’rc 1.

The uniqueness of the solutions of these equations is guaranteed by the fact
that if x C and n _>_ N, then a’,(x)e [,T,, T*] and a(x)[,T, T*]. Thus the
Markov chains involved are finite and irreducible from which we obtain uniqueness
[9, p. 251].

It is easily verified that equivalent formulations of(4.5)and (4.6)are as follows"
For n => N, re, is the unique solution to

(4.5’) P,rr, I,
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where I’ (0,0,..., 1),

/,,qoo-1 0 0 0 1

nq01 .qll- 1 0 0 0

nq02 ,q12 nq22- 1 0 0

P?I
,qoc ,,qlc ,,q2 ,qc- 1 0

1 1 1 1 1

and c denotes the maximal element of C.
7t is the unique solution to an analogous set of equations

(4.6’) PTt 1.

Since these solutions are unique, det(P,)--0 and det(P)4: 0. Hence by
Cramer’s rule,

re,
det (P,)

and

det (P)’
where ]A denotes the vector of cofactors of the last column of the matrix A.

Since P, P elementwise, IIP, IIPI[ and det (P,)--, det (P) by properties
of determinants. Since the determinants are nonzero,

det (P,) det (P)"

Hence, re, --, rc as desired.

Proof of Theorem 4.2. By (4.1) and the remarks above, for n >- N we can write

rc,(x)[I(x, a’,(x))- L]- rc,(R)mK
I(S’,) xc

rc,(x)a’,(x) + rc,(R)m
xC

and

(x)[I(x, a(x))- L] c(R)mK
I(S*)

(x)a(x)+ c(R)m
xeC

By Lemma 3.2 (e) we know that for x e C, l(x, a’,(x)) converges to l(x, a(x))
as a’,(x) converges to a(x). Lemma 4.3 yields the convergence of n,(x) to n(x).
Hence I(S’,) converges to I(S*) giving I* 1(S*) by uniqueness of limits.

Thus we have proved the existence of an optimal nonrandomized stationary
strategy. Many properties of such strategies are to be found in [13]. The author
has obtained [121 a computer program for obtaining optimal strategies for these
problems when i(x) is a polynomial function.
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Appendix.
LEMMA A. Let {A.}, {A’.}, {B.}, {B,} be sequences of real numbers and K and

c be positive real numbers such that for N No O,
N

A
--0B.>c(N + 1) and N > --K.

n=0 Bn
--o

Then for every > 0 there exists a > 0 such that whenever A’ A > - and
B’,, B,, > - for each n, it is true that N >= No yields

n=0 n=0

n=0 n=0

_c ce )). First we notice that for N -> No,Proof. Let6 =min
2’2(K + 1

C

’= + (;-l>c(+-(U+>_-5(U+.
n=0 n=0 n=0

And since -o B’, and =oB are positive for N __> No, the conclusion of the
lemma is equivalent to

N N N N N N

n=0 n=0 n=O n=0 n--0 n=0

which we now show.
N N N N N N N N

Z A’n Z Bn- An B’n Z (A’n-An) Z Bn + Z An Z (Bn-B’n)
n=0 n=0 n=0 n=0 n=O n=0 n=0 n=0

N N

> -(N + 1)6 B.- K B.(N + 1) 6
n=O n=0

26 N N 2K6 N N

C n=0 n=0 C n=0 n=0

2(K + 1) N u

C n=0 n=0

N N

>= --e, Bn B’n.
n=0 n=0

REFERENCES

[1] S. S. CHITGOPEKAR, Continuous time Markovian sequential control processes, F.S.U. Statistics
Rep. M127, The Florida State University, Tallahassee, 1967.

[2] C. DERMAN, On sequential decisions and Markov chains, Management Sci., 9 (1962), pp. 16-24.
[3] -----, Denumerable state Markovian decision processes--average cost criterion, Ann. Math.

Statist., 37 (1966), pp. 1545-1554.



636 c. BRADLEY RUSSELL

[4] B. V. GNEDENKO AND A. N. KOLMOGOROV, Limit Distributions for Sums of Independent Random
Variables, revised ed., Addison-Wesley, Reading, Massachusetts, 1968.

[5] R. HOWARD, Dynamic Programming and Markov Processes, Technology Press, John Wiley,
New York, 1960.

[6] ------, Semi-Markovian decision processes, Bull. Inst. Internat. Statist., 40 (1963), pp. 625-652.
[7] S. KARLIN AND H. RUBIN, The theory of decision proceduresfor distributions with monotone likeli-

hood ratio, Ann. Math. Statist., 27 (1956), pp. 272-299.
[8] A. MAITRA, Dynamic programming .for countable state systems, Sankhy Set. A., 27 (1965),

pp. 241-248.
[9] E. PARZ N, Stochastic Processes, Holden-Day, San Francisco, 1962.

[10] S. M. Ross, Non-discounted denumerable Markovian decision models, Ann. Math. Statist., 39
(1968), pp. 412-423.

11 ,Arbitrary state Markovian decision processes, Ann. Math. Statist., 39 (1968), pp. 2118-2122.
12] C. B. Russ, Surveillance problems: a programfor obtaining optimal costly surveillance strategies

for a Poisson production process, F.S.U. Statistics Rep. M125, The Florida State University,
Tallahassee, 1967.

[13] I. R. SAVA, Surveillance problems, Naval Res. Logist. Quart., 12 (1962), pp. 187-209.



SIAM J. CONTROL
Vol. 7, No. 4, November 1969

NECESSARY CONDITIONS FOR OPTIMAL STRATEGIES IN A
CLASS OF NONCOOPERATIVE N-PERSON DIFFERENTIAL GAMES*

I. G. SARMA, R. K. RAGADE AND U. R. PRASAD)

1. Introduction. Examples of N-person differential games appear to have
been first constructed by Petrosyan [1-[4. The study of N-person games in
general was initiated by yon Neumann and Morgenstern [5 and Nash [6. It has
been applied to various team game situations, squadron warfare, and so forth.
An exhaustive list of papers is found in [7-[10.

In this paper we wish to extend some concepts of noncooperative N-person
games to a dynamic situation. Further results about noncooperative and co-
operative N-person differential games with their several ramifications shall be
reported elsewhere. A rigorous theory to the study of a class of differential games
has been advanced by Berkovitz [11]-[13]. This paper draws inspiration from
his work and is an attempt to extend his results in [12] to the N-person non-
cooperative situation. The main results are the necessary conditions for equilibrium
strategies of a class of N-person differential games and the properties of the value
function vector. We assume perfect information to all the players implying that
they know the state of the game during the course of the play.

The terminology and notation in this paper shall be to a large extent that in
[12]. We shall suppose that the reader is familiar with its contents and reference
is made to it at a number of places in this paper. Thus the terms region, closed
region and decomposition are understood as in [12]. However, superscripts on
control and adjoint variables, and payoff and value functions indicate the player
to which they belong. The collection of corresponding quantities of all players is
represented by bold letters.

2. Formulation of the game. In an N-person differential game the N-players
have N payoff functions, in general all different. The state of the game satisfies
a set of differential equations, and each player, knowing the state at every instant
of time and knowing how the game proceeds, selects his optimal strategy from a
permissible set, to minimize his payoff function. We obtain necessary conditions
for a Nash equilibrium point under certain assumptions, by considering the
optimality of each player’s strategy against the optimal play of the rest of the
N- 1 players. The terms strategies, Nash equilibrium point and optimality in
this sense will be defined presently.

Let denote time, x an n-dimensional vector and u, l= l, 2,..., N, an
fl-dimensional vector. We shall be concerned with a bounded region of
(t, x, u)= (t, x, ul, us) space and a region fq of (t, x) space contained in the
projection of 5 into (t, x) space. We consider two real vector valued functions

and
f(t, x, u) (f(t, x, u), f(t, x, u))

G(t, x, u) (Gl(t, x, u), G"(t, x, u))
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of class Ca) on 5 with ranges contained in Euclidean spaces of dimensions N
and n respectively.

We also consider functions f(t, x) from ad into subsets of U’, 1, 2, ..., N,
such that

(t,x,fl(t,x), ,-N(t,X))= (t,x,g(t,x)) for all (t, x)

We shall define the terminal surface @ of the game as a connected manifold
which separates ad and which can be written as

-= U,
i=1

where each is an n-dimensional C(a) manifold given parametrically by the
equations

t-- Ti(r7), x-

where rr (era,. rr") ranges over a cube in E". Let g (ga,..., gN) be a real
vector-valued function defined and of class C(a) in a neighborhood of -. Then
gl is the terminal payoff to the/th player.

The game takes place in a region whose closure d is contained in such
that Y- forms a part of the boundary of . Let q/t denote the nonvoid class of
functions that are piecewise C(a) in x on with their range in U’ space and
satisfy the condition Ul(t, x) ft(t, x) for all (t, x) for every 1, 2,..., N.

Let U e q/t, 1, ..., N, and consider the differential equation

(2.1) :t G(t, x, U(t, x))

with the initial condition x(r) .
Solutions to this may bifurcate or coalesce at (r, ), points of discontinuity

of any one U or a number of them. If (r, ) be a point such that every U is con-
tinuous in a neighborhood of (, ), then there is a unique solution in a neighbor-
hood of (r, ).

We say that Ule elll, 1-- 1, ..., N, or U eq/ is a playable N-tuple if, for
every (:, ) in ’, every solution of (2.1) stays in and reaches - in finite time.
For each playable N-tuple we can define for the game a real, possibly multivalued,
vector function

(2.2) P(to, Xo, U) (Pa(to, Xo, U),..., PV(to, Xo, U))

in with range in Eu space, where

Pl(to, Xo, U) gt(t, x) + [t, ft(t, x(t), U(t, x(t))) dt,(2.3)
./o

where x(t) is the solution to (2.1) called path and (tI, xl) is its point of intersection
with . pt is the payoff to the/th player.

We assume a maximal nonvoid subclass called the pure strategy set
for each player such that U ’] implies that the N-tuple U is playable. The
objective of each player is to minimize his payoff function by choosing a pure
strategy.

DEFINITION. Nash equilibrium point: Let U* be a playable N-tuple for
which the payoff P(t, x, U*) is single valued in . Then U* is said to be a Nash
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equilibrium point strategy for the N-person differential game relative to the
strategies #, 1, ..., N, if

(2.4) Pl(t, x, (U*; Ul)) >= U(t, x, U*)

for all 1,2,..., N, where

(2.5) (V 1,, V2,, U(l-1),, Ul, u(l+ 1),, UN,) (U* ;Ul).
The strategies U* are said to be optimal in the sense of Nash and P(t, x, U*)

denoted byW(t, x) is called the value function of the game.
The question of under what conditions the preceding assumptions are valid

for a game and the analysis of other classes of games will be answered in future.
The paths resulting from U* are called optimal paths and denoted by

b*(t, , ) with a subscript sometimes to distinguish the possible different paths.
For the class of games studied in the paper we assume that (i) the game has

an equilibrium point u* and (ii) the decomposition associated with u* is regular;
(iii) if (27, ) is a point of, 1, ..., x, j 1, ..-, Ji, then there is a unique
optimal path b*(t; 27, ) in i for 27 < < ti,j,, where ti,j, is the final time, and,
further the path is never tangent to a manifold /,k, k j., ..., Ji or to a manifold

X,,...,p, Further properties of b*(t; 27, ) are given in the form of three lemmas
in [12].

We make an extensive use of these properties in further discussion.

3. The value function. In this section we derive some properties satisfied by
the value function W for the game. The main objective is to establish a partial
differential equation for each of the components of W corresponding to the
different players. To do this, we consider the game as viewed by player l, when
all he knows is that perhaps the other players have chosen optimal strategies.

Let (27, ) be a point of,i, 1 =< j =< j. Then for the lth player,

"fl J’ "’" fl(3.1) W1(27 ) g(tj, xj,) + dt + dt,
k=j

where (tij, Xij,) is the end point of the optimal path and the super bar notation is
used whenever the arguments are as in the following equation.

(3.2) fl fl(t qb*(t; 27, ), U*(t, qS*(t 27, ))).

The bar notation is used in 4 also in this sense. Thus from the properties of the
function fl and Lemma 3 in [12], it follows that W, Wl, exist and are continuous
on with the interpretation that for points on //i,j_ and //g,j they represent
the unique one-sided limits.

By arguments similar to those of [12] we obtain

wlr,(27, ) f(27, , (U*(27, ); ul(27, )))
(3.3)

with the equality holding for

that is
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The relations (3.3) and (3.4) hold for each player 1, 2, ..., N by similar
arguments. The implication of the inequality (3.3) will be discussed more fully
in 4.

By defining u U(z, ) and

Hi(t, x, ii, ,)ct) fl(t, x, !i) + 2G(t, x, u),

(3.4) can be written as

(3.6) Hi(t, x, U*, Wlx(t, x)) + Wl(t, x) 0

which is a Hamilton-Jacobi equation.
The preceding results, that is, (3.3), (3.4) and (3.6), which hold for (r, ) in

the interior of Nij, also apply by continuity to the appropriate one-sided limits
of Wt and W if (r, ) is a point of a manifold //ij. By similar arguments as in [12
it can be shown that Wl and W are continuous across ou if all the other players
excepting use strategies continuous across

We put down all these results in the form of the following theorem.
THEOREN 1. The value function W consisting of N components corresponding

to the different players for the game are continuous on . On each Nu the functions
W and W exist, are continuous and have continuous extentions to "u" Ifu is a

manifold ofdiscontinuity ofonly one player, say l-th, then W aM W are continuous
at points ofu" The function W satisfies (3.3) and (3.4), respectively, at all points

of U provided we interpret Wt, W and U* as the appropriate limits at points
of u and ,,...,i manifolds. At a manifold u, where only Ut* is discontinuous,
(3.3) aM (3.4) hoM jbr Uf aM Ui,+* . Finally W satisfies the Hamilton-Jacobi
equation (3.6).

4. The adjoint variables or Lagrange multipliers. In this section we shall
introduce a set of Lagrange multipliers for each player, say 2 for the/th player
and study their relationship to W and W for the same player.

Let (-c, ) be a point of Nu and on the interval t,j_ (, )N N tu,(r, ).
Consider the differential equation

(4.1) l --I *H +
m=l

where H and the bar notation are defined in 3, with the initial condition

(t,)
We shall introduce some notations:

(4.2)

which will be used in the sequel.
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Consider the following system of linear equations in the components of 2j,

(4.3)
t T/j.gl + fl(Pij,)____ + &r &r

O,

where the value of a corresponds to tij,(z, ) and xj,(z, ) (which is the end point
01 uniquely as aof the optimal path from (z, )). By Lemma 3 in [12] (4.3) defines/j,

continuous function of (z, ) on ij. Equation (4.3) can also be written in terms
of H as follows:

(4.4) gl + Hl(glji) _/i O.

Post-multiplying (4.4) by ca/c3( and using results in Lemma 3 in [12] we obtain

(4.5)

Since 2j/., and tiji are continuous functions of (, ) on ij it follows that the solu-
tion to (4.1) with the initial condition 2/(tj,) 2, can be written as

Now with the notation in (4.2) we can define the corner conditions in any of the
following three equivalent forms:

Fxt- IG(p[ ) --’el
L

(4.6)

[f,(p#) ft(p/)]- k =j,’",ji_x,

l- Yik aXik ,tie l+ (Tik 21k+ aXik

or

gtik -l- aXik atik 2l+ aXik

Since the left-hand limits of 21 can be uniquely determined in terms of the
right-hand limits at the ///k manifolds, the function 2/(t; r, ) is defined for (r, )
in ’j and all t,k-1 < < tk, k j, ..., j, and is continuous in its arguments,
possesses unique one-sided limits at the manifolds of discontinuity /k and
satisfies the transversality and corner conditions (4.5) and (4.6).

Also from the properties of b* and 2 functions it follows that 2(t; r, )
2(t;’, ) for "c < < and b*(’; r, ).
Now consider the function W on Nj.
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(a
fl(r.. (tijW(’c, ) gla- -+- j, + fl(pik_O) flik+O)] tik

(4.7)
N

k=j

By arguments of [12] applied to W and 2 we have

(4.8)

and

(4.9) Wlx(t, x) 21(t; t, x) 21(t; z, ),

where x 4)(t, z, ().
The properties of 2 are thus given as those satisfied by W in Theorem 1.
The preceding analysis can be carried out to each player 1, 2,-.., N.
Now, we shall discuss the implications of the inequalities (3.3). Let (t, x) be

a point on the optimal path from (z, ), thus x 4)*(t, z, ). It then follows from
(3.3) and (4.9) that

Ht(t, x, (u*; b/l), /l) f(t, x, (u*; u)) + )}G(t, x, (u* ;ut))

(4.10)

ft(t, x, (u*; u’)) + WtxG(t, x, (u*; ut))

>= f(t, x, u*) + WG(t, x, u*)

Ht(t, x, u*, 2t)

Wt(t, x),

where x b(t; -c, (), 2 2(t; z, ) and

u; e E[u;lu; U;(t, x), u; e ll]].

At points tk (4.10) holds for one-sided limits.
Thus (4.10) shows that at every point (t,x) the game F(t,x) with payoffs

defined by Ht(t, x, u, 2) has a pure strategy equilibrium point u*. The value of
this game F(t, x) is

(4.11) [H(t, x, u*, )}), HN(t, x, u*, 2N)] W(t, x).

This is an important result as the optimal strategy for the original game is neces-
sarily the optimal strategy for the extensive game in the Hamiltonians along the
optimal path of the original game.

We summarize the principal results in the following theorem.
THEOREM 2. Let b*(t; z, ) be the optimal path from a point (z, ) in i. Then

there exist functions 2t(t; z, ), l= 1,2, ..., N, defined for z < < ti (z, ) and
:/: tik, k j,j + 1,..., Ji- 1, such that the following hold"

(i) Each ,1 is piecewise continuous on its domain of definition, and at points

tik possesses unique one-sided limits 2k and 2+.
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(ii) The functions 2l, 1,..., N and dp* satisfy the following system of dif-
ferential equations"

Y H,(t, x, U*(t, x), I)
(4.12) cU

l (t x, U*(t x),/l)X

where

(4.13)
t3H N

cx H + E H,"U"*
m=l

and at t, k =j,...,ji- 1 the equations hold for the one-sided
limits. These equations are the characteristic equations of the Hamilton-
Jacobi equations.

(iii) If /[i, J <-_ k <= j l, is a manifold of discontinuity of only one of the
functions say Ul*, then 2 is continuous at tik, i.e., 2+ 2-. Otherwise
(4.5) holds.

(iv) At tij, the transversality relation (4.5) holds.
(v) If x qS*(t; z, ), >= T then

(4.14) Wl(t, x) 2/(t; z, ).

(vi) For all z <= < tij, and # tik, k j, ,ji 1,

(4.15) Hi(t, dp*(t), (u*(t) ul(t)), 2l(t)) HI(t, *(t), u*(t), l(t)),

where u*(t) U*(t, b*(t)) and ul(t) Ul(t, b*(t))for some Ul e dill.
We shall give two corollaries for the case when the sets l(t, x) for each player

are defined by systems of inequalities, i.e., let Kl(t, x, ul) be a function with domain
in (t, x, 0//l) space and range in Ep’. A vector u is in l(t, x) if and only if kl(t, x, ul)
_>_ 0. Further let K satisfy the constraint condition that if pl > rl, then at each
point (t, x, u/) at most r components of K can vanish and the matrix [cKl/cuIJ]
formed from these components of K that vanish at (t, x, ul) has maximum rank
at (t, x, ul), this being true for all 1, 2, ..., N.

COROLLARY 1. Let l(t, x) be given by a system of inequalities Kl(t, x, ul) >= 0
for l= 1, 2,..., N, where K satisfy the constraint condition. Then there exist

functions ll(t , ) defined for <= <= tij and :/: ti such that the following hold.
At all points (t, dp*(t), u*(t), )/(t)), where u*(t) U*(t, b*(t)),

+ #Kul O,

(4.16) p1Kl’ 0 for each l,

COROLLARY 2. Let (z, ) be a point of ’ij" Suppose that on each interval
ti,k_ <--__t <= tik, k--j,"’, Ji the components Kli of K do not change, for all

1, 2,..., N. Then tl are continuous functions of (t;z, ) for (z, ) in ij and
ti,k-1 = tik and have one-sided limits at the end points ti,k_ and tik. At the
points tik (4.16) hold for the one-sided limits.
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The second equation in (4.12) can be replaced by the equation
N

(4.17) ’= -Hx- Z H,,U"] laK.
rn=l

The proofs of these corollaries follow exactly on the lines of [12] and will
not be repeated here.

5. Conclusions. In the course of the paper we have established the necessary
conditions for the optimal strategies for a class of N-person differential games.
Some of the assumptions made such as n-dimensionality of the terminal surface
and nontangency requirements of the optimal paths [13, p. 342] are rather
restrictive. These and other problems like the existence of equilibrium points and
particularly of strategies which induce regular decomposition on the (t, x) space
of interest exist and remain to be investigated.
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STABILITY, INSTABILITY, INVERTIBILITY AND CAUSALITY*

JAN C. WILLEMS?

1. Introduction. A number of interesting stability criteria for feedback
systems have recently appeared in the control theory literature. The procedures
used in proving these criteria can roughly be divided into three classes; the first
based on Popov-like methods, the second using Lyapunov theory with Lyapunov
functions derived from spectral factorizations or Riccati-type algebraic matrix
equations, and the third treating the stability problem from a functional analysis
point of view.

Each of these methods has relative merits, e.g., the Lyapunov methods
seem to be the only ones which allow us to obtain an estimate of the domain of
attraction in the case of nonglobal stability. However, the method based on func-
tional analysis appears to be the more satisfactory one, in view of the essential
simplicity, of the intuitive nature of the results (loop gain less than one, passivity
conditions), and of the fact that it unifies the various criteria (as, e.g., the circle
criterion and the Popov criterion). It therefore deserves more investigation and
exposition than it has thus far been given.

A peculiarity of this method, as presently employed, is that most of the
analysis and estimates have to be made on extended spaces which, although
derived from normed spaces, are themselves not normed. This entails in general
rather cumbersome mathematical manipulations. One however suspects the
introduction of extended spaces to be merely a tool which enables one to make a
satisfactory definition of stability, and that the stability properties of the system
only depend on how the operators in the forward and the feedback loop operate
on elements ofthe nonextended space. Another aspect which has not been explored
as yet is the use of these functional analysis methods to generate instability criteria.
The present paper investigates these facets of the functional analysis methods as
applied in stability analysis. More specifically, the stability and instability prop-
erties of the feedback system are expressed in terms of the properties of the inverse
of the closed loop operator on the nonextended space, and procedures for generat-
ing instability criteria are described.

When considering the stability properties of a system defined through an
input-output relation, one is generally asked to determine conditions under
which an operator, F, qualifies as a bounded transformation on appropriate
normed spaces. This then yields a bound on the norm of the output, y Fu, in
terms of the norm of the input, u. The question of stability of a feedback system,
however, is a more intricate matter both at a conceptual level and at the point
of deriving specific conditions. The reason for this difficulty is that the equations
governing a feedback system give the output, y, in terms of the input, u, only
through an implicit equation of the type u Fy.
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Sandberg [1], [2] and Zames [3], [4] introduced the idea of extended spaces
in order to give a definition of stability which appears, at least for causal systems,
to be entirely satisfactory. The output, y, is then allowed to belong to a larger space
(i.e., the extended space) than the input (which is for stability purposes assumed to
belong to the nonextended space). The fact that the output should actually belong
to the nonextended space is then taken as the basic requirement for stability. This
a priori enlargement of the solution space has been the key to the very successful
application of functional analysis to the stability of feedback systems, and has
therewith provided a class of rather elegant applications of classical analysis tech-
niques to modern control engineering problems.

The feedback equation u Fy is in this paper considered as an equation
relating a priori inputs u in the extended space to outputs y in the extended space.
In order to get the ideas of the paper through, assume, for the purpose of this
discussion, that the time interval of definition is (-, + ), that F is a causal
linear operator from

g2e(- , -+-ct3) x(t) [x(t)l 2 dt < for all finite T

into itself, and that u and y are real-valued functions in Lze(--ct3 -+-). The
results, which are shown schematically in Fig. 1, can then roughly be summarized
as follows" Consider in the class of causal linear operators from Lze(-
into itself the subset of those for which the zero solution can be continued in a
causal way in Lze(-- +); i.e., for any uLze(--, +) with u(t)= 0 for

T, there exists a unique y Lze(- , +) with y(t) 0 for T, such that
u Fy, and this y is related to u in a nonanticipatory sense. The result then states
that F defines a stable feedback system ifand only if(i) F is invertible on
L2(--, +) and (ii) this inverse is causal on L2(- + ). Considering the
algebra of linear operators from L2(-, +) into itself and considering the
causal operators as a subalgebra, we then state the result that F defines a stable
feedback system if and only if F is a regular (i.e., invertible) element of this sub-
algebra.

Specific Criteria Lab(-

i// eSys
,Null solutionJ,,eb) ) /] can be continued

Few Specific // Specific Criteria
Criteria

Unstable Systems

F. 1. Summary of results when the time interval ofdefinition is (-
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Not only has this algebraic characterization a great deal of mathematical
appeal, but it also identifies two clearly distinct methods for generating instability
criteria: the first based on showing that the inverse on L2(-z, + zt3) does not
exist, and the second based on showing that the inverse exists but is not causal.
The former method remains largely unexplored and is even in the present paper
only exploited in a very restricted setting. The latter method appears to be the
setting in which instability criteria will most easily be generated. In fact; the
frequency-domain instability criteria which have thus far appeared in the literature
can actually be put into this mathematical framework. Note finally the interesting
analogy between this equivalence of noncausality and instability and the fact that
one can choose to interpret, depending on the region of convergence, a bilateral
Laplace transform with a pole in the right half-plane either as the transform of an
impulse response which does not vanish for negative time or as the transform ofan
impulse response whose integral diverges.

The paper also treats the case when the time interval of definition is [To, )
and the results are then best summarized as follows (see Fig. 2): Consider the
class of causal linear operators from Lze(To, t) into itself which have a causal
inverse on Lze(To, ), i.e., any input u Lze(To, ) yields a unique output

speoc r,terla, ,// Operators Mappinges L2(To, ) Lz(To, )

/

:eiecific Casual Inverse, - NotXnvertible

k k/ L2(To, ) /

Un -x /
Specific Criteria

" Extension to Operators mappi
Extension causal L.(- m, +) L.(- m, +
Inverse L (-,+

Fa. 2. Summary of results when the time interval of definition is (To, )

y Lze(To, t) with Fy u, and this y is related to u in a nonanticipatory sense.
The result then states that F defines a stable feedback system if and only if F is
invertible on Lz(T0, ). This inverse will then necessarily be causal since it is
the restriction of the inverse on Lze(To, ) to Lz(To, ). The paper also gives a
procedure to establish the noninvertibility of a class of operators on L2(To, ).
This is done by suitably extending F to an operator, F’, on L2(-, + z) and
showing that F’ has a noncausal inverse on L2(-, + z). It is then shown that
this implies that F is not invertible on Lz(To, z).

The analysis behind the ensuing demonstrations of noncausality of certain
inverses are lengthy and somewhat subtle.

At least when the system is open loop stable. The open loop unstable case, which is not void

of interest, has not been considered here.
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The general results are finally applied to a particular class of feedback systems
and lead to a generalization of the Nyquist criterion and the circle criterion.

The paper is divided as follows:
1. Introduction
2. Mathematical preliminaries
3. Problem formulation
4. Interrelations between invertibility, stability and continuity
5. Existence and uniqueness of solutions
6. Stability and continuity
7. Instability
8. An example
9. Concluding remarks
The material in 2 and 3 are standard in papers treating stability from the

point of view adopted here. The new results are contained mainly in 4, 7 and 8
and will be the ones of primary interest to the readers already familiar with the
definitions of 3. Sections 5 and 6 have been included mainly for the sake of
completeness, in order to make the paper a reasonably self-contained treatment of
stability and instability. In any case, 5, 6 and 7 are independent and the instability
part of the paper with its relation to causality can be grasped by reading only

3, 4 and 7.

2. Mathematical preliminaries. A certain familiarity with the notions of
metric spaces, linear spaces, inner product spaces, norms and inner products is
assumed. The norm of an element x of a normed linear space V will be denoted by
IIX[[v, and the subscript will be deleted whenever no confusion can occur. The
same holds for inner products.

A normed linear space is called a Banach space if it is complete in the metric
induced by its norm. (A metric space is called complete if every Cauchy sequence
converges.)

An operator, or transformation, F, from a space X into a space Y is a law
which associates with every element x X an element Fx Y. F is said to be
invertible if it is one-to-one and onto. I denotes the identity operator from a space
into itself. An operator L from a linear space X into a linear space Y, defined over
the same field as X, is said to be linear if L(exl + flx2)= eLxl + flLx2 for all
x l, x2 e X and scalars e, ft.

Let F be an operator from a normed linear space X1 into a normed linear
space X2. F is said to be bounded on X if

sup
xO

This least upper bound will be denoted by ]1F]]. F is said to be Lipschitz continuous
on X1 if

Fx Fy x2sup < .
xy

This least upper bound will be denoted by ]]/]]. Boundedness, continuity at some
point and Lipschitz continuity are equivalent for linear operators.
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Let V denote a finite-dimensional normed vector space and let (T1, T2),- =< T1 =< T2 =< , be an interval in the real numbers. L,(T, T2), 1 =< p < ,
denotes the linear space of all V-valued measurable functions for which the pth
power of the pointwise norm has a finite Lebesgue integral. Loo(Ta, T2) denotes all
V-valued measurable functions whose pointwise norm is almost everywhere
smaller than some number. The norm2 on L,(T, T2) is defined as

IIx(t) at

for 1 =< p < , and as the infimum of the set {MI x(t)Iv <= M a.e. in (Ta, T2)}
for L(T1, T2). Lp-spaces are complete in the metric induced by their norm, and
are thus Banach spaces.

The natural setting for studying bounded linear operators from a Banach
space into itself is a Banach algebra. This point of view will be an advantageous
one for the purposes of the paper, and the appropriate notions are therefore
introduced below.

A Banach algebra is a normed linear space z’ over the real or complex field
which is complete in the topology induced by its norm, and a map (multiplication)
from into . This multiplication is associative and is distributive with
respect to addition, i.e., x(yz) (xy)z, (x + y)z xz + yz, x(y + z) xy + xz
for all x, y and z . It is related to scalar multiplication by (xy) x(y) (x)y,
and to the norm on ’ by Ilxyl _-< Ix IlYl for all x, y ’ and scalars . A Banach
algebra is said to have a unit if there exists an element e ’ such that xe ex x
for all x . An element x of a Banach algebra with a unit is said to be invertible
if there exists an element x- such that xx- x- x e. It is easily seen
that there exists at most one unit and one inverse. If x and y are invertible, so is xy,
and (xy)- y- x- 1.

A subset ’+ c is said to be a subalgebra of a Banach algebra if - is
itself a Banach algebra under the operations induced by ’.

An essential fact which will be needed is the completeness and the algebraic
structure ofthe bounded linear transformations on a Banach space. More precisely,
let M be a Banach space and let 5e(N, ) denote the linear space of all bounded
linear transformations from into itself. Let multiplication on 5e(,) be
defined as composition of maps, and let the norm on (N,) be defined as
L supx. Ilxll IILx for L 5(, M). Then (M, M) forms a Banach

algebra with a unit. The only property in this statement which is not immediate
is the completeness of (,). A proof of this well-known fact can be found,
e.g., in [9, p. 61]. For more details on. the preliminaries, see, e.g., [9] or [10].

3. Formulation of the problem, in this section the functional equations
describing a feedback system are introduced and the definition of a solution is
given. Other important concepts which are formally defined are those of stable,
unstable, and continuous feedback loops. These definitions involve the idea of
extended spaces as introduced in this context by Sandberg 1], [2] and Zames [3],

Under the assumption that two functions are considered equal if they are equal almost every-
where. Hence whenever Lp-spaces are involved, equality of elements should be interpreted as equality
of the functions almost everywhere.
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[4]. Finally a number of important assumptions on the operators in the forward
and feedback loop and on the solution space are made.

Let R denote the real line and let S = R be given. The set S will be referred to
as the time interval of definition and is typically (- , + ), [To, or), the integers
or the integers larger than some given real number.

For .ny linear space V, let Y(I/) denote the linear space of all maps from S
into V, i.e., Y(V) {xlx :S V}. Every element of Y(V)is thusa V-valued function
defined on S. Let PT, T e S, denote the projection operator from Y(V) into itself
defined by

Yo(t) for _< T, S
PwY(t) a__

fort> T, tS

for y Y(V). PrY will be called the T-truncation of y. Let Z Y(V). The extended
space, Ze, is defined as all elements of Y(V) for which all T-truncations belong to
Z as T ranges over S, i.e., Ze a_ {y Y(V)IPTY Z for all T S}.

3.1. The feedback equation. Let W1 Y(V1) and W2 Y(V2) be given
normed linear spaces, and let Wle, W2e denote their extensions. Consider now the
feedback system shown in Fig. 3. The inputs and the signals in the loop are
assumed to be V1- or V2-valued and (as functions defined on S) to belong to Wle

Ul
Yl

e2

FIG. 3. Thefeedback system

u2

or Wze. Let G1 and G2 denote operators respectively from We into Wze and from
Wze into We, and let ul Wae and u2 e Wze be given. It is convenient to introduce
the product space W= W1 W2 with IlXllw II(x,xz)llw a__ Ilxxllw, / Ilxzllw=.
G then denotes the operator from We into itself defined by Ge (Gze2, -Ge)
for e (e,e2) We. The element u (ul,uz)e We will be referred to as the
input.

DEFINITION 3.1. An element e e We is said to be a solution of the equations
describing the feedback loop if (I + G)e u, i.e., e(t) + (Ge)(t) u(t) for all e S.

Remark 3.1. If the input-output relation G1 or G2 is obtained through a
dynamical system description, then the initial conditions can very often be modeled
either as equivalent inputs, or as part of the description of G. The first method is
certainly to be preferred for the purposes of the paper.

Remark 3.2. The signs in the definition of G were chosen such that (1 + G)e u,
in accordance with the equations describing the usual unit negative gain feedback
system.
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3.2. Stability, instability and continuity. The next notions which will be
introduced are those of stability and instability. This will be done in terms of
convergence in the norm of W.

DEFINITION 3.2. The feedback system under consideration is said to be
stable if for any given u W,

(i) any solution e We actually belongs to W itself,
(ii) there exists a real number K, independent of u, such that Ilell =< gllul[.

The feedback system under consideration is said to be unstable if it is not stable.
It is said to be continuous if it is stable and if any input sequence {u,} with
lim,_ u, u yields lim,_, e, e, where e, and e are solutions corresponding
to u, and u.

The above definition of stability is rather strong because of condition (ii)
and yields a correspondingly weak type of instability the system could be unstable
even if e W for any u W. It will turn out however that for linear systems stability,
continuity and stability without condition (ii)are equivalent.

In examples one usually calls a feedback system which is stable in the above
sense more explicitly W-stable.

3.3. Assumptions. The following restrictive assumptions will be made through-
out the paper. As will be indicated in the concluding remarks, some of these
assumptions can be relaxed at various points.

A1. The space W satisfies the following conditions:
(i) It is closed under the projection PT for all Te S, i.e., if x e W then PTX W

for all T S.

xllw if x W,
(ii) SUPTes IIPTXIIw

oe ifxe We W.

(iii) The elements of W can be approximated by functions which vanish
up to some time T S. More precisely, let Wr denote the subspace of W defined
by Wr {x WIPrx O, T S given}, and let W denote the subspace of W
defined by Wr {x WIPrx 0 for some T S},i.e., Wr Ur sWr. Itisassumed
that W is dense in W. Thus for any x W, infrs IlPrxllw 0, i.e., the closure of

(iv) W is a Banach space. Moreover, the subspace of W defined by
{x Wlx(t) 0 for S, IT1, Y2] is a Banach space for any T1, T2 e S, T1 < T2.
In other words, it is assumed that the set of all elements of Wwhich are zero outside
any interval IT1, T2] is closed in W.

A2. The operator G satisfies the following conditions:
(i) G is a causal operator on We, i.e., PrG and Pr commute on We and thus

PrGx PrGPrx for all x We. This assumption is equivalent to requiring G1 and

G2 to be causal on Wle and Wze respectively.
(ii) G maps W into itself, G(0) 0, and G is continuous on W.
(iii) Gx is bounded on W and G2 is Lipschitz continuous on W2. Note that this

assumption together with (ii) implies that G is bounded on W.
The causality restriction is of course a natural one if the feedback system

describes a physically realizable feedback controller. Many other interesting
functional equations can successfully be modeled into a feedback configuration
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which indeed satisfies the causality condition. This additional structure on the
operators appearing in the functional equations and the corresponding particular
role played by the "past" as compared to the "future," leads for instance to the
possibility of establishing the invertibility of certain operators on extended spaces,
although these spaces are in general not normed.

The notions on stability, continuity, and instability are, at least from a
mathematical point of view, well-defined even when G is not causal. It should
be remarked however that in these definitions the "future" again plays a particular
role and that therefore these definitions would appear ill conceived when G is itself
not causal.

The restriction that W be dense in E is, when S is doubly infinite, somewhat
more severe than one might like. It is satisfied for l,- and L,-spaces with __< p <
but unfortunately excludes for instance Loo(- oe, +

3.4. Objectives and historical remarks. The remainder of this paper discusses
some of the fundamental properties of the feedback system under consideration.
In particular, attention is focussed on the relationship between the invertibility
on W of the operator ! / G, and stability, instability and continuity. In analyzing
this relationship, the question of existence and uniqueness of solutions is en-
countered and is therefore briefly treated.

Many previous authors have treated similar problems. More specifically,
the questions of existence and uniqueness have been considered in essentially the
same setting by Zames in [5], [6]. The question of stability has received a great
deal of attention in the last decade. Particularly the work of Sandberg and Zames
(see, e.g., [2], [4]) for general functional equations, and of Brockett and Willems 11
for differential equations deserves mention. More recently, a number of instability
criteria have appeared in the literature. The results here in fact extend3 and re-
interpret in a functional setting those obtained using Lyapunov theory by Brockett
and Lee 12] for feedback systems described by ordinary differential equations.

Since the mathematical approach to the problem used here is inspired by
the work of Sandberg and particularly of Zames, there is some unavoidable
overlap of results.

4. Interrelations between invertibility, stability and continuity. In this section
some general stability and continuity theorems for feedback systems are derived.
They expose the interrelationship between invertibility of the closed-loop operator
(on the nonextended space) and stability and continuity. The resulting Theorems
4.1 and 4.2 are believed to be of great interest and constitute the main results of
the paper. This approach makes the large mathematical literature on invertibility
of operators directly applicable to the problem of stability and continuity of feed-
back systems. Vice versa, it appears important to realize that every stability
theorem actually yields an inverse function theorem.

Recall that the equations describing the feedback system could be written
as (I + G)e u. Theorem 4.1 presupposes (of course in addition to the assump-
tions of 3) that the operator I + G has a causal inverse on We. Theorem 3.2

Under the assumptions of 3.3. Note that particularly the boundedness assumption of G is

not needed in [12].
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assumes that the operator I + G has a causal inverse on Wre for all T S, where
WTe {X We]PTX 0, Te S given}. As will be discussed in 5, this invertibility
condition on WTe is weak. The invertibility condition on W however is weak
only when the set S is bounded from below but is rather severe--about equivalent
to continuity of the feedback system--when S is not bounded from below.

THEOREM 4.1. Assume that I + G has a causal inverse on We. Then thefeedback
system under consideration is stable if and only if I + G has a causal bounded
inverse on W.

Proof. (i) The condition is sufficient. I + G is thus assumed to have a
causal bounded inverse on W. Let u e W be given, and let e e W be a solution. Then
Pr(I + G)Pre Pru, and Pr(I + G)-1Pru Pr(I + G)-IPr(I + G)Pre Pre.
Thus Ilerellw <= II(I / a)-ll Ilullw, for anY re S, which yields stability.

(ii) The condition is necessary; the feedback system is thus assumed to be
stable. Since I + G has a causal inverse on We it is one-to-one and onto on W.
By stability, (! + G)e u, ue W, and ee imply that ee W. Hence I + G
is one-to-one and onto on W. Causality follows since the inverse of I + G on W
is the restriction to W of the inverse of I + G on W which is assumed to be causal.
Boundedness is then a direct consequence of the second condition in the definition
of stability.

THEOREM 4.2. Assume that, for any T S, I + G has a causal inverse on

WT A. {X WeIPTX O, Te S given}. Then the feedback system under considera-
tion is continuous if and only if I + G has a continuous causal bounded inverse on W.

Proof. (i) The condition is sufficient; I + G is thus assumed to have a con-
tinuous, causal, bounded inverse on W. Stability follows from Theorem 4.1,
and continuity of the feedback system thus follows immediately from continuity
of the inverse of I + G on W.

(ii) The condition is necessary; the feedback system is thus assumed to be
continuous. Moreover I + G has, by assumption, a causal inverse on

Wre {x ff WelPTX 0 for some T e S}.

By stability and continuity I + G is invertible on W =a {xe WlPrx 0 for
some Te S}, and this inverse is continuous, causal and bounded. Let (I + G)-denote this inverse (defined on W) and let F denote its continuous extension to W.
This is possible since W is, by assumption, dense in W. Thus

Fx a_. lim (I + G)-

with x, a sequence in V with lim,_o x, x. It remains to be shown that F is
indeed the inverse of I + G on W and that it is continuous, causal and bounded.
That F is indeed continuous, causal and bounded is rather immediate and will
not be shown explicitly. For the invertibility, recall that G was assumed to be
continuous, and consider, with xn a sequence as above,

(I + G)Fx (I + G) lim (I + G)-x, lim x. x,

F(I + G)x F lim (I + G)x, lim F(I + G)x, lim x, x.
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Remark 4.1. Requiring invertibility of I + G on W,e as in Theorem 4.2 is a
lot weaker than requiring it on We as in Theorem 4.1 and constitutes an important
facet of Theorem 4.2. Note also that Theorem 4.2 states that continuity implies
causal invertibility of I + G on W where this was only assumed on We. Note
finally that, by the assumption that I + G has a causal inverse on We, the inverse
on Wwill necessarily be causal whenever it exists. This was stated in Theorem 4.1
merely for emphasis.

Remark 4.2. If the second condition in the definition of stability (i.e., the
existence of a K) is not taken as an a priori requirement, then Theorem 1.1 should
be modified so as not to require boundedness but only existence. Recall however
that, by a theorem of Banach [13, p. 47], if I + G is an invertible bounded linear
transformation on W, then so is (I + G)-, and thus for linear systems condition
(i) in the definition of stability implies, by Theorem 4.1, condition (ii).

Remark 4.3. Theorem 4.1 shows (under the invertibility assumption on W)
the equivalence of the present definition of stability and the alternate definition
in which the feedback system under consideration would be called stable if for any
given u We a solution e W satisfies IIPTeII w <= KIIPTUl] for all T S and some
constant K. This definition is also entirely reasonable and in fact allows a larger
and somewhat more realistic class of testing inputs which yields a bounded
response. The fact that stability in the second sense implies stability in the first
one follows immediately. The converse is a consequence of Theorem 4.1 and the
following lemma which will also be used in 6. First however we have a definition.

DEFINITION 4.1. Let F be an operator from We into itself. F is said to be
bounded on We if

IIPTFxlIwsup <
xWe PTx w
TS

PTX 0

This least upper bound will be denoted by tF
LEMMA 4.1. Let F be a causal operator from We into itself. If F is bounded on

W, then F maps W into itself, is bounded on W, and F File. Conversely, if
F maps W into itself and is bounded on W, then F is bounded on W, and File ]F]I.

Proof. The proof of this lemma which merely involves the properties of
extended spaces is left to the reader.

Remark 4.4. A similar redefinition of uniform continuity which would require
u" <bthat given any e > 0 there exists a 6 > 0 such that u, W and IIPr(u’ u") w

implies that any corresponding solutions e’, e"s We satisfy PT(e’--e") w <= e
for any T S is, by Theorem 4.2, equivalent to the one used here.

5. Existence and uniqueness of solutions. The question of existence, uniqueness,
and causal dependence of solutions on inputs is by no means of solely academic
interest. First of all, the operators G1 and G2 in the forward and the feedback loop
of the system need not be pathological in nature in order to induce, of course in a
strict mathematical sense, signals in the loop which depend on future values of
the inputs. Furthermore if the conditions for existence, uniqueness, and causal
dependence of solutions are not satisfied then it can usually be concluded that the
mathematical model of the feedback system does not represent a reasonable model
of a physical system. In fact, under such circumstances the consideration of certain
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additional factors in the description of the feedback system (as, e.g., the introduction
of infinitesimal time delays or filtering effects in the loops) will very often modify
some of the important properties of the system as, for instance, its stability.
Finally, as indicated in 4 there exists a close relation between the questions of
existence, uniqueness, and causality on one hand, and stability and instability
on the other hand.

5.1. An example. As an example illustrating the above comments, consider
the feedback loop shown in Fig. 4. All signals are real-valued, the forward loop
consists of a unit gain minus a simple time delay, and the feedback loop consists
of a unit gain.

e-sT

L- ,,,F
FIG. 4. A predictor

Yl

/,/2

More precisely, let S R, and let V1 V2.= R. The operators G1 and G2

are defined by
G x(t) x(t) x(t T), T > O,

and

Gzx(t) -x(t).

G1 and G2 are clearly causal. A simple calculation shows that a unique solution
exists for any Ul, u2, and

e(t) Ul(t + T) + Uz(t + T),

ez(t) -Ul(t) + Ul(t + T) + u2(t + T).

The closed-loop system thus acts as a predictor and certainly does not represent,
even approximately, a physical realizable system.

The system is clearly stable and continuous. In particular, this is true with
W W2 Lp, 1 <= p <= . It can easily be verified however that the introduction
of an unavoidable infinitesimal time delay in the feedback loop, i.e.,

G2x(t) -x(t- e), e > O,

will in fact lead to an unstable system.

5.2. Theorems on existence and uniqueness. The existence theorems which
follow are based on the contraction mapping principle. They rely on the com-
pleteness properties of W expressed in assumption A1 (iv) of 3. The proof,
which will be deleted, is completely analogous to the usual proofs in showing
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existence and uniqueness of initial value problems in ordinary differential equa-
tions" one proceeds to show that a unique solution exists over a small initial
interval and that this process can be continued. For details and additional related
results, see Zames [5], [6]. The theorems will be stated with S [To, ) or
(-, + ). The extension to cover, e.g., discrete systems, is straightforward.

THEOREM 5.1. Let S [To, ). Then I + G has a causal inverse on W if
there exists a AT> 0 such that for all T >= To, and all x (x,x2) and
Y (Y l, Y2) W with Prx PTY, either of the Jbllowing conditions is satisfied"

(i) IIPT(G,xx G,y,)IIw, PxlIPaT(XX yx)llw,,

[IPaT(Gzx2 GzYz)IIw2 <= P2IIPaT(x2 yz)llwz

with p lp2 < and where Par
(ii) Wa W2 and there exists a scalar c such that I + cG2 has a causal inverse

in Wae and G’x Ga cI and G’z G2(I + cG2)-a satisfy conditions (i).
THEOREM 5.2. Let S (-, +). Then I + G has a causal inverse on

Wroe a__ {x WelProx O, To S given} if the condition in Theorem 5.1 is satisfied.
Theorem 5.1 thus gives conditions under which a unique solution to the

feedback equations exists while Theorem 5.2 gives conditions under which solu-
tions can be continued. Note that condition (i) will be satisfied whenever there is an
infinitesimal delay present in the loop. Condition (ii) was introduced for the
example in 8 and to indicate what conditions for realizability could be required
when it is decided to neglect certain time delays or filtering effects.

6. Stability and continuity. General stability criteria involving gains, conicity
and positivity have been given by Zames [4] and Sandberg [2] in a setting which
is slightly less general than the one considered here. However, the extension does
not represent any difficulties. This section starts by stating a general stability
theorem and derives some specific results similar to the ones obtained in the above
papers.

6.1. A general stability condition.
THEOREM 6.1. Thefeedback system under consideration is stable if the inequa!ity

IIPT(I / G2Ga)eallw, >= ellPTeallw, holds for all ea Wa, all T S, and some con-
stant e > O. This condition is also necessary for stability if I + G has a causal
inverse on

Proof. (i) The condition is sufficient; it is thus assumed that the inequality
in the statement ofTheorem 6.1 is satisfied. Let M denote (2 [[" Let u (u a, uz) W
be given, and let e (ea, e2) We be a solution. Thus

ea + G2Glex ua (G2(Gaea + U2)- G2Gael)

and consequently

Pr(I + GzGa)ea Prua Pr(Gz(PrGaet + Prua)- GzPrGaea)

for all T S. Hence from the conditions of the theorem and the triangle inequality
it follows that

e.I Prea Iw, <= lu,llw, + Mllu211w
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which, since e > 0, yields

IPTeIIw, =< -XlUtlw + -Mllu211w2.
This shows that indeed el W1 and that

Since e2 G lel + u and since G1 is bounded on W1 it follows that

which yields e2 W2 and the boundedness condition required for stability.
(ii) The condition is necessary if I + G has a causal inverse on We. This part

of the theorem follows by letting u2 0 and considering the equation

(I + G2G1)el ul.

I + G2G1 has, by Theorem 4.1 and stability, a causal bounded inverse on W1.
This then yields, for all T e S,

IIPellw IIPr(I + GzG)-P(I + GzG1)elllWl

5 I1(I + GzGa)-xI IIP(I + GzGl)el wl

and the conclusion with e I1(I / G2ax)-ll-1. This completes the proof of
Theorem 6.1.

Some simple conditions for the inequality condition in the statement of the
theorem are given below. Notice that the sufficiency condition in Theorem 4.1
is, formally at least, completely disjoint from the questions of existence and
uniqueness. Finally, if the second condition in the definition of stability is relaxed,
then the sufficiency part of the theorem remains. The necessity part however is
then false (unless, e.g., linearity of G is assumed).

COROLLARY 6.1. The feedback system under consideration is stable if

IG2GIII < 1.

Proof. Since by Lemma 4.1, IIPTGzGellIw IIG2GIII IPre w, the corol-
lary follows from Theorem 6.1 with e IIGzG1 Indeed,

PTel / PGzGlel w > IIPexl w IIPGzGlel IW1 (1 ---IIGzG I)llP’e Iw-
COROLLARY 6.2. Let W W2 Then the feedback system under consideration

is stable if there exists a scalar c such that IIG1 -clll < r and if for all el W1 and
T S, IIP(I / cGz)elllw >= rllPa2elllw.

Proof. Let -# 0. Since c(I + G2G1) -(GI cI) + (I + cG2)G ,it follows
from the triangle inequality and the assumptions of the corollary that

IIPT(I + azal)el Iwl >= Ic-ll(llPr(I + cG2)Gxelllw, IlPT(G1 cI)elllw,)

>= Ic-l(rllPTazaelllw, IIa clI IIPTe Iw,)
which yields the condition of Theorem 6.1 whenever

[[P.D2GexI[w (1+ G1 clII IPTexl w.
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For c 0 and whenever

( G-cI,
PrG2GlelllWl <= 1 + Prel wl,

the proof of Corollary 6.1 can be used unaltered. Thus in all cases the condition
of Theorem 6.l is satisfied which yields stability as claimed.

Remark 6.1. If I + cG2 has a bounded causal inverse on W, then the second
condition ofthe above corollary is equivalent to requiring G2(I + cG2)- 111 r- 1.,

DEFINITION 6.1. An operator, F, from an inner product space, X, into itself
is said to be positive4 on X if Re (x, Fx)x >= 0 for all x e X.

Remark 6.2. If W1 is an inner product space (and only then), then the last
condition of Corollary 6.2 can be stated somewhat more simply by requiring G2

to satisfy the following conditions"

c
(i) G2 [cl21 =< ifr > ]c[,

(ii) Pr 62 Icl2 w- Icl r2r2I el. > Pre Iw

for all el e W1 and Te S, if r < ]c].
(iii) G2 + 1/r is positive on W, if r [c[ - 0.

The fact that no truncations appear in (i) is due to Lemma 4.1.
COROLIAR 6.3. Let Wx W be an inner product space. Then the feedback

system under consideration is stable if GI and G2 el are positive on Wx for some
e>0.

Proof. The proof of this limiting case (with r, c --, oe) of Corollary 6.2 is left
to the reader.

Remark 6.3. Note that Corollary 6.3 requires the verification of positivity
conditions on the nonextended space only.

Remark 6.4. As can immediately be deduced from the statement of Theorem
6.1, it is of course possible to restate the conditions of the previous corollaries in
terms of two causal operators G and G’I which are a factorization of GzG (i.e.,
G’zG’I GzG1 on W1).

6.2. A general continuity condition. The following continuity theorem follows
immediately using the same methods as were used in the stability analysis.

THEOREM 6.2. The feedback system under consideration is continuous if the
inequality

IIPr(I + GzG1)e’x Pr(I + GzG1)ellw >= ellPr(e’ e’)llw
holds for all e’ e W, all T S and some e > O.

Corollaries 6.1,6.2 and 6.3 have obvious counterparts as continuity conditions.
The condition of Theorem 6.2 is necessary for Lipschitz continuity of the feedback
systems if I + G has a causal inverse on We.

7. Instability. Theorem 4.1 gives a procedure through which it is possible to
generate instability criteria. It suffices therefore to consider the invertibility of

’ The terms dissipative, passive and accretive have been used in the same context.

These conicity conditions, which are very useful in practice since the spaces involved are more

often than not Hilbert spaces (e.f., L or bf2), are due to Zames [4].
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I + G on W. If this inverse does not exist, or exists but is unbounded or non-
causal, then instability results. However, in order for Theorem 4.1 to be applicable,
it is necessary for I + G to have a causal inverse on We. Thus whenever the
inverse of I + G on W exists, it will unavoidably be causal and hence for instability
it needs to be established that a certain inverse does not exist or exists but is un-
bounded. Note that for linear operators the inverse will necessarily be bounded
whenever it exists and that then instability is thus equivalent to noninvertibility of
I+G.

It is in general not an easy matter to show that an inverse does not exist, and
Theorem 4.1 does not seem at first sight very useful for instability purposes. One pro-
cedure which accomplishes this however will be described at the end of this section.

Theorem 4.2 on the other hand gives a procedure through which it is possible
to prove that the system is not continuous. One needs therefore to show that
either I + G is not invertible on W or that it is invertible but that the inverse is
not bounded, not continuous, or not causal. This last condition will indeed be
very useful and a large class of operators which have a noncausal inverse on W
will be constructed. Note that Theorem 4.2 only presupposed continuability of
the null solution, a condition which in general causes no difficulties. Since for
linear systems continuity and stability are equivalent, Theorem 4.2 will thus be
used to prove a rather general instability theorem for linear systems.

For the remainder ofthis section attention will be restricted to linear systems.6

It might not be clear at this point how one would go about showing that the inverse
of a particular operator, given that it exists, is noncausal. Some thought however
reveals that this will, in at least some cases, be possible, namely, when G is linear
and time invariant. The remainder of this section explains a procedure by which
this can be achieved under more general circumstances. This method is to modify
the system such that the inverse of the modified closed-loop operator exists but is
actually noncausal, and to "follow" the causality ofthis inverse as this modification
is removed. The modified system will be chosen to be simpler (e.g., time invariant)
so that much more can be said about its inverse. This procedure will be explained
in more detail later on.

7.1. Two lemmas on Banach algebras. As pointed out by Zames and Falb
[7], the natural setting for linear operators in a Banach space is in a Banach
algebra, with the causal operators characterized by a subalgebra. The relevant
notions on Banach algebras and subalgebras have been introduced in 2. The
following relationship between the spectrum of an element of a subalgebra when
considered as an element of a subalgebra or of the basic algebra is essential in the
proof of the instability theorems which follow. It is believed to be of some indepen-
dent interest.

LEMMA 7.1. Let x and y be elements of a subalgebra 1+ of a Banach algebra

’ with unit e. Let e 1 +. Assume that x + ay is invertible in the algebra for all
in some connected set C of the complex plane and that the collection of elements
(x + ay)-l / is bounded on C (i.e., there exists a constant K such that

It should be noticed that the resulting theorems do have implications about nonlinear systems
as well. Indeed, instability of the equations linearized around the null solution implies instability of

the original nonlinear system.
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II(x + y)-ill K for all C). Then (x + y)-1 s,+ (i.e., x + y is invertible
in the subalgebra) for all C if and only if (x + oY)- s + for some o C.

Proof. (i) The condition is necessary:this part is obvious.
(ii) The condition is sufficient; it is thus assumed that (x + coy)-1 e

and that o e C. The conclusion clearly holds if Ilyll 0. Assume therefore that
Ilyll -: 0 and notice that K 0. It will first be shown that if (x + e’y)-
then(x + y)-i es+ for all complex numbers , e N ____a {11 ’1 _-< Ilyll-lg-1}
Write therefore x + ey as (x + ’y)(e + ( e’)(x + e’y)-ly). Since e z is
invertible whenever zll < 1, with (e z)- O=o zk, and since thus
(e z)- e s / if z e /, the claim follows by the obvious estimate

I1( ’)(x -4- ’y)-Xyll I ’1 II(x + ’y)-111 Ilyll.

Let P be the set in the complex plane defined by P =a {el(x + ey)-1 exists and
belongs to s / }, and let pc denote its complement. The lemma claims that pc f-/C
is empty. Assume therefore that U (q C is not empty. Then

Let

d(P C, PC C)= inf
’ P cC,, pc C

I’ c"l Ilyll- 1K-1

N1 U {’11c’ l < Ilyll-K-/3}
otePcC

and let N2 be similarly defined with cz e pc f) C. The sets N and N2 are open,
disjoint, have a nonempty intersection with C (with N1 since eo e P f) C and with

N2 since pc C is assumed to be nonempty) and their union contains C. Hence C
is not connected. This contradiction ends the proof of the lemma.

Since W is assumed to be a Banach space, 2"(W, W) forms a Banach algebra.
Let 2"+ (W, W) be the set of all elements of(W, W) which are in addition causal.
The next lemma exposes the algebraic properties of 2"+ (W, W).

LEMMA 7.2. 2"+(W, W) forms a subalgebra of 2"(W, W) and contains the
unit.

Proof. 2" /(W, W)is clearly closed under addition, multiplication of elements,
multiplication by scalars, and contains the unit. It remains to be proven that
&z+(W, W)is complete. Let {L} be a convergent (in 2"(W, W)) sequence of
elements in 2’*(W, W) and let L be its limit. Thus limn-.oo [I(L L+)x[ 0 for
all x e W. Assume that L is not causal; then there exists an element in x e W and a
T e S such that Prx 0 but PrLx 4: O. But since, for all n,

II(Z- L,+)xl >-IIPT(L- Z,+)xll---IlPrZxll,

a contradiction follows.

7.2. An inverse function theorem. To obtain instability theorems, it will be
established that the operator I + G is invertible and that its inverse is noncausal.
The previous section gives the structure which enables one to prove noncausality.
This section gives the inverse function theorem which suffices for the purposes
of this paper.

LEMMA 7.3. Let Wt Wz, and let G 2"(W, W). Then I + G is invertible on
W if there exists a scalar c such that I + cG2 is invertible on W and

[1(I + cG2)-1Gz(G1 cI)[[ < 1.



STABILITY, INSTABILITY, INVERTIBILITY AND CAUSALITY 661

Moreover, (I + G)--1 ’(W, W).
Proof. Since

I + G2G I + cG2 + G2(G1 cI)= (I + cG2)(I + (I + cG)-IG(G1 cI)),

it follows that I + GzG is indeed invertible on W1. It is easily verified that the
operator F (W, W) defined by

Fx F(x,x2) ((I -k- GzG)-I(x Gzx2),x2 + G(I + GzGI)-I(x1 Gzx2)

is indeed the inverse of ! + G on W and belongs to 9(W, W) and to +(W, W) if
and only if (1 + GzG1)-1 is causal.

7.3. An instability theorem. The following general instability theorem is the
main result of this section, and is, in a sense, the converse ofthe stability conditions
involving conicity obtained by Zames [4].

THEOIEr 7.1. Let W, W2 and let G (W, W). Assume that, for any T S,
I + G has a causal inverse on Wre a__ {x We]Prx O, T S given}. Then the
feedback systetn under consideration is unstable if there exists a scalar c such that
I + cG2 has a noncausal inverse on W and II(I + cG2)- 1Gz(G cI)]l < 1.

Proof. It follows from Lemma 7.3 that I + G is invertible on W, and hence by
Theorem 4.2 it suffices to show that this inverse is not causal on W. This inverse
(I + G)- is causal on W if and only if (1 + GzG)- is causal on W. However,
since I + G2G 1 + cG + G2(GI cI) it suffices to prove, by Lemmas 7.1
and 7.2, that I + cG2 + rG2(Ga cI) is invertible for all Irl =< 1 and that the
norm of this collection of inverses is bounded. Since however

I + cG2 -t- rGz(G1. c1)= (I + cG2)(I -k- r(I + cG2)-Gz(G cI)),

it follows immediately from the inequality IIr(I + cG2)-Gz(G1 cI){[ < [r] that
the inverse exists for all Irl < and that in fact

I1(1 / cG2 / rGz(G1 cI))- 111 <= [l(I + cG2)- [l(1 -Ir[ [1(I + cG2)- 1Gz(G cI)[I)- 1.

This then yields

I1(I / cG2)- ill(1 II(I / cG2)-IGz(G cI)ll)-
as the desired bound.

Remark 7.1. There is no problem in identifying an input u W which yields
a solution e I/V, with e W, i.e., e We W. In fact, let u 14’and T S be such
that Pr(I + G)- lu 0 with Pru 0. Such a T and a u exist since (I + G)- is not
causal. Since u l,Ve and I + G has a causal inverse on Wre there is an e"
such that (I + G)e" u. This continuation, e", is not in W since e’ (I G)-lu
is, by invertibility, the unique element of W which satisfies (! + G)e’ u, and since
e’4: e" (in fact, PTe"= 0 but PTe’: 0 by assumption). Thus e" We- W, as
claimed.

Remark 7.2. The above remark also illustrates that if the system is unstable
because the inverse (I + G)-1 exists on W but is noncausal, then there will in
general not be a unique solution e W for certain inputs u e W. Indeed, certain
inputs u W will give a solution e" I4’ and a solution e’ W. Naturally
only e" will be a solution in the "dynamical system" sense.



662 JAN C. WILLEMS

7.4. Instability theorems when S has a lower bound. The case when the time
interval of definition, S, has a lower bound is somewhat more realistic from a
practical viewpoint than the case when S has no lower bound. Theorem 7.1 gives
a procedure which allows one to prove instability for a large class of feedback
systems and which is based on showing that the inverse of ! + G exists on W, but
is not causal. This procedure is not promising whenever S actually has a lower
bound since very weak conditions on the operator G will then ensure that I + G
has a causal inverse on We and thus it is impossible for ! + G to have a non-
causal inverse on W. Hence, in order to obtain instability theorems when S has
a lower bound, it will be necessary to design a procedure through which it is
possible to show that a particular operator is not invertible. The remainder of
this section describes one such procedure. It is based on an. extension of S, W
and G and on the following lemma which is believed to be of some interest in its
own right.

LEMMA 7.4. Assume that, for any T S, I + G has a causal inverse on

W {x WlPx O, T S given}. Let G (’(W, W), and let T1,7’2S be
arbitrary. Then I + G has a causal inverse on W, a_._ {x W[PT,x O, T 6 S
given} if and only if it has a causal inverse on W.

Proof. Assume that T __< T:. Then the inverse on W, clearly qualifies as the
inverse on W. The converse however is not as immediate. Assume thus that
I + G has a causal inverse on Wry, and let x Wr, be given. Let e W,e be the
unique solution (in W,) of (I, + G)e x, and let x2 (I Pr)x. Let e2 WT
be the unique solution (in W.) of (I + G)e2 (I P.)(x (I + G)P.e). Then

PTae + e2 WT and, as a simple calculation shows, (I + G)(Pre + e2)--X.
Thus e Pe + e2 WT and I + G has a causal inverse on W as claimed.
This completes the proof of the lemma.

The idea behind the remainder of the procedure is to extend the interval of
definition, say [To, ), to (- , + ), and extend the space W accordingly to W’.
The operator G, originally defined on W, is then extended to G’, defined on W’.
The pairs W, W’ and G, G’ will of course have to satisfy certain compatibility
conditions. If G’ is properly chosen, within its restrictions, then it can very well
happen that I + G’ has a noncausal inverse on W’. This fact and the properties of
G and G’ will then lead to a demonstration of the noninvertibility of G.

To make this procedure more precise, let $1 R be such that $1 fq S is
empty and sup S _<_ inf S. Let S’ S U S. Let W’ and Wz be Banach spaces of
respectively V- and Vz-valued functions on S’, and let W’ W] x W. W and
W’ are related as follows: for any x’ W’, consider the function defined by
x(t) x’(t) for S. It is then assumed that x W. Conversely, it is assumed that
if x S then the function x’(t) with x’(t) x(t) for S, and x’(t) 0 for S’ S,
is an element of W’. The next step is to define an appropriate extension of G.
Let G’ and Gz be operators from W’ into Wz and from Wz into W’ respectively
and let G’ map W’ into itself according to G’e G’2e2, -G’e for e (e, e2) W’.
The operators G and G’ are related as follows tbr any x’ e W’ with support on S,
let x be the element of W such that x’(t) x(t) for S. x indeed belongs to W
by the assumption on the relation between W and W’. It is then assumed that
(G’x’)(t) (Gx)(t) for all t S. Typically, neither W’ nor G’ is uniquely defined
by the above assumptions. There is more often than not a natural choice for W;
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and W2’, e.g., Lp(-, +) if W1 and W2 Lp(To, ). In general many possible
choices for G’ remain.

The following additional assumptions are made on W’ and G"
(i) W’ satisfies the conditions A1 (i)-(iv);

(ii) G’ satisfies the conditions A2 (i)-(iii)
(iii) G’ e 5(W’, W’) whenever G e (W, W).
If W’ and G’ satisfy all the above hypothesis then they will be called backward

extensions of W and G.
Examples of such extensions of W and G will be given in 8. It is in general

rather easy to come up with a suitable choice for W’ and G’. The above procedure
leads to the following instability theorem.

THEOREM 7.2. Let W1 W2, and let G q(W, W). Let W’ and G’ be backward
extensions of W and G. Assume that for any T S’, I + G’ has a causal inverse on
W’,r {x W’[PTX O, T6 S’ given}. Then the feedback system under considera-
tion is unstable if there exists a scalar c such that I + cG’2 has a noncausal inverse on

W’ and II(l + cG’2)-aG’z(G’ cI)ll < 1.

Proof. As in Theorem 7.1, it follows from Lemmas 7.1 and 7.2 that I + G’
has a noncausal inverse on W’. Hence I + G’ is not invertible on some W,r,, T’ S’.
Thus by Lemma 7.4, I + G’ is not invertible on W for any T S. Thus I + G’ is
either not one-to-one on Wr or not onto W. The claim is that this implies that
also I / G is either not one-to-one or not onto. Assume first that I + G’ is not
one-to-one on W. Then there exist x’, x W,, x’ # x, with (I + G’)x’

(I + G’)x’2. Consider now the elements xi, x2 WT for which Xl(t) x’l(t) and
Xz(t) X’z(t) for S. By the assumptions on W’ and G’, x, x2 exist and (I + G)x

(I + G)x2. Since X’l and xz have support on S and x’ x, x 4: x2. Thus
I + G is not one-to-one on WT. Assume next that I + G’ is not onto W’T. Since
for all x WT there exists an x’ Wr (i.e., x’(t) x(t) for S) such that (I + G’)x’

(I + G)x on S it follows that also I + G cannot be onto. Thus I + G is not
invertible on W-r, which yields instability as claimed.

8. An example. As an illustration of how the results obtained in the previous
sections translate in a more concrete situation, consider the feedback loop shown
in Fig. 5. In terms of the notation used in the previous sections, let S [To, v)
or (-, +), V V2 R, i.e., ul and u2 are real-valued, and let G and G2
be defined by

G lX(t) a__ g,x(t- t,) + g(t- r)x(z)
n=0

Ul

Linear+ -, e
Time-Invariant

Convolution
Operator

Yl

Yz Time-Varying e2 (Gain +
FIG. 5. The linear feedback system under consideration

u2
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where to 0, t. > 0 for n 1, g(t) 0 for < 0, {g.} 6 Ix and g e LI(0, m),
and

Gzx(t) k(t)x(t)

with k Loo(S). Let k ess infts k(t), and let/ ess supts k(t). Thus k <= k(t) <= c
for almost all S.

Assumption. It will be assumed that go 0 or that gl q [k, ].
Let W L2(S L2(S). It can then be verified using some elementary

properties of Lz-spaces that the assumptions A1 (i)-(iv) of 3 are then indeed
satisfied.

Standard calculations based on Minkowski’s inequality show that G1 and
G2 define causal bounded linear operators from L2e(S into itself. This then shows
that G and G2 satisfy assumptions A2 (i)-(iii) listed in 3.

The assumption on go suffices to ensure that the conditions of Theorem 5.1
in the case S [To, o), and of Theorem 5.2 in the case S (-, + ), are
satisfied. (The example of 5 indicates that some restriction would have to be
made.) To verify this, let, in Theorem 5.1 or 5.2, c go, and let AT be such that

Ig.I / Ig(v)ld < Ilkll - -Loots) [{1 / gokl[ L(S).
O<t._-<AT

Such a AT > 0 indeed exists since, by assumption, (g, lx and g LI(0, ).
Hence the operator I 4- G, specialized to the example, has a causal inverse on W
when S [To, ) and on Wr - (x W]Prx 0, T S given for any T R,
when S (-, +).

8.1. Stability and instability in the time-invariant case. The stability results
obtained here constitute a generalization of the well-known Nyquist criterion.
There is some overlap between these results and similar generalizations of the
Nyquist criterion which have recently been derived by Desoer [14], I15].

DEFINITION 8.1. Let LA denote the algebra consisting of elements determined
by a real-valued L(-, +)-function, g, a real-valued l-sequence, {g.},
n--0, 1,..., and a sequence of real numbers {t.}, n 0, 1,... Addition of

xl (gl, {g., t.} 1)and x2 (g2, {gn, tn}2)is defined as (gl + g2, {gn, tn}3) where
the sequence {g., t.} 3 consists of exactly all pairs {g., t.} and {g., t.}2. Multipli-
cation by scalars is defined as

x (g, {g., t.}) (g, {g., tk}),
and multiplication of elements is defined by

/+
a [/ (t- Z)gz(Z)dz + (gn)lg2(t- (tn)l)-b E (gn)2gl(t- (tn)2),X1X2 gl

{g., t.}3) where {tn} 3 {tn} {tn} 2

(i.e., all elements of the form t. t.1 + t.2 where t., and t.2 range over {t.} and
{t.}2 respectively), and the element g. corresponding to t. in {g., t.}3 is given by
g. "g.2, with t. t. + t.2. Let the norm on LA be defined by
It can be shown that LA as defined above is a real commutative Banach algebra
with the unit e (0, {g., t.}) with go 1, to 0, and gk 0 otherwise.
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Consider now the subset of LA, (LA)+, which consist of all elements of LA
which satisfy g(t) 0 for < 0 and t, => 0 for all n. It is easily verified that (LA) /

is a subalgebra and that it contains the unit. The details of the proofs of the above
claims can be found in [13, pp. 141-157].

The Laplace transform of an element of LA is defined as the function of the
complex variable s

A E stnG(s) g. e + g(t) e
n--O

G(s) is well-defined for Re s 0 for elements of LA. It is well-defined and analytic
in Re s > 0 for elements of (LA) /

The following lemma plays an essential role in the results which follow.
LEMMA 8.1. Let (g, {g., t,}) (LA)+. Then it is invertible in (LA) + if and only

if infRe __>o [G(s)] > 0, and in LA if and only if infRe =o ]G(s)] > 0.
Proof. The first statement is proven in [13, p. 150], and the second in [13, p.

155]. See also [16, p. 71 ].
Application of the above lemma leads to the following condition for stability

of time-invariant systems.
LEMMA 8.2. Assume that in the feedback system under consideration k(t)

const. K. Let Gl(s) be the Laplace transform of(g, {g,, t,}). Let W L2(S)
x L2(S) be the space with respect to which stability is defined, and assume that
1 + Kgo :/: O. Then the feedback system under consideration is stable if and only if
infR,>_o I1 / KG(s)I > O.

Proof. Since by assumption I1 + Kgol > 0 it follows from the existence results
that Theorem 4.1 is applicable in the case S [To, m) and that Theorem 4.2 is
applicable in the case S--(-m, +m). There are three mutually exclusive
possibilities"

(i) inf l1 + KGI(s)[ > 0,
Res>_0

(ii) inf I1 + KG(s)I 0,
Res=0

(iii) inf l1 + KGI(s)I 0
Res>O

and
inf l1 + KGI(s)[ > O.

Res=0

It needs to be shown that (i) yields stability and that (ii) and (iii) yield instability.
In the first case, it follows from Lemma 8.1 that ! + G has a bounded causal
inverse on W which then by Theorems 4.1 or 4.’2 yields stability. Assume next
that (ii) is satisfied. I + G has a bounded inverse on W2 if and only if
has a bounded inverse on L2(S). 1 + KG1 multiplies the limit-in-the-mean
transform of the element on which it operates by 1 + KGI(jog); thus the only
candidate for the inverse is the operator which divides the limit-in-the-mean
transform of the element on which it operates by + KG(jo)). Thus for this
inverse to be bounded, (1 + KG(jco))-1 ought to exist for almost all 09 R and
belong to L. Since G(jog) is continuous and, by assumption,

inf I1 + g61(jco)l 0,
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I + G has thus no bounded inverse on W, which by Theorems 4.1 and 4.2 yields
instability. The third case requires a different proof depending whether
S (- 09, + 09) or S [To, 09). Consider first the case S (- 09, + 09). It
then follows from Lemma 8.1 that I + G has a bounded inverse on Wbut that this
inverse is not causal, which then by Theorem 4.2 yields instability. If S [To, 09),
then the claim is that I + G has no causal bounded inverse on W. Consider the
obvious backward extension of W and G by letting W’= L2(-09, +09)

L2(-- 09, -k" 09) and defining G’ on W’ by

Gix(t gnX(t- t,) + g(t- "C)X(’C) dz
rt’- O

and G’2x(t)= Kx(t) with x L2(-09, + 09). Since by the previous part of the
proof, G’ has a noncausal inverse on W’, it then follows, by the arguments used in
the proof of Theorem 7.2, that G is not invertible on W, which yields instability
as claimed.

Remark 8.1. The above lemma is well known although the usual proofs
assume the equivalence of stability and the absence of singularities of
(1 + KG(s))- in Re s => 0, and lack therefore a certain amount of justification.
The papers by Desoer [14], [15] are an exception to this, but only treat stability.
Notice that since the system is linear, instability actually implies that there exists a
u W(S) such that e 6 We(S) W(S).

Remark 8.2. If stability is defined with W Lp(S) Lp(S), 1 <_ p <= 09, then
it can be shown that the condition of the lemma are still sufficient for stability.
If the condition fails because of (iii) then instability results. The proofs of these
claims follow the proof of Lemma 8.2 when S [To, 09), or when S (- 09, + 09)
and <_ p =< 09. The case p 09 and S (-09, + 09) cannot be treated by the
above methods since then assumption A1 (iii) is not satisfied. It can however be
treated directly. If the condition fails because of (ii), the situation appears to be
more complex. It can still be shown that then instability results at least when
p 1 or 09, since I + KG1 is invertible in ’+(Lp(S), Lp(S)), p 1, 09, if and only
if it is invertible in LA /

Remark 8.3. It is possible to verify, at least in some cases, the condition
infRe_>o I1 + KGI(s)] > 0 by establishing (i) inf,R[1 + KGl(jCo)l > 0, and (ii)
checking whether KG(jco) encircles the 1 + 0.j point A proof of this for the
case gn 0 tbr all n >_ 1 can be found for instance in [4]. It has not been
possible as yet to generalize this condition to the case under consideration, mainly
because it appears to be no easy matter to give a suitable generalization of the no
encirclement condition. One important particular case is stated below, namely
when the delays are equally spaced, i.e., when tn nT for some T > 0.

DEFINITION 8.2. The argument, 0(co), of 1 + KG(jco), with 1 + KGl(jco O,
is defined as the continuous function with 0(0) 0 or 0(0) 7r such that for all
o96R,

+ KG (jco) I1 + KG (jco)! ej’).

LEMMA 8.3. The condition

inf I1 + KGI(s)I > 0
Re s>--0
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is equivalent to the conditions

(i) inf l1 +kG(s)[ >0
Res=O

and

(ii) limn_ O(N2nT- 1) exists and is zero.

Proof. (i) Conditions (i) and (ii) imply that infRes>=o l1 + KGl(s)l > O. Let

A E -snTA(s) g. e and L(s) g(t) e -s dt.

Since Gl(jo) A(jo) + L(jo), it is the sum of a periodic function, A(jo), and a
bounded function, L(jo), which, by the Riemann-Lebesgue lemma, approaches
zero as [o[ --. . Since infRe,=o 11 + KG(s)[ > 0 by assumption (i), it thus follows
that infoR [1 + KA(jo)[ > 0. Since limn_.o O(N2nT-1) exists by assumption (ii)it
follows that the argument (I)(o) of + KA(jo) satisfies (I)(2nT-1) tI)(0). Thus
by the principle of the argument there are no zeros of the function

R(z) g,,z
n’-0

inside the unit circle since R(z) is analytic inside the unit circle and since the increase
in its argument as z moves around the unit circle equals zero. Thus the function
I + KA(s) has no zeros in Re s __> 0.

Consider now the contour in the complex plane shown in Fig. 6. The increase
of the argument of + KGI(s) as s moves around this contour is zero for N and a

sufficiently large. Indeed, along C1 it is zero by the assumption

lim O(N2nT- 1) O,

and along C2, C3, C4 it is zero since G l(s) is arbitrarily close to A(s) along that
part of the contour. Hence + KGI(s) has, by the principle of the argument, no
zeros in any finite part of the half-plane Re s __> 0. It is bounded away from zero in
Re s __> 0 since it arbitrarily closely approximates I1 + KGI(s)] for large values of

0 + jN2nT-

C!

0 jN2nT-

Im
C2

C3

Re
tr +jO

FIG. 6. A contour in the complex plane
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[s[ in Re s _>_ O. Thus I1 + KG(s)[ is indeed bounded away from zero in Re s O,
as claimed.

(ii) The above argument is easily reversed to yield the converse. The details
are left to the reader.

Example. Consider the case where the forward loop is a pure delay, i.e.,

Gax(t) x(t T), T > 0 given.

Then + KG(jo)= + K e-jT, and

O(N2nT- { 0

-2nN

infll + KG(j()I 0

when KI < 1,

when IKI> 1,

when IKI 1.

Thus the system is stable if and only if IKI < 1. The instability conclusion
can in fact easily be verified directly by considering the input

1, O<t<T/2,
u(t)

0, otherwise.

8.2. Stability and instability in the time-varying case. All the elements are now
available to state a converse of the well-known circle criterion, when applied to
linear time-varying systems. The results which follow are similar to those obtained
by Brockett and Lee [12. Let 0 < k _<_/, and let C be the disc centered on the
real axis of the complex plane which passes through the points -k- + 0.j and
_/-1, + 0.j; let P denote the set in the complex plane determined by

P = {Gx(s)lRes >= 0};

and let Z denote the set in the complex plane determined by Z __a Gl(s)lRe s 0}.
Let d(C, P) a= infx c,re Ix Yl, and let d(C, Z) be similarly defined.

THEOREM 8.1. Let Ga(s) denote the Laplace transform of (g, {gk, tk}). Let
W Lz(S) x Lz(S) be the space with respect to which stability is defined and assume
that go 0 or gffq [k_k_, ]. Assume that d(C, Z)> O. Then the feedback system
under consideration is stable if d(C, P) > 0; it is unstable if d(C, P) O.

Proof, Consider first the case S (- oe, + oe). It then suffices to prove, by the
results in 8.1 and Theorems 4.2 and 7.1, that II(l / cGa)-1Ga(G2 cl)l[ < 1
with c = ( +/)/2. If k__ =/, then the theorem specializes to Lemma 7.1. Assume
thus that _k /. The operator (I + cG)- G corresponds to multiplication of the
limit-in-the-mean transform of the element on which it operates by G’(jog)

(1 + cG(jog))-1G(jo)) and thus II(I / cGa)-1Gll- IlG’(jog)ll. By assump-
tion, [[a’(je))l[L < 2(K / k_)-1. The operator G2 cl corresponds to multiplica-
tion (in the time domain) by k(t) c and 11G2 clll Ilk(t) cll,, which equals
+ )/2. Thus

IIU + cG1)-IGI(G2 cI)ll 5 I1(I / cG)-G, IIG2 clI] < 1,

and the conclusion follows.
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For the case S [To, o), consider the backward extension of W and G by
letting W’ L2(- o, + o) L2(- o, + o) and defining G’ on W’ by

and G’2x(t)= k’(t)x(t)with

k(t) for => To,
k’(t)

1/2(k__ +/) for < To,

and x(t) L2(- o3 +o3). It is a simple matter to verify that W’ and G’ indeed
qualify as backward extensions of W and G. The remainder of the proof is then
based on Theorems 4.1 and 7.2 by identical estimates as used above for the case
S (-o, +o).

Remark 8.4. It is again possible to replace the condition d(C, P)> 0 or
d(C, P) 0 by an encirclement condition, at least in the case when all the delays
are equally spaced, i.e., tk k T, T > 0. In fact, d(C, P) > 0 if and only if d(C, Z) > 0
and limN.oo O(N2rtT-a) exists and is zero where 0(co) is the argument of
+ eG(jco) and e is an arbitrary element of C.

Remark 8.5. Let Z, {Gl(s)lRe s a}. It can be shown that it suffices for
instability that d(C, Z,)> 0 for some cr >= 0 and that d(C, P)= 0. This in fact
leads to an improved instability criterion in situations as the one illustrated in
Fig. 7.

FIG.7. Illustration ofRemark 8.5

Im

Re

9. Concluding remarks.
Remark 9.1. The main results of this paper consist of Theorems 4.1 and 4.2.

Although rather straightforward in their proofs, they spell out precisely what a
priori conditions on invertibility in the extended space one needs in order to draw
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the conclusions. Note that whether the question is continuity or just stability leads
to an essential difference in these a priori conditions. On a semi-infinite interval
of definition, Theorems 4.1 and 4.2 are in fact completely parallel. On the doubly-
infinite interval of definition, however, Theorem 4.1 will for all practical purposes
be useless as it stands since the a priori existence assumption of the inverse on the
extended space becomes then very stringent. It could be questioned whether or not,
also in Theorem 4.1, continuability in the extended space is sufficient as an a
priori ass,mption. The necessity part of Theorem 4.1 still stands, but it is not clear
whether the conditions are then still sufficient for stability. The answer to the
above question is in the n’egative, and simple counterexamples consisting of a delay
in the forward loop and an instantaneous nonlinearity in the feedback loop can
be constructed.

Other contributions of the paper are believed to be the framework and
estimations involved in obtaining the instability Theorems 7.1 and 7.2.

Remark 9.2. Not all of the assumptions enumerated in 3.3 are strictly needed
in various theorems. The following meaningful relaxations can be made .7 Assump-
tion A1 (iii) can be relaxed in Theorems 4.1, 5.1, 5.2, 6.1, 7.2, and in the sufficiency
part of Theorem 6.2. Assumption A1 (iv) can be relaxed in the sufficiency part of
Theorems 6.1 and 6.2. Assumption A2 (iii) is not needed in Theorems 4.1, 4.2, 5.1,
5.2, and in the necessity part of Theorems 6.1 and 6.2. Assumption A2 (ii) does not
enter in Theorem 5.1, only G(0) 0 enters in Theorem 5.2, and only that G maps
W into itself enters in Theorems 4.1 and 6.1.

Remark 9.3. All of the theorems in the paper remain valid if the roles of G1
and G2 are reversed (this was implicitly done in 8), or if G1 and G2 are replaced
by MG1N and N-1G2M-1 with M, N causal operators with causal inverses M-1
and N- 1. Some of the more interesting stability criteria (e.g., [8]) can thus be given
an instability converse.

Remark 9.4. It is interesting to note that stability theorems yield inverse
function theorems. More specifically, assume causal invertibility of I + G2G
on We (a weak assumption for causal systems), and assume that [[G2GI[[ < 1.
Then GzG1 is invertible on W. Observe that the contraction mapping principle
would require IIGzGxll < 1. It is precisely the causality of the operators involved
which allows this relaxation.

Remark 9.5. Possible extensions of the results in this paper include, for instance,
the treatment of open-loop unstable systems which violate the assumption that
G maps Winto itself. Note that an extension of Theorems 7.1 and 7.2 to nonlinear
systems does not appear as important as it seems at first sight. More specifically,
if the resulting theorems imply the instability of the equations linearized around
the null solution then some direct estimates will lead to the instability conclusion
more directly.

Acknowledgments. The author is indebted to Professor R. A. Skoog, Profes-
sor R. W. Brockett, and the referees, particularly the associate editor-in-charge,

This does not include relaxations which are essentially only formal in the sense that then the
assumptions of the theorem will rarely be satisfied. For instance, assumption A1 (iv) is not strictly
needed in Theorem 4.1 but will most likely enter in the verification of the existence assumption which
was presupposed in that theorem.
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